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TU Berlin
Straße des 17. Juni 136,
10623 Berlin, Germany,
and WIAS Berlin,
Mohrenstraße 39, 10117 Berlin, Germany.
E-mail address: koenig@wias-berlin.de

URL: http://www.wias-berlin.de/people/koenig/

TU Berlin
Straße des 17. Juni 136,
10623 Berlin, Germany.
E-mail address: tobias@math.tu-berlin.de

URL: http://page.math.tu-berlin.de/~tobias/

Abstract. We investigate a probabilistic model for routeing of messages in relay-
augmented multihop ad-hoc networks, where each transmitter sends one message
to the origin. Given the (random) transmitter locations, we weight the family of
random, uniformly distributed message trajectories by an exponential probability
weight, favouring trajectories with low interference (measured in terms of signal-to-
interference ratio) and trajectory families with little congestion (measured in terms
of the number of pairs of hops using the same relay). Under the resulting Gibbs
measure, the system targets the best compromise between entropy, interference
and congestion for a common welfare, instead of an optimization of the individual
trajectories.

In the limit of high spatial density of users, we describe the totality of all the
message trajectories in terms of empirical measures. Employing large deviations
arguments, we derive a characteristic variational formula for the limiting free energy
and analyse the minimizer(s) of the formula, which describe the most likely shapes
of the trajectory flow. The empirical measures of the message trajectories well
describe the interference, but not the congestion; the latter requires introducing
an additional empirical measure. Our results remain valid under replacing the two
penalization terms by more general functionals of these two empirical measures.
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1. Introduction and main results

1.1. Background and main goals. In random networks, one of the prominent prob-
lems is the question how to conduct a message through the system in an optimal
way. Optimality is often measured in terms of determining the shortest path from
the transmitter to the recipient, or, if interference is considered, determining the
path that yields the least interference. If many messages are considered at the same
time, an additional aspect of optimality may be to achieve a minimal amount of
congestion.

Many investigations concern the question just for one single transmitter/recipient
pair, which is a question that every single participant faces. However, a strategy
found in such a setting may lead to a selfish routeing, and it is quite likely that the
totality of all these routeings for all the individuals is by far not optimal for the
community of all the users Colini-Baldeschi et al. (2016, Section 1). Instead, the
entire system may work even better if an optimal compromise is realized, by which
we mean a joint strategy that leads to an optimum for the entire system, though
possibly not for every participant.

In this paper, we present a probabilistic ansatz for describing a jointly optimal
routeing for an unbounded number of transmitter/recipient pairs, which takes into
account the following three crucial properties of the family of message trajectories:
entropy (i.e., counting complexity of the number of trajectory families satisfying
certain properties), interference and congestion. That is, we consider a situation in
which all the messages are directed through the system in a random way, such that
each hop prefers a low interference, and such that the total amount of congestion
is preferred to be low. Parameters control the strengths of influence of the three
effects.

Let us describe our model in words. Let the users be located randomly as the
sites of a Poisson point process, which we fix. Each user sends out precisely one
message, which arrives at the (unique) base station, which is located at the origin.
We consider the entire collection of possible trajectories of the messages through the
system. We employ an ad-hoc relaying system with multiple hops, such that all the
users act as relays for the handoffs of the messages. The maximal number of hops is
kmax ∈ N for each message. Each k-hop message trajectory (with k ∈ {1, . . . , kmax}
itself random) is random and a priori uniformly distributed. The family of all
trajectories is a priori independent.

Now, the probability distribution of this family is given in terms of a Gibbs
ansatz by introducing two exponential weight terms. (That is, we define a quenched
measure on trajectories given the locations of the users.) The first one weights the
total amount of interference, measured in terms of the signal-to-interference ratio
for each hop. The second one weights the total congestion, i.e., the number of times
that any two trajectories use the same relay. Under the arising measure, there is a
competition between all the three decisive effects of the trajectory family: entropy,
interference and congestion. Furthermore, the users form a random environment
for the family, which not only determines the starting sites of all the trajectories,
but also has a decisive effect on interference and congestion. While the latter has a
smoothing effect on the fine details of the spatial distribution of all the trajectories,
the effect of the former is not so clear to predict, as the superposition of signals
have a very non-local influence.
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Our main interest is in understanding the spatial distribution of the totality
of all the message trajectories under the Gibbs distribution. The measure under
consideration is a highly complex object, as it depends on all the user locations
and on many detailed properties and quantities. However, we make a substantial
step towards a thorough understanding by deriving an asymptotic formula for the
logarithmic behaviour of the normalization constant in the limit of a high spatial
density of the users. The limiting situation is then described in terms of a large
deviations rate function and a variational formula, whose minimizers describe the
optimal joint choices of the trajectories. This formula is deterministic and depends
only on general spatial considerations, not on the individual users. These are our
main results in this paper.

The main objects in terms of which we achieve this description are the empirical
measures of the trajectories of the messages sent out by the users, disintegrated
with respect to the lengths and rescaled to finite asymptotic size. These measures
turn out to converge in the weak topology in the high-density limit that we consider
in this paper. The counting complexity of the statistics of the message trajectories
can be written in terms of multinomial expressions and afterwards, in the limit
of finer and finer decompositions of the space, approximated in terms of relative
entropies, using Stirling’s formula. The interference term can also be handled in a
standard way Hirsch et al. (2018a), since it is a continuous function of the collection
of empirical measures of message trajectories.

However, a key finding of our work is that the congestion term is a highly dis-
continuous function of these empirical measures. Indeed, one cannot express its
limiting behaviour in terms of these measures. Instead, one needs to substantially
enlarge the probability space of trajectories and to introduce another collection of
empirical measures, the ones of the locations of users (relays) who receive given
numbers of incoming messages (counted with multiplicity if a message trajectory
hits the same relay multiple times). The congestion expression then turns out to be
a lower semicontinuous function of these empirical measures, and hence the limiting
congestion term is still expressible in terms of the weak limits of these measures.
Again, using explicit combinatorics and Stirling’s formula, we arrive at explicit
entropic terms describing the statistics of these measures. These two families of
empirical measures together enable us to describe all the properties of the message
trajectories that we are interested in. We establish a full large deviation principle
for the tuple of all these measures with an explicit rate function and obtain in par-
ticular their convergence towards the minimizer(s) of a characteristic variational
formula. We also derive the positivity properties of these minimizers, which allows
for characterizing the minimizers in terms of Euler-Lagrange equations. Unfortu-
nately, due to the complexity of the congestion term, we are not able to decide
about the uniqueness of the minimizer.

Nevertheless, in the special case when congestion is not penalized, the minimizer
turns out to be unique, and we obtain an explicit expression that is amenable to
further investigation. In certain limiting regimes, we can derive a good understand-
ing of decisive quantities of the system, like the typical number of hops, the typical
length of a hop and the typical shape of a trajectory as a function of the distance
between the transmission site and the origin. We expect that such properties of
the system are similar if congestion is also penalized, as the effect of congestion is
a priori not spatial, but combinatorial. We decided to analyse such questions in a
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separate work König and Tóbiás (2018), as they have a strongly analytic, rather
than probabilistic, nature. The present paper includes a short summary of the
results of König and Tóbiás (2018).

The main purpose of the present paper is to provide the mathematical framework
of large deviations for the quenched trajectory distribution, given the user locations,
in the high-density limit. We also provide a discussion of the relevance of the
model for telecommunication theory. A connection of our work to traffic theory is
outlined in König and Tóbiás (2018), which paper also includes numerical examples
for the case when congestion is not penalized. Hence, in the present paper, we will
formulate the model in a more general, slightly abstract, way in order to bring
its mathematical essence to the surface. That is, we consider a random complete
geometric graph in a compact subset of Rd (where the vertices are the users and
the edges are the straight line segments between any two users), and a distribution
of trajectories that has an interaction (the interference) with all the locations of
the nodes and suppresses local clumping (the congestion).

1.1.1. The high-density limit for multihop networks. The quality of service in large
multihop ad-hoc networks has received particular interest in the last years. In order
to be able to derive a clear picture, one has to make a certain approximation in
limiting settings. Two mathematical settings are frequently used: the high-density
limit (sometimes called also a hydrodynamic limit or a mean-field limit), where
the number of users in a compact fixed area diverges, and the thermodynamic
limit, where the area diverges as well, such that the number of users per space unit
remains fixed. The former models a situation like at concerts, demonstrations or
sports events, while the latter one models large-area networks with moderate user
density.

A number of papers on this subject use large deviations methods. This has
several advantages. Indeed, the corresponding large deviation principles often come
with a law of large numbers for certain empirical measures, and with exponential
bounds on the probabilities of deviations from the limit. This suggests that the
qualitative behaviour of the network is close to the limit already for relatively
moderate values of the diverging parameter. These methods lead in the high-density
setting to much more handy formulas (see e.g. Hirsch et al., 2018a,b; Hirsch and
Jahnel, 2019+) than in the thermodynamic limit (see e.g. Hirsch et al., 2016). This
is why we decided to analyse our Gibbsian model in the high-density setting.

1.1.2. Related literature. Apart from the potential value for understanding a new
type of message routeing models in telecommunication, the present paper provides
also some interesting mathematical research on topological fine properties of ran-
dom paths in random environment in a high-density setting, a subject that received
a lot of interest for various types of such processes over the last decades. We remind
the reader on a number of investigations of the intersection properties of random
walks and Brownian motions (both self-intersections and mutual intersections) in
highly dense settings, see the monograph Chen (2010) and some particular inves-
tigations in König and Mörters (2002); König and Mukherjee (2013); in all these
works, one is interested in large deviations properties of suitable empirical mea-
sures, and the lack of continuity of the path properties is the main difficulty. Let
us mention that the main aspect of the approach in König and Mörters (2002) is
the same as in the present paper: an approximation of combinatorics in finer and
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finer decompositions of the space by entropic terms. Another line of research in
which similar questions arise is a mean-field variant of a spatial version of Bose-
Einstein statistics, like in Adams and König (2008), where the statistics of the
empirical measures of a diverging number of Brownian bridges with symmetrized
initial-terminal condition is analysed in terms of a large deviation principle in the
weak topology. While Adams and König (2008) works with the same method as
we in the present paper (spatial discretization with limiting fineness), Trashorras
(2008) showed that a method based entirely on the notion of entropy is able to
derive such results in a more general framework.

1.1.3. Organization of the remainder of this paper. We introduce the model and
necessary notation in Section 1.2, present our main results in Sections 1.3 (the
limiting free energy of the model), 1.4 (the description of the minimizer(s)), 1.5 (the
large deviation principle and the convergence of the empirical measures), and 1.6
(results in case congestion is not penalized), we interpret the minimizer(s) and
summarize the results of König and Tóbiás (2018) about their qualitative properties
in Section 1.7, and we discuss and comment our findings in Section 1.8. The
remaining sections are devoted to the proofs: in Section 2 we prepare for the proofs
by introducing our methods and deriving formulas for the probability terms, in
Section 3 we put all this together to a proof of the limiting free energy, the large
deviation principle and the convergence of the empirical measures, in Section 4 we
analyse the minimizer(s) of the characteristic variational formula, and in Section 5
we extend the proofs to the case when congestion is not penalized.

1.2. The Gibbsian model. We introduce now the mathematical setting. For any
topological space V , let M(V ) denote the set of all finite nonnegative Borel mea-
sures on V , which we equip with the weak topology. We are working in Rd with
some fixed d ∈ N. Our model is defined as follows. Let W ⊂ Rd be compact, the
territory of our telecommunication system, containing the origin o of Rd.

1.2.1. Users. Let µ ∈ M(W ) be an absolutely continuous measure on W with
µ(W ) > 0. Note that we do not require that supp(µ) = W . For λ > 0, we
denote by Xλ a Poisson point process in W with intensity measure λµ. The points
Xi ∈ Xλ are interpreted as the locations of the users in the system, while the
origin o of Rd is the single base station. We assume that Xλ = {Xi : i ∈ Iλ}
with Iλ = {1, . . . , N(λ)} and (N(λ))λ>0 a homogeneous Poisson process on N0

with intensity E[N(1)] = µ(W ), and (Xi)i∈N is an i.i.d. sequence of W -distributed
random variables with distribution µ(·)/µ(W ) defined on one probability space
(Ω,F ,P). Since µ has a density, all points Xi are mutually different with probability
one. Further, Xλ is increasing in λ, and its empirical measure, normalized by 1/λ,

Lλ =
1

λ

∑
i∈Iλ

δXi , (1.1)

converges towards µ almost surely as λ→∞.
These assumptions on the users can be relaxed, see Section 1.8.4.
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1.2.2. Message trajectories. We now introduce the collection of trajectories sent
out from the users to o, i.e., for uplink communication. For any i ∈ Iλ, we call a
vector of the form

Si = (Si−1 = Ki, S
i
0 = Xi, S

i
1 ∈ Xλ, . . . , SiKi−1 ∈ Xλ, SiKi = o)

∈
⋃
k∈N

(
{k} × {Xi} ×W k−1 × {o}

)
(1.2)

a message trajectory from Xi to o with Ki hops. That is, Si starts from Xi and
ends in o after Ki hops from user to user in Xλ. Hence, each user sends exactly
one message to o, and each user has the function of a relay. We fix a number
kmax ∈ N and write Sikmax

(Xλ) for the set of all possible realizations of the random

variable Si with Ki ≤ kmax, i.e., with no more than kmax hops. Hence, elements
si = (si−1, s

i
0, s

i
1, . . . , s

i
si−1−1

, si
si−1

) of Sikmax
(Xλ) satisfy si−1 ∈ {1, . . . , kmax}, si0 =

Xi and si
si−1

= o. We write Skmax
(Xλ) =

Ś

i∈Iλ Sikmax
(Xλ) for the set of all possible

realizations of the families S = (Si)i∈Iλ . We use the notation [k] = {1, . . . , k} for
k ∈ N. The assumption that we choose a finite upper bound kmax on the number
of hops will be discussed in Section 1.8.7.

Given i ∈ Iλ, we consider each trajectory Si in (1.2) as an Sikmax
(Xλ)-valued

random variable. Its a priori measure is defined by the formula

si 7→ 1

N(λ)s
i
−1−1

, si ∈ Sikmax
(Xλ). (1.3)

That is, its restriction to {si ∈ Sikmax
(Xλ) : si−1 = k} is the uniform distribution on

the set of all k-hop trajectories from Xi to o for any k ∈ [kmax], and its total mass
is equal to kmax. Recall that it fixes the starting point Xi and the terminal point
o.

Under our joint a priori measure, all the trajectories are independent; indeed, it
gives the value

s = (si)i∈Iλ 7→
∏
i∈Iλ

1

N(λ)s
i
−1−1

(1.4)

to the configuration s ∈ Skmax(Xλ). Thus, it gives a total mass of k
N(λ)
max to

Skmax(Xλ).

1.2.3. Gibbsian trajectory distribution. In this section, we define the central object
of this study: a Gibbs distribution on the set Skmax

(Xλ) of collections of trajectories.
After providing the abstract definitions, in Section 1.2.4 we sketch the key example
that is relevant for application in telecommunication. The general conditions on
the ingredients of the Gibbs distribution in this section arise naturally from the
properties of this example.

We introduce the following notation. For k ∈ N, elements of the product space
W k = W {0,1,...,k−1} are denoted as (x0, . . . , xk−1). For l = 0, . . . , k − 1, the l-th
marginal of a measure νk ∈ M(W k) is denoted by πlνk ∈ M(W ), i.e., πlνk(A) =
νk(W {0,...,l−1} ×A×W {l+1,...,k−1}) for any Borel set A ⊆W .

For fixed k ∈ [kmax] and for a collection of trajectories s ∈ Skmax
(Xλ), we define

Rλ,k(s) =
1

λ

∑
i∈Iλ : si−1=k

δ(si0,...,sik−1), (1.5)
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the empirical measures of all the k-hop trajectories, which is an element ofM(W k).
By the assumption that each user sends out exactly one message, we have

kmax∑
k=1

π0Rλ,k(s) = Lλ. (1.6)

For k ∈ [kmax], we choose a continuous function fk : M(W ) × W k → R that is
bounded from below. Using (1.6), we put

S(s) = λ

kmax∑
k=1

〈
Rλ,k(s)(·), fk(Lλ, ·)

〉
=

kmax∑
k=1

∑
i∈Iλ : si−1=k

fk(Lλ, s
i
0, . . . , s

i
k−1), (1.7)

where we write 〈ν, f〉 for the integral of the function f against the measure ν.
Moreover, we define

mi(s) =
∑
j∈Iλ

sj−1−1∑
l=1

1{sjl = si0}, i ∈ Iλ, (1.8)

as the number of incoming hops into the user (relay) si0 = Xi of any of the trajec-
tories.

We pick a function η : N0 → R, bounded from below such that limm→∞ η(m)/m
=∞. Then we put

M(s) =
∑
i∈Iλ

η(mi(s)). (1.9)

Now, we define

Pγ,β
λ,Xλ

(s) :=
1

Zγ,βλ (Xλ)

( ∏
i∈Iλ

1

N(λ)s
i
−1−1

)
exp

{
− γS(s)− βM(s)

}
, (1.10)

where γ > 0 and β > 0 are parameters. This is the Gibbs distribution with
independent reference measure given in (1.4), subject to two exponential weights
with the terms (1.7) and (1.9). Here

Zγ,βλ (Xλ) =
∑

r∈Skmax (Xλ)

( ∏
i∈Iλ

1

N(λ)r
i
−1−1

)
exp

{
− γS(r)− βM(r)

}
(1.11)

is the normalizing constant, which we will refer to as partition function. Note

that Pγ,β
λ,Xλ

(·) is random conditional on Xλ, and it is a probability measure on

Skmax(Xλ). In the jargon of statistical mechanics, it is a quenched measure, which
we will consider almost surely with respect to the process (Xλ)λ>0. In the annealed
setting, one would average out over (Xλ)λ>0, see Section 1.8.5.

1.2.4. The key example: penalization of interference and congestion. In this sec-
tion, we sketch the most important example for the exponents S and M in (1.10),
where S registers interference and M expresses congestion in a telecommunication
network. Analysing the qualitative properties of the network with these choices of
M and S is the main topic of our accompanying paper König and Tóbiás (2018),
see Section 1.7.2.

Now we introduce interference. We choose a path-loss function, which describes
the propagation of signal strength over distance. This is a monotone decreasing,
continuous function ` : [0,∞) → (0,∞). An example used in practice is `(r) =
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min{1, r−α}, for some α > 0, see e.g. Ganesh and Torrisi (2008, Section II.), for
further examples see Baccelli and Blaszczyszyn (2009, Section 2.3.1). The signal-to-
interference ratio (SIR) of a transmission from Xi ∈ Xλ to x ∈W in the presence
of the users in Xλ is given as

SIR(Xi, x, Lλ) =
`(|Xi − x|)

1
λ

∑
j∈Iλ `(|Xj − x|)

. (1.12)

We call the denominator of the r.h.s of (1.12) the interference at x. The definition
(1.12) comes from Hirsch et al. (2018a). It is adapted to the high-density setting,
and it differs from the usual definition Gupta and Kumar (2000) of SIR in the
following way. The sum in the interference in (1.12) is multiplied by 1/λ, and it
contains also the term `(|Xi−x|). For a justification of these differences, see König
and Tóbiás (2018, Section 6.1.1).

Now, given a trajectory configuration s = (si)i∈Iλ ∈ Skmax(Xλ), we put

S(s) =
∑
i∈Iλ

si−1∑
l=1

SIR(sil−1, s
i
l, Lλ)−1

= λ

kmax∑
k=1

∫
Wk

Rλ,k(s)(dx0, . . . ,dxk−1)

k∑
l=1

∫
W
`(|y − xl|)Lλ(dy)

`(|xl−1 − xl|)
,

(1.13)

where for k ∈ [kmax], we write xk = o. Then (1.13) is a special case of (1.7) with

fk(ν, x0, . . . , xk−1) =

k∑
l=1

∫
W
`(|y − xl|)ν(dy)

`(|xl−1 − xl|)
, xk = o, k ∈ [kmax]. (1.14)

Next, we introduce congestion. We define η(m) = m(m − 1), and, as in (1.9),
we put

M(s) =
∑
i∈Iλ

η(mi(s)) =
∑
i∈Iλ

mi(s)(mi(s)− 1), s ∈ Skmax
(Xλ). (1.15)

Note that η(mi(s)) = mi(s)(mi(s) − 1) is the number of ordered pairs of hops
arriving at the relay Xi = si0. We will explain and motivate these choices in
Section 1.8.1.

In the downlink scenario, instead of users sending messages to the base station,
the base station sends exactly one message to each of the users, using the same
relaying rules. One can define a Gibbsian model analogously, now for trajectories
from o to Xi instead of the other way around. For this, the interference term and
the congestion term have to be redefined in an obvious way. We are certain that
analogues of all our results are true and can be proved in the same way, hence we
abstained from spelling them out.

For possible extensions of this model involving time dependence or users trans-
mitting multiple messages, see Section 1.8.6.

1.3. The limiting free energy. The main goal of this paper is the description of this
model in the limit λ→∞ in the quenched setting. Our first result describes the lim-

iting free energy, i.e., the exponential behaviour of the partition function Zγ,βλ (Xλ).
One expects that this is entirely governed by the large deviations behaviour of the
empirical measures ((Rλ,k)(S)k∈[kmax])λ>0. This expectation is supported by the
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fact that, for i ∈ Iλ and s ∈ Skmax
(Xλ), we can express mi(s) defined in (1.8) in

terms of (Rλ,k(s))k∈[kmax] as follows

mi(s) = λ

kmax∑
k=1

kmax∑
l=1

πlRλ,k(s)({si0}). (1.16)

Surprisingly, it turns out that the limiting free energy cannot be described en-
tirely in terms of these measures. The reason is that the function in (1.16) that
maps them onto mi(s) is highly discontinuous in the limit λ → ∞; even a proper
formulation of such continuity would be awkward since both i and s depend on λ.

One therefore needs to substantially extend the probability space and to choose
an additional family of empirical measures such that the congestion term M(s)
can be written as a (lower semi-)continuous function of these measures in the limit
λ→∞. A natural choice of such a family is the one of the measures

Pλ,m(s) =
1

λ

∑
i∈Iλ : mi(s)=m

δsi0 , m ∈ N0. (1.17)

Then for m ∈ N0, Pλ,m(s) ∈M(W ) is the empirical measure of the users si0 whose
number of incoming hops equals m. For any s ∈ Skmax(Xλ) the following hold

(i)

kmax∑
k=1

π0Rλ,k(s) = Lλ, (ii)

∞∑
m=0

Pλ,m(s) = Lλ,

(iii)

∞∑
m=0

mPλ,m(s) =

kmax∑
k=1

k−1∑
l=1

πlRλ,k(s).

(1.18)

Condition (i) expresses our assumption that each user transmits precisely one mes-
sage, (ii) says that each user serves as a relay for precisely m message trajectories for
precisely one m ∈ N0, and (iii) says that the relays can be calculated in two ways:
according to the number of incoming hops and according to the index of the hop of
a trajectory that uses it. Moreover, we can write (1.9) in terms of (Pλ,m(s))m∈N0

as follows

M(s) =
∑
i∈Iλ

η(mi(s)) = λ

∞∑
m=0

η(m)Pλ,m(s)(W ).

We note that the function M(W )N0 → R ∪ {∞}, (ξm)m∈N0
7→
∑∞
m=0 η(m)ξm(W )

is lower semicontinuous, and even continuous on {(ξm)m∈N0
:
∑∞
m=0 η(m)ξm(W ) ≤

α} for any α ∈ R.
The limiting free energy will be described in terms of the following kind of

families of measures, and it will turn out that all subsequential limits of the families
((Rλ,k(S))kmax

k=1 , (Pλ,m(S))∞m=0) in the quenched limit λ→∞ are of this kind.

Definition 1.1. An admissible trajectory setting is a collection of measures Ψ =
((νk)kmax

k=1 , (µm)∞m=0) with νk ∈ M(W k) for all k and µm ∈ M(W ) for all m, satis-
fying the following properties.

(i)

kmax∑
k=1

π0νk = µ, (ii)

∞∑
m=0

µm = µ, (iii) M :=

∞∑
m=0

mµm =

kmax∑
k=1

k−1∑
l=1

πlνk.

(1.19)
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The measure νk is the measure of the k-hop trajectories and µm the measure of
the users that receive precisely m incoming hops; note that there is no reason that
they be normalized (like for µ). Observe that in (1.18), Lλ, Rλ,k(s) and Pλ,m(s)
play the role of µ, νk and µm, respectively. In particular, after replacing µ by Lλ,
((Rλ,k(s))k∈[kmax], (Pλ,m(s))m∈N0

) satisfies the definition of an admissible trajec-
tory setting. See Sections 1.7 and 1.8 for more explanations and interpretations,
moreover for a modified version of our model where the assumption (i) is relaxed.
By

HV (ν | ν̃) =

{∫
V

dν log dν
dν̃ − ν(V ) + ν̃(V ), if the density dν

dν̃ exists,

+∞ otherwise,
(1.20)

we denote the relative entropy Georgii and Zessin (1993, Section 2.3) of a Borel
measure ν with respect to another Borel measure ν̃ on a measurable subset V of
Rn, n ∈ N.

For an admissible trajectory setting Ψ = ((νk)kmax

k=1 , (µm)∞m=0) we define

S(Ψ) =

kmax∑
k=1

∫
Wk

dνk f̃k, where f̃k(x0, . . . , xk−1) = fk(µ, x0, . . . , xk−1), (1.21)

and

M(Ψ) =

∞∑
m=0

η(m)µm(W ) (1.22)

and

I(Ψ) =

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
+

∞∑
m=0

HW (µm | µcm)

+ µ(W )
(

1−
kmax∑
k=1

M(W )k−1
)
− 1

e
,

(1.23)

where we recall M =
∑
m∈N0

mµm from Definition 1.1(iii), η defined before (1.9),

and cm = exp(−1/(eµ(W ))(eµ(W ))−m/m! are the weights of the Poisson distribu-
tion with parameter 1/(eµ(W )). In Section 1.8.2, we argue that I(Ψ) is well-defined
as an element of (−∞,∞] and Ψ 7→ I(Ψ) is a lower semicontinuous function that
is bounded from below, and we provide an interpretation for I(·). A tedious but
elementary calculation shows that I is convex. In Section 1.5, I will turn out to
govern the large deviations of the trajectory configuration. The terms S(·) and
M(·) are analogues of the penalty terms S(·) and M(·) in the high-density setting,
respectively.

We fix all the parameters W,µ, kmax, fk, η, γ and β of the model. Our first main
result is the following.

Theorem 1.2 (Quenched exponential rate of the partition function). For P-almost
all ω ∈ Ω,

lim
λ→∞

1

λ
logZγ,βλ (Xλ(ω)) = − inf

Ψ admissible trajectory setting

(
I(Ψ) + γS(Ψ) + βM(Ψ)

)
.

(1.24)

See Section 1.8 for a discussion and Section 3.4 for the proof.
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1.4. Description of the minimizers. From the variational formula in (1.24), de-
scriptive information about the typical behaviour of the network can be deduced,
especially in the case of the specific choice of M and S from Section 1.2.4, see
Sections 1.5, 1.7 and 1.8. Hence, it is important to derive the Euler-Lagrange equa-
tions and to characterize the minimizers in most explicit terms. Our main results
in this respect are the following. Note that the case kmax = 1 is trivial.

Proposition 1.3 (Characterization of the minimizer(s)). Let kmax > 1. The
infimum in the variational formula in (1.24) is attained, and every minimizer

Ψ = ((νk)kmax

k=1 , (µm)∞m=0) has the following form.

νk(dx0, . . . ,dxk−1) = µ(dx0)A(x0)

k−1∏
l=1

(
C(xl)M(dxl)

)
e−γf̃k(x0,...,xk−1), (1.25)

µm(dx) = µ(dx)B(x)
(C(x)µ(W ))−m

m!
e−βη(m), (1.26)

for each k ∈ [kmax] respectively m ∈ N0, where A,B,C : W → [0,∞) are functions
such that the conditions in (1.19) are satisfied.

The proof of Proposition 1.3 is in Section 4.
While explicit formulas for the functions A and B can, given the function C,

easily be derived from (i) and (ii) in (1.19) (see (4.11)), the condition for C coming
from (iii) is deeply involved and cannot be easily solved intrinsically; see (4.13)–
(4.15). We have no argument for its existence to offer other than via proving
the existence of a minimizer Ψ and deriving the Euler-Lagrange equations. By
convexity of I, S and M, every solution Ψ to these equations is a minimizer. Even
the uniqueness of C is unknown to us. We will interpret the equations (1.25)–(1.26)
in Section 1.7.1. The equations (1.25)–(1.26) become more explicit in case β = 0,
and in this case, uniqueness of the minimizer holds, see Section 1.6.

In case kmax = 1, the only admissible trajectory setting is Ψ = (ν1, (µm)m∈N0
)

with µ0 = ν1 = µ and µm = 0 otherwise, therefore this Ψ minimizes (1.24).

1.5. Large deviations for the empirical trajectory measure. Actually, the minimizers
of the variational formula in (1.24) receive a rigorous interpretation in terms of
important objects that describe the network. As we have already mentioned, the
family of empirical measures

Ψλ(s) =
(
(Rλ,k(s))k∈[kmax], (Pλ,m(s))m∈N0

)
(1.27)

satisfies the definition of an admissible trajectory setting, apart from the fact that
in Definition 1.1, µ has to replaced by Lλ everywhere, where we recall that Lλ con-
verges to µ almost surely as λ→∞. According to our remarks after Definition 1.1,
Rλ,k(s) and Pλ,m(s) play the roles of νk and µm, respectively, in an admissible
trajectory setting, which explains this term. Furthermore, for s ∈ Skmax

(Xλ), we
can express the term M as

M(s) = λM(Ψλ(s)).

Moreover, for the continuous penalization term we have

S(s) ≈ λS(Ψλ(s)), (1.28)
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where we typically do not have an identity, because

S(s) = λ

kmax∑
k=1

∫
Wk

dRλ,k(s)fk(Lλ, ·),

which is usually not equal to λS(Ψλ(s)) = λ
∑kmax

k=1

∫
Wk dRλ,k(s)fk(µ, ·). However,

since Lλ =⇒ µ almost surely, this difference vanishes in the limit, see Proposi-
tion 3.2.

We consider now the distribution of Ψλ(S) with S distributed under the prod-
uct reference measure introduced in (1.4), normalized to a probability measure,

P0,0
λ,Xλ

; note that the normalization Z0,0
λ (Xλ) is equal to k

N(λ)
max . Our next main

result, Theorem 1.4, is a large deviation principle (LDP; see (1.30)–(1.31)) and the
convergence towards the minimizers of the variational formula.

Theorem 1.4 (LDP and convergence for the empirical measures). The following
statements hold almost surely with respect to (Xλ)λ>0.

(i) The distribution of Ψλ(S) under P0,0
λ,Xλ

satisfies an LDP as λ → ∞ with

scale λ on the set

A =
( kmax∏
k=1

M(W k)
)
×M(W )N0 (1.29)

with rate function given by A 3 Ψ 7→ I(Ψ)+µ(W ) log kmax, which we define
as ∞ if Ψ is not an admissible trajectory setting.

(ii) For any γ, β ∈ (0,∞), the distribution of Ψλ(S) under Pγ,β
λ,Xλ

converges

towards the set of minimizers of the variational formula in (1.24).

For the reader’s convenience, we recall that the LDP states that the rate function
I + µ(W ) log kmax is lower semicontinuous and

lim sup
λ→∞

1

λ
log P0,0

λ,Xλ
(Ψλ(S) ∈ F ) ≤ − inf

F

(
I + µ(W ) log kmax

)
, (1.30)

lim inf
λ→∞

1

λ
log P0,0

λ,Xλ
(Ψλ(S) ∈ G) ≥ − inf

G

(
I + µ(W ) log kmax

)
, (1.31)

for any closed set F and any open set G in A. See Dembo and Zeitouni (1998) for
more on large deviations theory. On A, we consider the product topology that is
induced by weak convergence in each factor; this is equal to coordinatewise weak
convergence, see Section 3.3 for more details. Convergence of a distribution towards
a set is defined by requiring that for any neighbourhood of the set, the probability
of not being in the neighbourhood vanishes.

The proof of Theorem 1.4(i) is carried out in Section 3.5, using Lemma 4.1.
Assertion (ii) is a simple consequence of (i), since the functionals S and M are
bounded and continuous on the set BC = {Ψ ∈ A : M(Ψ) ≤ C} for any C, and
BC is compact in A (see Lemma 4.1). Denoting the level sets of the rate function
I + µ(W ) log kmax by Φα = {Ψ ∈ A : I(Ψ) + µ(W ) log kmax ≤ α} for α ∈ R, we see
that Φα∩BC is compact for any α and C. Thus, Varadhan’s lemma can be applied
to prove Assertion (ii).



A Gibbsian model for message routeing 223

1.6. Dropping the congestion term. Proposition 1.3 yields a rather implicit descrip-
tion of the minimizers of (1.24) in the case β, γ > 0. The cardinality of the set
of minimizers is also unclear. However, in the special case β = 0, where the con-
gestion functional M (1.9) is absent, the situation is much better. Indeed, it turns
out that the minimizer is unique and is explicitly given in terms of the parameters
of the model. Especially for the specific choice of Section 1.2.4 where S penalizes
interference (1.13), on base of this knowledge, we are able in König and Tóbiás
(2018) to derive a number of relevant qualitative properties of the trajectories, see
Section 1.7.2 for a summary.

In what follows, we call Σ = (νk)k∈[kmax] with νk ∈M(W k) for all k ∈ [kmax] an

asymptotic routeing strategy if we have
∑kmax

k=1 π0νk = µ. In (1.19) we see that the
first coordinate, Σ, of an admissible trajectory setting Ψ is an asymptotic routeing
strategy, and in (1.21) we see that S(Ψ) depends only on Σ. We will therefore write

S(Σ) for S(Ψ). Further, we write M =
∑kmax

k=1

∑k−1
l=1 πlνk, in accordance with (1.19)

but with no regard to the measures (µm)m∈N0
. We define an entropic term J for

asymptotic routeing strategies as follows.

J(Σ) =

kmax∑
k=1

HWk(νk | µ⊗k)−
kmax∑
k=2

µ(W )k +M(W ) logµ(W ). (1.32)

Similarly to I in (1.23), J describes counting complexity in the high-density limit,
but without reference to the measures (µm)m.

The following proposition summarizes the analogues of Theorem 1.2, Proposi-
tion 1.3 and Theorem 1.4 in case β = 0, after dropping all the measures µm.

Proposition 1.5. The following statements hold almost surely with respect to
(Xλ)λ>0.

(1) The distribution of

Σλ(S) = (Rλ,k(S))k∈[kmax] (1.33)

under P0,0
λ,Xλ

satisfies an LDP as λ → ∞ with scale λ on the set A0 =∏kmax

k=1 M(W k) with rate function given by A0 3 Ψ 7→ J(Σ)+µ(W ) log kmax,
which we define as ∞ if Σ is not an asymptotic routeing strategy. Further,
the rate function has compact level sets.

(2) For any γ ∈ (0,∞),

lim
λ→∞

1

λ
logZγ,0λ (Xλ) = − inf

Σ asymptotic routeing strategy

(
J(Σ) + γS(Σ)

)
. (1.34)

(3) Let γ > 0 and kmax > 1. The variational formula on the r.h.s. of (1.34)
exhibits a unique minimizer Σ = (νk)k∈[kmax] given as

νk(dx0, . . . ,dxk−1) = µ(dx0)A(x0)

k−1∏
l=1

µ(dxl)

µ(W )
e−γf̃k(x0,...,xk−1), k ∈ [kmax],

(1.35)
where

1

A(x0)
=

kmax∑
k=1

∫
Wk−1

k−1∏
l=1

µ(dxl)

µ(W )
e−γf̃k(x0,...,xk−1), x0 ∈W. (1.36)
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(4) For any γ ∈ (0,∞), the distribution of Σλ(S) under Pγ,0
λ,Xλ

converges to the

minimizer of the variational formula in (1.34).

Proposition 1.5 is proved in Section 5. An interpretation of the equations (1.35)–
(1.36) can be found in Section 1.7.1.

Let us explain in what way Proposition 1.5 is the special case of the aforemen-
tioned results for β = 0 and in what way it differs. It is true that the LDP in
Assertion (1) directly follows from the LDP in Theorem 1.4(i) via the contrac-
tion principle Dembo and Zeitouni (1998, Theorem 4.2.1) for the projection map
(Σ, (µm)m) 7→ Σ, however, with rate function given by

J(Σ) = inf
(µm)m∈N0 : Ψ=(Σ,(µm)m∈N0 ) admissible trajectory setting

I(Ψ). (1.37)

It is an elementary but tedious task to identify this as in (1.32) by identifying

µm(dx) = µ(dx)

(
M(dx)
µ(dx)

)m
m!

e−M(dx)/µ(dx), m ∈ N0, (1.38)

as the unique minimizer on the right-hand side of (1.37), given the measure M =∑kmax

k=1

∑k−1
l=1 πlνk. However, we chose an alternative route for proving the LDP

with explicit identification of J, which is a variant of the proof of Theorem 1.4(i).
From (1.37) it is clear that the variational formula in (1.34) is indeed the special
case of (1.24) for β = 0, i.e.,

inf
Σ asymptotic routeing strategy

(
J(Σ) + γS(Σ)

)
= inf

Ψ adm. trajectory setting

(
I(Ψ) + γS(Ψ)

)
.

(1.39)

Note also that the minimizer Ψ is unique. This raises the additional question
whether or not the measures (Pλ,m(S))m∈N0

converge to the minimizer (µm)m∈N0

in (1.38) under Pγ,0
λ,Xλ

for M corresponding to the minimal νk’s of (1.35). Since

the congestion term, which gave rise to a strong compactness argument, is now ab-
sent, this question cannot immediately be decided using Varadhan’s lemma. (We
nevertheless expect a positive answer because the function I + γS is lower semicon-
tinuous, bounded from below, and it exhibits a unique minimizer.) Moreover, this
compactness property was also used in the proof of Theorem 1.2, which is another
reason that we had to redo the proofs of Proposition 1.5(2) and (3), given our proof
of Assertion (1).

1.7. Interpretation and qualitative properties of the minimizer(s).

1.7.1. Interpretation of the minimizer(s). In case β, γ > 0, Proposition 1.3 tells us
quite some information about the limiting trajectory distribution and the limiting
spatial distribution of users with a given number of incoming hops under the mea-

sure Pγ,β
λ,Xλ

. Indeed, both have densities that are µ⊗k-almost everywhere positive.

It is remarkable that the k-hop trajectories follow a distribution that comes from
choosing independently all the k sites with measures that do not depend on k (the
starting point according to A(x)µ(dx) and all the other k − 1 sites each according

to C(x)M(dx)), exponentially weighted with the term γf̃k. Furthermore, all the
measures of the users receiving m incoming hops superpose each other on the full
set supp(µ), and at each space point x, this number m is distributed according to
some Poisson distribution, exponentially weighted with the term βη(m).
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As for the case β = 0, γ > 0, we have a unique minimizer, which exhibits all the
properties enumerated for β, γ > 0. In the k-hop trajectories, the starting point
is chosen according to A(x)µ(dx) and all the other k − 1 sites according to the

measure µ(dx)/µ(W ), weighted with γf̃k. Moreover, the number of incoming hops
at a given relay at the site x ∈ W is Poisson distributed with parameter equal to
M(dx)/µ(dx).

1.7.2. Qualitative properties of the minimizer. In our accompanying paper König
and Tóbiás (2018), we analyse the joint routeing behaviour of our Gibbsian system
in the high-density limit. We investigate qualitative properties of the minimizer of
the variational formula in (1.24), such as the typical number of hops, the typical
length of a hop and the typical shape of a trajectory, in case γ > β = 0 and the
interference term is chosen as in Section 1.2.4. In this case, the minimizer is unique
and has the form (cf. (1.35))

νk(dx0, . . . ,dxk−1) = µ(dx0)A(x0)

k−1∏
l=1

µ(dxl)

µ(W )
e
−γ

∑k
l=1

∫
W `(|y−xl|)µ(dy)
`(|xl−1−xl|) , k ∈ [kmax],

(1.40)
where

1

A(x0)
=

kmax∑
k=1

∫
Wk−1

k−1∏
l=1

µ(dxl)

µ(W )
e
−γ

∑k
l=1

∫
W `(|y−xl|)µ(dy)
`(|xl−1−xl|) , x0 ∈W. (1.41)

Further, the empirical measures of trajectories Σλ(S) = (Rλ,k(S))k∈[kmax] converge

to this minimizer under the Gibbs distribution Pγ,0
λ,Xλ

, almost surely as λ → ∞.

Thus, qualitative information about Σ = (νk)k∈[kmax] yields information about these
empirical measures for large λ.

In order to obtain clear pictures and neat results, one needs to analyse the
minimizer in extreme regimes. That is, one has to carry out another limit after
the high-density limit has been taken. We consider the following regimes: (1) large
communication areas, coupled with large transmitter–receiver distances and large
numbers of hops, (2) strong penalization of interference, (3) high local density
of the intensity measure on a subset of W . In these regimes, the probability of
deviating from the typical behaviour decays exponentially fast. This indicates that
the behaviour of the minimizers is close to the limiting one already for moderate
values of the diverging parameter(s). In regime (2), this indication is supported by
numerical examples König and Tóbiás (2018, Section 8). We now survey the main
results of König and Tóbiás (2018) about regimes (1), (2), (3) in words; for further
details, see König and Tóbiás (2018, Sections 3, 4, 5), respectively.

In regimes (1) and (2), the typical trajectory quickly approaches the straight line
between transmitter and receiver, and the probability of macroscopic deviations
from this straight line decays exponentially fast. Interestingly, in regime (1), the
typical number of hops tends to infinity in a sublinear way, thus the typical length
of a hop tends to infinity. In regime (3), we analyse the global and local repulsive
effect of a particularly highly populated subset of W . Here, we replace the intensity
measure µ by µa = µ + aLeb|∆ for some ∆ ⊆ W with Leb(∆) > 0, and we let
a→∞. The global effect is that if ` is close to constant on W , then Ma(W ) tends
to zero exponentially fast as a → ∞. Here, Ma is the measure M of all relaying
hops (cf. (1.19)) corresponding to the minimizer (1.40), in case µ is replaced by µa.
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As for local effects, we discuss under what conditions it becomes unlikely for small
∆ for a user to choose a relay inside a small neighbourhood of ∆ than one outside
a larger neighbourhood of ∆.

1.8. Discussion.

1.8.1. The interference term and the congestion term. The interference term S(s)
in (1.13) quantifies the joint quality of the transmissions of the messages in terms
of a sum of an individual interference term over all the N(λ) trajectories and over
all of their hops. The reason why we choose the reciprocals of the SIRs is that the
bandwidth used for a transmission is defined Song et al. (2007) as

%

log2(1 + SIR(·))
, (1.42)

where % is the data transmission rate, and SIR is defined as in (1.12) but without
the factor of 1/λ in the denominator. This quantity is of order 1/λ for λ large,
under the assumption that Lλ =⇒ µ. Thus, in the high-density setting λ → ∞,
(1.42) can be approached well by (a constant times) the reciprocals of the SIR,
since log(1 + x) ∼ x as x→ 0.

The reason that we took the sum over all the hops of a trajectory is that Song
et al. (2007, Section 3) suggests that in case of multihop communication, the used
bandwidth equals the sum of the used bandwidth values corresponding to the in-
dividual hops. See Baccelli and Chen (2010) for another (single hop) setting where
the sum of inverse values of SIRs appears as a cost function to be minimized.

The congestion term M(s) in (1.15) counts the number of ordered pairs of in-
coming hops arriving at the relays in the system. This is certainly an important
characteristics of the quality of service, as too high an accumulation of many mes-
sages at relays results in a delay. Hence, it is natural to suppress the occurrence of
such events, in order to increase the value of the model for realistic modeling.

An important property of this term is that it introduces dependence between the
trajectories of different messages, unlike the interference term. Indeed, while S(s)
can be decomposed into a sum of terms depending on the respective trajectories,
each summand in M(s) involves many different trajectories. This is not only true
in the special case of penalizing interference and congestion, but in general in our
setting introduced in Section 1.2.3.

1.8.2. The entropy term. Let us now explain some important properties of the
entropy term

I(Ψ) =

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
+

∞∑
m=0

HW (µm | µcm)

+ µ(W )
(

1−
kmax∑
k=1

M(W )k−1
)
− 1

e
(1.43)

defined in (1.23).
According to (i) and (iii) in (1.19), we have that M(W ) ≤ (kmax − 1)µ(W ),

further, the first term on the right-hand side of (1.23) is bounded from below.
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Moreover, since by (ii) in (1.19), we have

∑
m∈N0

cm =
∑
m∈N0

µm(W )

µ(W )
= 1, (1.44)

it follows that
∑∞
m=0HW (µm | µcm) is nonnegative. These together with elemen-

tary properties of the relative entropy Dembo and Zeitouni (1998, Section 6.2)
imply that I(Ψ) is well-defined as an element of (−∞,∞] and Ψ 7→ I(Ψ) is a lower
semicontinuous function that is bounded from below. More precisely, the LDP
in Theorem 1.4 implies that the infimum of I(Ψ) over admissible trajectory set-
tings equals −µ(W ) log kmax, which equals the almost sure limit of 1/λ times the

logarithm of the total mass k
N(λ)
max of the joint a priori measure (1.4).

Let us now provide an interpretation of I(·). Let λ > 0 and s ∈ Skmax
(Xλ).

Recall the empirical measure family Ψλ(s) =
(
(Rλ,k(s))k∈[kmax], (Pλ,m(s))m∈N0

)
from (1.27) and the constraints (1.18), which are similar to the ones (1.19) but
with µ replaced by the rescaled empirical measure Lλ everywhere.

Informally speaking, for λ > 0 large, I(Ψ) asymptotically describes the following
crucial counting term:

I(Ψ) ≈ − 1

λ
log

#
{
s ∈ Skmax

(Xλ) : Rλ,k(s) ≈ νk, ∀k and Pλ,m(s) ≈ µm, ∀m
}

N(λ)
∑
i∈Iλ (s̃i−1−1)

,

(1.45)
where “∀k” is to be understood as “∀k ∈ [kmax]”, “∀m” as “∀m ∈ N0”, and s̃ in
the denominator is an arbitrarily chosen element of the set in the numerator. In
this way, it fully describes the distribution of Ψλ(s) on an exponential level.

A major part of the proof of Theorem 1.2 consists in making (1.45) rigorous and
verifying the corresponding formal statement. In the beginning of Section 2, we
will argue why taking “=” signs instead of “≈” in the numerator of the right-hand
side of (1.45) is not applicable. Instead, first, in Section 2.1, we will introduce a
spatial discretization procedure and formulate a rigorous discrete version of these
“≈” relations for fixed λ and fixed fineness parameter of the discretization. In
Section 2.2, we will derive explicit combinatorial formulas for the cardinality of
the trajectories in this setting. Next, in Section 3.1, we will conclude that 1/λ
times the logarithm of the quotient of the obtained counting complexity and the

term N(λ)
∑
i∈Iλ (s̃i−1−1) tends to I(Ψ) in the limit λ → ∞ followed by the fineness

parameter of the discretization tending to zero.
The characterization of I(Ψ) that arises directly from this argument is not exactly

(1.43) but another, however identical expression (3.3). The reason why we chose
(1.43) as the definition of I(Ψ) is that it is given in terms of objects that are
commonly used in large deviations theory: relative entropies, multiples of total
masses of the corresponding measures plus an additive constant. In particular,
we find it natural in (1.43) that each µm is compared to the intensity measure µ
multiplied by the weight of a Poisson distribution at m. Indeed, in case β = 0,
for the minimizer Ψ of the variational formula (1.35), (dµm

dµ (x))m∈N0
is the Poisson

distribution with parameter dM
dµ (x) for each x ∈W . Roughly speaking, the relative

entropies plus the linear term µ(W )(1 −
∑kmax

k=1 M(W )k−1) arise from 1/λ times
the logarithmic rates of certain multinomial expressions in the above mentioned
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discretized counting procedure, after carrying out the limit λ→∞ followed by the
fineness parameter tending to zero.

1.8.3. Rotation symmetry. Let us assume that β = 0 (cf. Section 1.6), and let
us consider the special setting of Section 1.2.4 where S penalizes interference. If
W = Br(o) ⊂ Rd is a closed ball and µ is invariant under rotations, then the
measures (νk)k in (1.35) are also invariant under rotations of the entire trajec-
tory, i.e., for any orthogonal d × d-matrix O, we have that νk(dx0, . . . ,dxk−1) =
νOk (dx0, . . . ,dxk−1) ≡ νk(d(Ox0), . . . ,d(Oxk−1)) for any k ∈ [kmax]. This is easily
seen by an inspection of the formulas for the entropy term J in (1.32) and for the
interference term S in (1.21), as the function (x, y) 7→

∫
W
`(|z−y|)µ(dz)/`(|x−y|) is

invariant under multiplication of both arguments with the same orthogonal matrix.

1.8.4. Non-Poissonian users. In fact, the main results of this paper hold for any
collection of (random or non-random) point processes ((Xi)i=1,...,N(λ))λ>0 on W

for which Lλ = 1
λ

∑N(λ)
i=1 δXi converges weakly (almost surely, if random) to µ as

λ → ∞. Neither the independence or monotonicity in λ, nor the Poissonity of
(N(λ))λ>0 is used for the proofs. For example, our results remain also true for the
deterministic set Xλ = W ∩ ( 1

λZ
d) and µ the Lebesgue measure on W .

1.8.5. The annealed setting. Of mathematical interest might also be the annealed
setting, where we average also over the locations of the users. In order to get an
interesting result, we have to assume that Lλ satisfies a large deviation principle
on the set M(W ) with some good rate function H. (In the case of a Poisson point
process with intensity measure λµ, H would be Hirsch et al., 2018b, Proposition 3.6
the relative entropy with respect to µ, see (1.20).) Then the large-λ exponential
rate of the annealed partition function should be equal to the negative infimum over
µ0 ∈ M(W ) of H(µ0) plus the quenched rate function terms from the right-hand
side of (1.24) with µ replaced by µ0 everywhere. Also our other results on the LDP
and the form of the minimizer(s) should have some analogue, which we do not spell
out.

1.8.6. Extensions of the model of Section 1.2.4. The main goal of this paper is to
set up a model where message routeing happens probabilistically, with a uniform
a priori distribution weighted by two penalization terms of different nature. Our
results demonstrate how the interplay between entropy and energy leads to an
orderly behaviour of the system in the high-density limit on its own.

Section 1.2.4 provides an example of the two penalization terms that can be
interpreted in terms of well-known objects in telecommunication. In Section 1.7.2,
we summarized qualitative properties of the minimizer of the variational formula in
this special setting for β = 0. This special case can be viewed as a snap-shot type
model, where there is no time-dependence but all hops of all transmissions happen
simultaneously at the same time. Further, we assume that each user submits exactly
one message. However, one can relax these assumptions and make the model more
realistic in various ways.

First, one easily sees from the proofs in Sections 2–(5) that Theorems 1.2 and
1.4 as well as Proposition 1.5 can be extended to cases where users send out no
message or multiple messages. This models the standard situation in which large
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messages are cut into many smaller ones, who independently find their ways through
the system. For this, the trajectory probability space has to be enlarged: to each
user Xi ∈ Xλ, we attach the number Pi ∈ N0 of transmitted messages, and for
each j ∈ {1, . . . , Pi}, there is an independent trajectory Xi → o. The empirical
trajectory measure Rλ,k(·) must be augmented by these trajectories. The main

additional assumption then is that
∑kmax

k=1 π0Rλ,k(S) converges to some measure
µ0 ∈ M(W ) with 0 6= µ0 � µ. (Also the case that µ0 is not absolutely continuous
with respect to µ is interesting, but will need additional work.) The interference
term S(·) introduced in (1.13) also has to be changed. According to Baccelli and
Blaszczyszyn (2009, Sections 2.3.1, 5.1), the SIR of the transmission of one of the
Pi messages from Xi to x ∈W should be defined as

`(|Xi − x|)
1
λ

∑
j∈Iλ `(|Xj − x|)Pj

.

One could also incorporate (possibly random) sizes of the messages, which would
require an additional enlargement of the trajectory space.

Second, the model of Section 1.2.4 can be made time-dependent. If one, e.g.,
introduces kmax discrete time slots indexed by [kmax], and assumes the lth hop of
any message trajectory to happen at time l for any l ∈ [kmax], then the interference
of a transmission at time l is obtained from the starting points of all hops that
happen at the same time, see Gupta and Kumar (2000, Section I.A). The SIR is
defined analogously to (1.12) but with this notion of interference, which depends
on the entire message trajectories rather than only on the users. Further, the
congestion term can also be adapted to the time-dependent situation via counting
numbers of incoming hops at each time step separately. This variant of the model
is indeed mathematically not far from the model treated in the present paper; for
example, the entropy term does not change if β = 0, and its change is also easy to
handle if β > 0.

More realistic and mathematically much more demanding time-dependent ver-
sions of our model can be set up in various ways; for example, one could allow for
a much longer time horizon (for example, of order λ, and then dropping the factor
of λ in the interference term), which must come with the possibility of messages
standing still for many separate time units. Furthermore, one could allow users to
transmit multiple messages over time. One could also introduce mobility of users
similarly to Hirsch et al. (2018a). The new notion of SIR comes with significant
changes in the behaviour of the system in the high-density limit, and we decided
to defer such investigations to a later work.

1.8.7. Allowing an unbounded number of hops. If the upper bound kmax for the
length of the trajectories is dropped, then the a priori measure defined in (1.4)
has infinite total mass, and therefore the entropy function I is not bounded from
below. However, as long as the function fk in (1.7) is positive and bounded away
from zero (which holds in the special case (1.13)), for any γ > 0, β ≥ 0, the total
probability mass of all the k-hop trajectories under the Gibbs distribution is upper
bounded by some geometrically decaying term in k. Hence, the definition of the
model is no problem for kmax = ∞ and γ > 0, β ≥ 0. We believe that all our
results of Section 1 about its limiting behaviour as λ→∞ remain essentially true
(apart from the LDP under the a priori measure). However, proofs will require an
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additional cutting argument, which might become rather nasty. Our belief that the
results remain unchanged is supported by the fact that also the minimizing objects
Ψ = ((νk)kmax

k=1 , (µm)∞m=0) defined in Proposition 1.3 enjoy a geometric upper bound

for νk(W k) in k. Thus, these measures are also well-defined and form the set of
minimizers of the variational formula (1.24) in case kmax = ∞. The assertions
of König and Tóbiás (2018) corresponding to the large-distance limit, which we
explained in Section 1.7.2, are proved also for kmax = ∞, see König and Tóbiás
(2018, Section 3.3.3).

1.8.8. Relation to an optimization problem via Monte Carlo Markov chains. In the
light of the Section 1.8.1, it is certainly interesting to minimize the cost function
s 7→ γS(s) + βM(s) for fixed γ, β ∈ (0,∞). (For game-theoretic properties of this
optimization problem, we refer the reader to König and Tóbiás (2018, Section 7).)
Computationally, this is in general a hard problem for high densities λ because
the cardinality of Skmax

(Xλ) increases super-exponentially in N(λ) � λ. Thus,
computing all values of s 7→ γS(s) + βM(s) and then extracting the maximum is
only feasible for small λ.

Now, our Gibbs distribution opens the possibility to optimize this cost function
via the well-known approach of simulated annealing. Furthermore, for λ large, it
is substantially less complex to realize the Gibbs distribution using Monte Carlo
Markov chains than to directly minimize the cost function. Thus, our Gibbsian
ansatz provides an easier implementable joint strategy for the routeing of all mes-
sages, preferring trajectory collections having low cost function values, already for
moderate values of γ, β.

Indeed, the recent master’s thesis of Morgenstern (Morgenstern, 2018) investi-

gates the computational complexity of realizing the Gibbs distribution Pγ,β
λ,Xλ

nu-

merically using Monte Carlo Markov chains, for λ, β, γ > 0. The author finds irre-
ducible and aperiodic Markov chains on the state space Skmax

(Xλ), both of Gibbs
sampler and Metropolis types, having the Gibbs distribution as their stationary dis-

tribution. These chains converge towards Pγ,β
λ,Xλ

as the number of Markovian steps

tends to infinity. Using these chains, the number of operations needed in order to
simulate the Gibbs distribution up to a given error ε > 0 in total variation distance
is at most exponential in λ (in particular, the mixing time of the chains grows at
most exponentially). This is much more efficient than evaluating all the trajectory
collections. In a variant of the Gibbsian model where each user can receive at most
a given number mmax ∈ N0 incoming hops, the number of necessary operations is
even polynomial in λ.

These Monte Carlo Markov chains can also be used in order to find the optimum
of the cost function s 7→ γS(s) + βM(s) for a fixed λ and a fixed realization of
Xλ, using simulated annealing. Here, one lets the transition probability of the t-th
step of the chain depend on t via replacing (γ, β) by (γt, βt) such that γt, βt →∞
sufficiently slowly as t → ∞. Morgenstern (2018, Theorem 7.1) shows that if one

chooses βt = β
γ γt ≤ c0 log t for a suitably chosen c0 = c0(λ) � λ/N(λ)2, then the

Markov chain converges to the uniform distribution on the set of minimizers of the
cost function.
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2. The distribution of the empirical measures

Having seen in Section 1.5 that the Gibbsian model can be entirely described in
terms of the trajectory setting Ψλ(s), i.e., of the crucial empirical measures Rλ,k(s)
and Pλ,m(s) defined in (1.5)–(1.17), we now consider the question how to describe
their distributions. We have to quantify the number of message trajectory families
s that give the same family of empirical measures. The plain and short (but wrong)
answer is ∑

s∈Skmax (Xλ) : Rλ,k(s)=νk ∀k, Pλ,m(s)=µm ∀m

∏
i∈Iλ

1

N(λ)s
i
−1−1

≈ e−λI(Ψ), (2.1)

where we recall I(Ψ) from (1.23) and recall that Ψ = ((νk)k∈[kmax], (µm)m∈N0). From
such an assertion, it is indeed not far to conclude Theorem 1.2, but the problem
is that this statement is not true like this. Actually, there are very many Ψ’s such
that the left-hand side is equal to zero, for example if any of the νk’s or µm’s has
values outside 1

λN0. However, if we do not consider single Ψ’s, but open sets of
Ψ’s, then the idea behind (2.1) is sustainable. Therefore, we proceed in a standard
way by decomposing the area W into finitely many subsets and count the message
trajectories only according to the discretization sets that they visit. In Section 2.1
we introduce necessary notation for carrying out this strategy, and we comment on
the relevance of the discretization procedure. Next, in Section 2.2, we derive explicit
formulas for the distribution of the empirical measures in this discretization.

For the purpose of the present paper, where we consider the high-density limit
λ → ∞, we later need to take this limit and afterwards the limit as the fineness
parameter δ of the decomposition of W goes to zero. The outcome of these parts of
the procedure is formulated in Proposition 3.1. In Proposition 3.2 the consequences
for the interference term and for the congestion term are formulated.

2.1. Our discretization procedure. Let us now head towards the formulation of the
discretization procedure. We proceed by triadic spatial discretization of the Poisson
point process (Xλ)λ>0, similarly to the approach of Hirsch et al. (2018a). To be
more precise, we perform the following discretization argument. Note that we may
assume that our communication area W is taken as W = [−r, r]d, by accordingly
extending µ trivially. We write B = {3−n|n ∈ N0}. For δ ∈ B, we define the set

Wδ = {[x− rδ, x+ rδ]d : x ∈ (2rδZ)d ∩W}
of congruent sub-cubes of W of side length 2rδ and centres in (2rδZ)d. Note that
Wδ is a finite set, o is a centre of an element of Wδ and any intersection of two
distinct elements of Wδ has zero Lebesgue measure. Elements of Wδ will be called
δ-subcubes. We will assume that for all δ ∈ B, the δ-subcubes are canonically
numbered as W δ

1 , . . . ,W
δ
δ−d , which can be done e.g. according to the increasing

lexicographic order of the midpoints of the subcubes. Now, for Lebesgue-almost
every x ∈ W , for all δ ∈ B there exists a unique W δ

j that contains x; let us denote

this W δ
j by W x

δ , and the set of all x ∈W for which W x
δ is well-defined by WB.

Now, if ν ∈ M(W ), then for any δ ∈ B, we define νδ(·) = ν(· | Fδ) ∈ M(W )
as the conditional version of ν given Fδ = σ(Wδ), that is, the measure on W that
has in each box W δ

i a constant Lebesgue density and mass equal to ν(W δ
i ). Since

Fδ ⊂ Fδ′ for δ, δ′ ∈ B with δ′ < δ, we see that (νδ)δ
′

= (νδ
′
)δ = νδ by the tower

property. We also write Lδλ := (Lλ)δ for λ > 0 and δ ∈ B, where the empirical
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measure Lλ was defined in (1.1). We proceed analogously for W k, k ∈ [kmax]
instead of W . Note that νδ =⇒ ν as δ ↓ 0, which can be shown by a martingale
convergence argument, since the union of all the Fδ generate the Borel-σ-field on
W .

Now we are able to define what a standard setting is, the interpretation of which
will be given right after the definition. Roughly speaking, the measures νk and µm
appearing in its definition will later play the role of the measures appearing in (2.1),
their δ-approximations are defined as above, and their (δ, λ)-versions approach them
in the limit λ → ∞, followed by δ ↓ 0. The latter ones satisfy the constraints of
(1.18) restricted to F⊗kδ respectively Fδ, hence, the νk and µm will later turn out
to be eligible for the variational problem in (1.24) (under some mild additional
assumption, see Lemma 2.5).

Definition 2.1. A standard setting is a collection of measures

Ψ =
(

(νk)kmax

k=1 , ((ν
δ
k)kmax

k=1 )δ∈B, ((ν
δ,λ
k )kmax

k=1 )δ∈B,λ>0,

(µm)∞m=0, ((µ
δ
m)∞m=0)δ∈B, ((µ

δ,λ
m )∞m=0)δ∈B,λ>0, (µ

δ,λ)δ∈B,λ>0

) (2.2)

with the following properties: for any δ, δ′ ∈ B, λ > 0, k ∈ [kmax], m ∈ N0 and
i, i0, . . . , ik−1 = 1, . . . , δ−d, respectively, νk ∈M(W k) and µm ∈M(W ), and

(1) µδ,λ = Lδλ.

(2) νδ,λk ∈ M(W k). Further,
∑kmax

k=1 π0ν
δ,λ
k = µδ,λ, moreover λνδ,λk (W δ

i0
× . . .×

W δ
ik−1

) ∈ N0.

(3) If δ′ ≤ δ, then νδ
′,λ
k (· | F⊗kδ ) = νδ,λk (·).

(4) νδ,λk
λ→∞
=⇒ νδk.

(5) µδ,λm ∈M(W ). Further,
∑∞
m=0 µ

δ,λ
m = µδ,λ, moreover λµδ,λm (W δ

i ) ∈ N0.

(6)
∑∞
m=0mµ

δ,λ
m =

∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k .

(7) If δ′ ≤ δ, then µδ
′,λ
m (· | Fδ) = µδ,λm (·).

(8) µδ,λm
λ→∞
=⇒ µδm.

Remark 2.2. Immediate properties of a standard setting Ψ are the following.

(A) If δ′ ≤ δ, then µδ
′,λ(· | Fδ) = µδ,λ(·).

(B) µδ,λ
λ→∞
=⇒ µδ since Lλ =⇒ µ as λ→∞.

(C) µδ(·) = µ(· | Fδ). In particular, µδ
δ↓0
=⇒ µ.

(D) νδk(·) = νk(· | F⊗kδ ). In particular, νδk
δ↓0
=⇒ νk.

(E) µδm(·) = µm(· | Fδ). In particular, µδm
δ↓0
=⇒ µm.

Remark 2.3 (Standard settings and message trajectories). The properties of Re-
mark 2.2 explain the meaning of the δ-indexed coordinates of a standard setting.
Let us now interpret how one can obtain the (δ, λ)-dependent coordinates of a
standard setting starting from a fixed trajectory collection s ∈ Skmax(Xλ). Let

Pλ(s) =
1

λ

∑
i∈Iλ

δsi0 (2.3)

denote the empirical measure of the starting sites of the trajectories, then Pλ(s) =
Lλ, by our assumption that each user is picked precisely once in such a configuration.

Hence, its δ-discretized version P δλ(s) equals µδ,λ. Let us now choose νδ,λk = Rδλ,k(s)
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(recall (1.5)). Then the requirement
∑kmax

k=1 π0ν
δ,λ
k = µδ,λ = Lδλ in (2) holds by

(1.18). Further, let us choose µδ,λm = Pλ,m(s)δ (recall (1.17)). Then the constraints∑∞
m=0 µ

δ,λ
m = µδ,λ in (5) and

∑∞
m=0mµ

δ,λ
m =

∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k in (6) also hold by

(1.18). Note that all the other requirements of Definition 2.1 are satisfied because
of the tower property respectively of the convergence of Lλ towards µ.

In the proof of Theorem 1.2, it will be essential to verify that, for certain stan-
dard settings,

∑∞
m=0mµ

δ
m(W ) converges to

∑∞
m=0mµm(W ) as δ ↓ 0, which is not

implied by Definition 2.1. However, similarly to the de la Vallée Poussin theo-
rem about uniform integrability, the super-linear increase of m 7→ η(m) yields the
following handy criterion.

Definition 2.4. A controlled standard setting is a standard setting Ψ as in (2.2)
with the following extra property:

lim
λ→∞

∞∑
m=0

η(m)µδ,λm (W ) =

∞∑
m=0

η(m)µδm(W ) <∞, for all δ ∈ B. (2.4)

Note that by part (D) of Remark 2.2, we have
∑kmax

k=1 kνδk(W k) =
∑kmax

k=1 kνk(W k)
for any standard setting. Using this, we verify the following lemma.

Lemma 2.5. Let Ψ be a controlled standard setting as in (2.2). Then Ψ =

((νk)kmax

k=1 , (µm)∞m=0) is an admissible trajectory setting.

Proof : Part (2) of Definition 2.1 claims that for all δ ∈ B and λ > 0 we have∑kmax

k=1 π0ν
δ,λ
k = µδ,λ. By parts (B) and (C) of Remark 2.2, we have

lim
δ↓0

lim
λ→∞

νδ,λk = νk

in the weak topology of M(W k), for any fixed k ∈ [kmax]. Similarly, by part (4) of
Definition 2.1 and part (D) of Remark 2.2, we have limδ↓0 limλ→∞ µδ,λ = µ in the
weak topology of M(W ). Moreover, since taking marginals is a continuous oper-

ation, also limδ↓0 limλ→∞ π0ν
δ,λ
k = π0νk for all k in the weak topology of M(W ).

Thus, we have (i) in (1.19) for (νk)kmax

k=1 . In order to see that (ii) holds for (µm)∞m=0,
one can additionally use part (5) of Definition 2.1, together with (2.4) and dom-
inated convergence. Finally, by part (6) of Definition 2.1, (2.4) in Definition 2.4,
the fact that limm→∞ η(m)/m = ∞ and dominated convergence, we see that for
any controlled setting Ψ, we also have

∞∑
m=0

mµm = lim
δ↓0

∞∑
m=0

mµδm = lim
δ↓0

lim
λ→∞

∞∑
m=0

mµδ,λm = lim
δ↓0

lim
λ→∞

kmax∑
k=1

k−1∑
l=1

πlν
δ,λ
k

=

kmax∑
k=1

k−1∑
l=1

πlνk (2.5)

in the weak topology of M(W ). This implies (iii) in (1.19) for Ψ. Hence, Ψ is an
admissible trajectory setting. �

A converse of Lemma 2.5 also holds, in the following sense: for any admissible
trajectory setting Ψ = ((νk)kmax

k=1 , (µm)∞m=0), there exists a standard setting contain-
ing it, which can be chosen controlled if

∑
m∈N0

η(m)µm(W ) < ∞. This will be

the content of Proposition 3.3, a preliminary result for Theorems 1.2 and 1.4(i).
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2.2. The distribution of the empirical measures. In this section, we describe the
combinatorics of the system. For a standard setting Ψ as in Definition 2.1, let us
introduce the configuration set

Jδ,λ(Ψ) =
{
s ∈ Skmax

(Xλ)
∣∣∣ Rδλ,k(s) = νδ,λk ∀k, P δλ,m(s) = µδ,λm ∀m

}
(2.6)

for fixed δ ∈ B and λ > 0. In words, Jδ,λ(Ψ) is the set of families of trajectories
such that the δ-coarsenings of the empirical measures of the trajectories and the
hop numbers are given by the respective measures in the setting Ψ. Note that
Jδ,λ(Ψ) depends only on the δ-λ depending measures in the collection Ψ.

In case µδ,λ(W ) > 0, we will refer to the entity si0, i = 1, . . . , λµδ,λ(W ), as the
ith user or ith transmitter, the entity si, i = 1, . . . , λµδ,λ(W ), as the trajectory of
the ith user, si−1 as the length (number of hops) of si, sil as the l-th relay of si (for

l = 1, . . . , si−1 − 1), finally mi(s) as the number of incoming hops at the relay si0.

The combinatorics of computing #Jδ,λ(Ψ) is given as follows.

Lemma 2.6 (Cardinality of Jδ,λ(Ψ)). For any δ, λ > 0, and for any standard
setting Ψ,

#Jδ,λ(Ψ) = N1
δ,λ(Ψ)×N2

δ,λ(Ψ)×N3
δ,λ(Ψ), (2.7)

where

N1
δ,λ(Ψ) =

δ−d∏
i=1

(
λµδ,λ(W δ

i )

((λνδ,λk (W δ
i ×W δ

i1
× . . .×W δ

ik−1
))δ
−d
i1,...,ik−1=1)kmax

k=1

)
, (2.8)

N2
δ,λ(Ψ) =

δ−d∏
i=1

(
λµδ,λ(W δ

i )

(λµδ,λm (W δ
i ))m∈N0

)
, (2.9)

N3
δ,λ(Ψ) =

δ−d∏
i=1

(
λ
∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

i )
)

!∏∞
m=0m!λµ

δ,λ
m (W δ

i )
=

δ−d∏
i=1

(
λ
∑∞
m=0mµ

δ,λ
m (W δ

i )
)
!∏∞

m=0m!λµ
δ,λ
m (W δ

i )
.

(2.10)

Proof : We proceed in three steps by counting first the trajectories, registering only
the partition sets W δ

i that they travel through, second, for each m ∈ N0, the sets
of relays in each partition set that receive precisely m ingoing hops and finally
the choices of the relays for each hop in each partition set. Since every choice in
the three steps can be freely combined with the other ones, the product of the
three cardinalities is equal to the number of all trajectory configurations with the
requested coarsened empirical measures.

(A) Number of the transmitters of trajectories passing through given sequences of
δ-subcubes. For each configuration s ∈ Jδ,λ(Ψ) defined in (2.6), in each δ-
subcube W δ

i , i = 1, . . . , δ−d, there are λµδ,λ(W δ
i ) users. Out of them exactly

λνδ,λk (W δ
i ×W δ

i1
× . . .W δ

ik−1
) take exactly k hops, having their first relay in

W δ
i1

, their second in W δ
i2

etc. and their (k − 1)st relay in W δ
ik−1

, for any k ∈
[kmax] and i1, . . . , ik−1 = 1, . . . , δ−d. Such choices in different sub-cubes W δ

i

corresponding to the transmitters are independent. Thus, the total number
of such choices equals the number N1

δ,λ(Ψ) defined in (2.8). Note that for
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i = 1, . . . , δ−d,

kmax∑
k=1

δ−d∑
i1,...,ik−1=1

νδ,λk (W δ
i ×W δ

i1 × . . .×W
δ
ik−1

) =

kmax∑
k=1

π0ν
δ,λ
k (W δ

i ) = µδ,λ(W δ
i ),

where we used part (2) of Definition 2.1; hence the multinomial expressions in
(2.8) are well-defined.

(B) Number of incoming hops. In this step, for any δ-subcube W δ
i , we count all

the possible ways to distribute the incoming hops among the relays (= users)
Xj ∈ W δ

i , under the two constraints that in W δ
i there are λµδ,λ(W δ

i ) po-
tential relays, and for any m ∈ N0, exactly λµδ,λm (W δ

i ) receive precisely m
incoming hops. Such choices are clearly independent of each other for differ-
ent δ-subcubes. Hence, the total number of such choices equals the number
N2
δ,λ(Ψ) defined in (2.9). Again, the constraint (5) from Definition 2.1 implies

that the multinomial expression (2.9) is well-defined. Clearly, all choices in
this part are independent of the choices in part (A).

(C) Number of assignments of the hops to the relays. Assume that we have chosen
one possible choice in part (A) and one possible choice in part (B). We now
derive the number of possible ways of distributing, for any i, all the incoming
hops in W δ

i among the relays in W δ
i . Let us call this number Mi, then we

know from part (A) that Mi = λ
∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

i ), since each such hop
is the l-th of some of the trajectories for some l. The cardinality of the set of
relays in W δ

i is equal to λµδ,λ(W δ
i ) = λ

∑∞
m=0 µ

δ,λ
m (W δ

i ), and in part (B) we
decomposed it into sets, indexed by m, in which each relay receives precisely
m ingoing hops. Let us call such a relay an m-relay. Think of each such relay
as being replaced by precisely m copies (in particular those with m = 0 are
discarded), then we have λ

∑∞
m=0mµ

δ,λ
m (W δ

i ) virtual relays in W δ
i . (Note that

this is equal to Mi by (6).) Now, if all these m copies of the m-relays were
distinguishable, then the number of ways to distribute the Mi ingoing hops to
the relays would be simply equal to Mi!. However, since these m copies are
identical, we overcount by a factor of m! for any m-relay. This means that the

number of hops into W δ
i is equal to Mi!/

∏∞
m=0(m!)λµ

δ,λ
m (W δ

i ). Since all these
cardinalities can freely be combined with each other, we have deduced that the
number of possible choices is equal to the number N3

δ,λ(Ψ) defined in (2.10).

We also see that all the choices in the three parts are independent of each other,
i.e., can be freely combined with each other and yield different combinations. Hence,
we arrived at the assertion. �

3. The limiting free energy and the LDP: proof of Theorems 1.2 and 1.4

In this section, we prove Theorems 1.2 and 1.4(i), that is, we derive the varia-
tional formula in (1.24) for the high-density (i.e., λ → ∞) exponential rate of the
partition function, and we verify the LDP for the empirical measures. Our first
step is to derive the large-λ exponential rate of the combinatorial formulas for the
empirical measures of Lemma 2.6 in Section 3.1. Furthermore, in Section 3.2 we
formulate and prove how the interference term and the congestion term behave in
the limits λ→∞, followed by δ ↓ 0. In Section 3.3, given an admissible trajectory
setting, we construct a standard setting containing it. Using all these, in Section 3.4
we prove Theorem 1.2, and in Section 3.5, we complete the proof of Theorem 1.4(i).
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For the rest of this section, we fix the set Ω1 ⊂ Ω of full P-measure on which we
do our quenched investigations:

Ω1 =
{
ω ∈ Ω: Xi(ω) ∈WB ∀i ∈ N,

lim
λ→∞

#{i ∈ Iλ(ω) : Xi(ω) ∈W δ
j }

λ
= µ(W δ

j ), ∀j = 1, . . . , δ−d, ∀δ ∈ B
}
.

(3.1)
That P(Ω1) = 1 holds follows immediately from the Restriction Theorem (Kingman,
1993, Section 2.2) combined with the Poisson Law of Large Numbers (Kingman,
1993, Section 4.2) and the fact that µ is absolutely continuous.

3.1. The asymptotics of the combinatorics. Let us fix a controlled standard setting
Ψ as in (2.2). Fix any ω ∈ Ω1, and let the quantities Iλ and Xλ refer to this ω.
Denote

N0
δ,λ(Ψ) =

δ−d∏
i=1

kmax∏
k=1

k−1∏
l=1

N(λ)λπlν
δ,λ
k (W δ

i ). (3.2)

For a measurable subset V of Rd and ν, ν̃ ∈ M(V ), let us write HV (ν|ν̃) =∫
V

dν log dν
dν̃ if the density dν

dν̃ exists and HV (ν|ν̃) = ∞ otherwise. (The differ-
ence between HV (ν|ν̃) and the relative entropy HV (ν|ν̃) defined in (1.20) is the

additive term ν̃(V ) − ν(V ).) Let us recall M =
∑kmax

k=1

∑k−1
l=1 πlνk =

∑∞
m=0mµm

from (1.19) and cm = exp(−1/(eµ(W ))(eµ(W ))−m/m! from (1.23). Note that the
rate function I defined in (1.23) has also the representation

I(Ψ) =

kmax∑
k=1

HWk(νk | µ⊗k)−HW (M |µ) +

∞∑
m=0

HW (µm | µcm)− 1

e
, (3.3)

which we are going to use here. The equivalence between (3.3) and (1.23) will be
verified in Section A of the Appendix. Recall (1.44), which implies that the third
term in (3.3) is invariant under replacing H by H. We now identify the large-λ
exponential rate of the cardinality of Jδ,λ(Ψ) both on the scale λ log λ and λ:

Proposition 3.1 (Exponential rates of counting terms). Let Ψ be a controlled

standard setting. Let us write Ψ = ((νk)kmax

k=1 , (µm)∞m=0). We have

lim
δ↓0

lim
λ→∞

1

λ
log

#Jδ,λ(Ψ)

N0
δ,λ(Ψ)

= −I(Ψ),

as an identity in [0,∞]. Moreover if I(Ψ) <∞, then

lim
δ↓0

lim
λ→∞

1

λ log λ
log #Jδ,λ(Ψ) = M(W ) <∞,

almost surely.

Proof : Recall that Ψ is an admissible trajectory setting, according to Lemma 2.5.
In particular, I(Ψ) ∈ (−∞,∞] is well-defined.

We use Stirling’s formula λ! = (λ/e)λeo(λ) in the limit N 3 λ→∞, which leads
to

lim
λ→∞

1

λ
log

(
a(λ)

a(λ)

1 , . . . , a(λ)
n

)
= −

n∑
i=1

ai log
ai
a
, (3.4)
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for any integers a(λ)

1 , . . . , a(λ)
n that sum up to a(λ) and satisfy 1

λa
(λ)

i
λ→∞→ ai for

i = 1, . . . , n with positive numbers a1, . . . , an satisfying
∑n
i=1 ai = a.

From (2.8) we obtain that

I1
δ (Ψ) = − lim

λ→∞

1

λ
logN1

δ,λ(Ψ)

=

δ−d∑
i=1

kmax∑
k=1

δ−d∑
i1,...,
ik−1=1

νδk(W δ
i ×W δ

i1 × . . .×W
δ
ik−1

) log
νδk(W δ

i ×W δ
i1
× . . .×W δ

ik−1
)

µδ(W δ
i )

,

where we also used that all the measures νδ,λk and µδ,λ converge as λ → ∞ to νδk
and µδ, respectively.

Now we add the term
∏k−1
l=1 µ

δ(W δ
il

) both in the numerator and the denominator
under the logarithm and separate these two terms. In the former, we write its

logarithm as
∑k−1
l=1 logµδ(W δ

il
), interchange this sum on l with all the other sums

on the i0, . . . , ik−1 and write the sums over i0, . . . , il−1, il+1, . . . , ik−1 in terms of
the l-th marginal measure of νδk. This gives

I1
δ (Ψ) =

δ−d∑
i=1

kmax∑
k=1

δ−d∑
i1,...,ik−1=1

νδk(W δ
i ×W δ

i1 × . . .×W
δ
ik−1

)

× log
νδk(W δ

i ×W δ
i1
× . . .×W δ

ik−1
)

µδ(W δ
i )
∏k−1
l=1 µ

δ(W δ
il

)
+

δ−d∑
i=1

kmax∑
k=1

k−1∑
l=1

πlν
δ
k(W δ

i ) logµδ(W δ
i ).

(3.5)

In the same way as for Iδ1 , we obtain

I2
δ (Ψ) = − lim

λ→∞

1

λ
logN2

δ,λ(Ψ) =

δ−d∑
i=1

∞∑
m=0

µδm(W δ
i ) log

µδm(W δ
i )

µδ(W δ
i )
. (3.6)

Using (3.1), on Ω1 we have that the asymptotic behaviour of (3.2) is the following

N0
δ,λ(Ψ) = N(λ)

λ
δ−d∑
i=1

kmax∑
k=1

k−1∑
l=1

πlν
δ,λ
k (W δ

i )
= (λµ(W ))

λ(1+o(1))
δ−d∑
i=1

kmax∑
k=1

k−1∑
l=1

πlν
δ,λ
k (W δ

i )
.

On the other hand, also by Stirling’s formula, we can identify the large-λ rate of
the quotient of the counting terms in (2.10) and (3.2) as follows:

I3,0
δ (Ψ) = − lim

λ→∞

1

λ
log

N3
δ,λ(Ψ)

N0
δ,λ(Ψ)

= − lim
λ→∞

1

λ
log

δ−d∏
i=1

(∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

i )

eµ(W )

)λ∑kmax
k′=1

∑k′−1

l′=1
πl′ν

δ,λ

k′ (W δ
i )∏∞

m=0m!λµm(W δ
i )

= −
δ−d∑
i=1

kmax∑
k′=1

k′−1∑
l′=1

πl′ν
δ
k′(W

δ
i )

(
log

kmax∑
k=1

k−1∑
l=1

πlν
δ
k(W δ

i )− (1 + log µ(W ))

)

+

δ−d∑
i=1

∞∑
m=0

µδm(W δ
i ) log(m!),

(3.7)
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where for the last term we used the fact that Ψ is controlled (see also Lemma 2.5),
together with dominated convergence. We can summarize the sum of the terms in
(3.5), (3.6) and (3.7) as

− lim
λ→∞

1

λ
log

#Jδ,λ(Ψ)

N0
δ,λ(Ψ)

= I1
δ (Ψ) + I2

δ (Ψ) + I3,0
δ (Ψ)

=

kmax∑
k=1

δ−d∑
i0,...,ik−1=1

νδk(W δ
i0 × . . .×W

δ
ik−1

) log
νδk(W δ

i0
× . . .×W δ

ik−1
)∏k−1

l=0 µ
δ(W δ

il
)

+

δ−d∑
i=1

∞∑
m=0

µδm(W δ
i )
(

log
µδm(W δ

i )

µδ(W δ
i )

+m(1 + log µ(W )) + log(m!)
)

−
δ−d∑
i=1

(
kmax∑
k=1

k−1∑
l=1

πlν
δ
k(W δ

i )

)
log

∑kmax

k=1

∑k−1
l=1 πlν

δ
k(W δ

i )

µδ(W δ
i )

,

(3.8)

where in the first line on the right-hand side we changed the summing index i into
i0. Since we have

∞∑
m=0

µδm(W ) =

∞∑
m=0

µm(W ) = µ(W ),

and thus

δ−d∑
i=1

∞∑
m=0

µδm(W δ
i )
(

log
µδm(W δ

i )

µδ(W δ
i )

+m(1 + log µ(W )) + log(m!)
)

=

∞∑
m=0

µδm(W δ
i ) log

µδm(W δ
i )

cmµδ(W δ
i )
− 1

e
, (3.9)

we obviously arrived at the discrete version of the entropy terms in (3.3), more
precisely, the entropy of the measures in (3.3) with respect to the σ-field Fδ, re-

spectively F⊗kδ . Now, according to Georgii (2011, Proposition (15.6)), the limit of
these entropies as δ ↓ 0 is equal to their corresponding continuous version, i.e., the
right-hand side of (3.8) converges to I(Ψ). The first part of Proposition 3.1 follows.

Moreover, if I(Ψ) <∞, then we have by continuity

lim
δ↓0

lim
λ→∞

1

λ log λ
log #Jδ,λ(Ψ) = lim

δ↓0
lim
λ→∞

1

λ log λ
logN0

δ.λ(Ψ)

= lim
δ↓0

lim
λ→∞

kmax∑
k=1

k−1∑
l=1

δ−d∑
i=1

πlν
δ,λ
k (W δ

i ) =

kmax∑
k=1

k−1∑
l=1

πlνk(W ) =

kmax∑
k=1

(k − 1)νk(W k),

where in the last identity we used that by Fubini’s theorem, π0νk(W ) = νk(W k)
holds for all k. Hence, using that Ψ is an admissible trajectory setting, we conclude
the second part of Proposition 3.1. �

3.2. Approximations for the penalization terms. The limiting relations between the
penalization terms depending on the numbers of incoming hops in (1.9) and (1.22),
and between the continuous penalization terms in (1.7) and (1.21) are given as
follows.
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Proposition 3.2. Let Ψ be a controlled standard setting. Let us write Ψ =
((νk)kmax

k=1 , (µm)∞m=0) for the admissible trajectory setting contained in Ψ. Then,
almost surely,

lim
δ↓0

lim
λ→∞

sup
s∈Jδ,λ(Ψ)

∣∣∣ 1
λ
M(s)−M(Ψ)

∣∣∣ = 0, (3.10)

and

lim
δ↓0

lim
λ→∞

sup
s∈Jδ,λ(Ψ)

∣∣∣ 1
λ
S(s)− S(Ψ)

∣∣∣ = 0. (3.11)

Proof : Throughout the proof, we perform our analysis on Ω1. First, we show (3.10).
Consider some s ∈ Jδ,λ(Ψ) for λ > 0 and δ ∈ B. Additionally assume that sil ∈WB
for all i ∈ Iλ and l = 0, . . . , k (which is always the case for s = S = (Si)i∈Iλ on
Ω1).

Then P δλ(s) = µδ,λ and P δλ,m(s) = µδ,λm for all m ∈ N0, see the definition (2.6) of

Jδ,λ(Ψ), (2.2) and (2.3). Recall that mi(s) is the number of ingoing hops at relay
Xi for the trajectory configuration s. Hence we have

M(s) =
∑
i∈Iλ

η(mi(s)) =

∞∑
m=0

η(m)#{i ∈ Iλ : mi(s) = m} =

∞∑
m=0

η(m)Pλ,m(s)(W )

=

∞∑
m=0

η(m)P δλ,m(s)(W ) = λ

∞∑
m=0

η(m)µδ,λm (W ),

for all such s. Note that by part (8) of Definition 2.1 and part (E) of Remark 2.2,
we obtain that µδ,λm tends to µm as λ → ∞ followed by δ ↓ 0. Now, (2.4) in
Definition 2.4, together with the fact that the total mass of µδm equals the one of
µm for any m, implies the assertion in (3.10).

We continue with verifying (3.11). Let us fix an arbitrary controlled standard
setting Ψ. Our goal is to prove that (3.11) holds for this Ψ. Using that, for

an admissible trajectory setting Ψ = ((νk)kmax

k=1 , (µm)∞m=0), S(Ψ) depends only on

(νk)kmax

k=1 , we have for any λ > 0, δ ∈ B, s ∈ Jδ,λ(Ψ) and k ∈ [kmax]

1

λ
S(s)− S(Ψ) = 〈Rλ,k(s), fk(Lλ, ·)〉 − 〈νk, fk(µ, ·)〉.

In the rest of Section 3, we will often have to verify convergence of certain
(sequences of) measures in the (coordinatewise) weak topology. In order to keep
our arguments clear and short, for k ∈ N, we fix a metric dk(·, ·) on M(W k) that
generates the weak topology on this space. It turns out to be convenient to choose
dk to be the Lipschitz bounded metric (Dembo and Zeitouni, 1998, Section D.2) on
M(W k), that is,

dk(ν1
k , ν

2
k) = sup{|〈ν1

k , f〉 − 〈ν2
k , f〉| : f ∈ Lip1(W k)} (3.12)

for all k, where Lip1(W k) is the set of Lipschitz continuous functions taking W k to
R with Lipschitz parameter less than or equal to 1 and with uniform bound 1. We



240 W. König and A. Tóbiás

have for k ∈ [kmax]∣∣∣ 1
λ
S(s)− S(Ψ)

∣∣∣ =
∣∣∣〈Rλ,k(s), fk(Lλ, ·)〉 − 〈νk, fk(µ, ·)〉

∣∣∣
≤
∣∣∣〈Rλ,k(s), fk(Lλ, ·)〉 − 〈νδ,λk , fk(Lλ, ·)〉

∣∣∣+
∣∣∣〈νδ,λk , fk(Lλ, ·)〉 − 〈νδ,λk , fk(Lδλ, ·)〉

∣∣∣
+
∣∣∣〈νδ,λk , fk(Lδλ, ·)〉 − 〈ν

δ,λ
k , fk(µ, ·)〉

∣∣∣+
∣∣∣〈νδ,λk , fk(µ, ·)〉 − 〈νk, fk(µ, ·)〉

∣∣∣.
(3.13)

Now, we claim that all the four terms on the right-hand side tend to 0 in the limit
λ → ∞ followed by δ ↓ 0. Indeed, for the first term, let g ∈ Lip1(W k). Then we
have∣∣∣〈Rλ,k(s),g〉 − 〈νδ,λk , g〉

∣∣∣ =
∣∣∣ ∫
Wk

g(y)Rλ,k(s)(dy)−
∫
Wk

g(y)Rδλ,k(s)(dy)
∣∣∣

≤
δ−d∑

i0,...,ik−1=1

sup
y,z∈W δ

i0
×...×W δ

ik−1

|g(y)− g(z)|Rλ,k(s)(W δ
i0 × . . .×W

δ
ik−1

)

≤ 2δ
√
dkRλ,k(s)(W ) ≤ 2δ

√
dkLλ(W ),

which tends to 0 as λ → ∞ followed by δ ↓ 0. It follows that Rλ,k(s) − νδ,λk tends
weakly to 0 as λ→∞ followed by δ ↓ 0. We note that for any α > 0, the restriction
of fk toM≤α(W )×W k is bounded, where we wroteM≤α(V ) for the set of measures
on the space V with total mass ≤ α. Indeed, since W is compact, M≤α(W ) with
the weak topology is also a compact, metrizable space by Prohorov’s theorem.
Thus, the continuous function fk : M≤α(W ) ×W k → R is uniformly continuous,
and therefore it is bounded. Now, since eventually Lλ ∈ M≤2µ(W )(W ), the first
term on the right-hand side of (3.13) tends to 0.

As for the second term, note that for any δ ∈ B, Lλ − Lδλ tends to µ − µδ as
λ → ∞, which tends to 0 as δ ↓ 0. Thus, by the fact that fk is continuous and

bounded on M≤2µ(W )(W ) ×W k and eventually Lλ, L
δ
λ, ν

δ,λ
k ∈ M≤2µ(W )(W ) for

all δ ∈ B, the second term also tends to 0 as first λ→∞ and afterwards δ ↓ 0. An
analogous argument applies for the third term, using that Lδλ converges to µ as first
λ → ∞ and then δ ↓ 0 by part (B) of Remark 2.2 and the definition of µδ, δ ∈ B.
The fourth term tends to zero since it easily follows from part (4) of Definition 2.1

and part (D) of Remark 2.2 that νδ,λk converges weakly to νk, and fk is continuous

and bounded onM≤2µ(W )(W )×W k. We conclude (3.11) and Proposition 3.2. �

3.3. Existence of standard settings. Recall that we equip A defined in (1.29) with
the product topology of the weak topologies of the factors M(W k), M(W ), and
that this is the topology of coordinatewise weak convergence. For k ∈ N, let dk(·, ·)
be the Lipschitz bounded metric (3.12) on M(W k), which generates the weak
topology on this space. Then,

d0(Ψ1,Ψ2) =

kmax∑
k=1

dk(ν1
k , ν

2
k) +

∞∑
m=0

2−md1(µ1
m, µ

2
m), Ψ1,Ψ2 ∈ A, (3.14)

is a metric on A that generates the product topology. For % > 0 and Ψ ∈ A, let
us write B%(Ψ) = {Ψ′ ∈ A : d0(Ψ′,Ψ) < %} for the open %-ball around Ψ. We have
the following.
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Proposition 3.3. On Ω1, for any admissible trajectory setting (see Definition 1.1),
Ψ = ((νk)k, (µm)m), there exists a standard setting Ψ containing it. Further, if∑
m η(m)µm(W ) <∞, then Ψ can be chosen to be a controlled standard setting.

Proof : We fix an admissible trajectory setting Ψ and construct Ψ as follows. As
is required in Definition 2.1, the measures νδk for k ∈ [kmax] and µδm for m ∈ N0

are the δ-coarsenings of the measures νk and µm, respectively, and µδ,λ = Lδλ.

Now for δ ∈ B and λ > 0, pick some measures νδ,λk and µδ,λm with values in 1
λN0

such that the requirements (2)
∑kmax

k=1 π0ν
δ,λ
k = µδ,λ, (5)

∑∞
m=0 µ

δ,λ
m = µδ,λ and (6)∑∞

m=0mµ
δ,λ
m =

∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k of Definition 2.1 are met, such that νδ,λk =⇒ νδk

and µδ,λm =⇒ µδm as λ→∞ and such that the collection Ψ of all these measures is
a standard setting containing Ψ, which is controlled if

∑
m η(m)µm(W ) <∞.

We claim that this can be done by taking suitable up- and downroundings of the
numbers

ν′δ,λk (W δ
i0×. . .×W

δ
ik−1

) = νδk(W δ
i0×. . .×W

δ
ik−1

)
Lδλ(W δ

i0
)

µδ(W δ
i0

)
1{µδ(W δ

i0) > 0}, k ∈ [kmax],

(3.15)
for all i0, . . . , ik−1 = 1, . . . , δ−d, and dividing by λ, analogously for the µm’s. Now,
using the d-metric defined in (3.14), we prove that the convergences required in
Definition 2.1 hold for such Ψ.

First, we prove the convergence of the δ-coarsenings Ψδ = ((νδk)k, (µ
δ
m)m) to

Ψ in the d0-metric. We claim that for any % > 0, there exists δ0 ∈ B such that
Ψδ ∈ B%(Ψ) for all B 3 δ ≤ δ0. Indeed, for k ∈ [kmax], νk ∈ M(W k) and δ ∈ B we
see that the distance between νk and its δ-coarsening is of order δ with respect to
the Lipschitz bounded metric:

dk(νk, ν
δ
k)

= sup
f∈Lip1(Wk)

∣∣∣ δ−d∑
i0,...,ik−1=1

( ∫
W δ
i0
×...×W δ

ik−1

f(x)νk(dx)−
∫

W δ
i0
×...×W δ

ik−1

f(x)νδk(dx)
)∣∣∣

≤ sup
f∈Lip1(Wk)

δ−d∑
i0,...,ik−1=1

sup
x,y∈W δ

i0
×...×W δ

ik−1

|f(x)− f(y)|νk(W δ
i0 × . . .×W

δ
ik−1

)

≤ 2δνk(W k)
√
kd,

where we wrote x = (x0, . . . , xk−1) and y = (y0, . . . , yk−1); and analogously for µm.
Thus, we have

d0(Ψ,Ψδ) ≤ δ
√
d
[ kmax∑
k=1

νk(W k)
√
k +

∞∑
m=0

µm(W )2−m
]
.

Since
∑∞
m=0 µm(W ) <∞ by (ii) in (1.19), there exists a constant C, only depending

on Ψ, such that Ψδ ∈ B%(Ψ) for any δ ≤ C%.
Second, we ignore the up- or downroundings in the construction of Ψ and prove

the following. For δ ∈ B and λ > 0, let Ψ′δ,λ be the collection of the measures
introduced in (3.15). We claim that on Ω1, we have

lim sup
λ→∞

d0(Ψδ,Ψ′δ,λ) = 0.
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Indeed, for any k ∈ [kmax] and i0, . . . , ik−1 = 1, . . . , δ−d, dk(νδk, ν
′δ,λ
k ) is bounded

from above by

sup
f∈Lip1(Wk)

δ−d∑
i0,...,ik−1=1

νδk(W δ
i0 × . . .×W

δ
ik−1

)
∣∣∣Lδλ(W δ

i0
)

µδ(W δ
i0

)
− 1
∣∣∣‖f‖∞

≤ νδk(W k) max
i0∈[δ−d]

∣∣∣Lδλ(W δ
i0

)

µδ(W δ
i0

)
− 1
∣∣∣. (3.16)

Similarly, for any δ ∈ B and m ∈ N0, d1(µδm, µ
′δ,λ
m ) vanishes in the limit λ → ∞.

Thus,

d0(Ψδ,Ψ′δ,λ) ≤
( kmax∑
k=1

νδk(W k) +

∞∑
m=0

2−mµδm(W )
)

max
i0∈[δ−d]

∣∣∣Lδλ(W δ
i0

)

µδ(W δ
i0

)
− 1
∣∣∣,

which tends to 0 on Ω1 as λ→∞, according to (3.1).
Now, if we add the suitable up- and downroundings, we only change distances in

the d-metric by an error term of order 1/λ, which vanishes as λ→∞. This implies
that Ψ is a standard setting. It also follows easily that if

∑
m η(m)µm(W ) < ∞,

then Ψ is controlled. �

3.4. Proof of Theorem 1.2. Abbreviate

Y(r) =
( ∏
i∈Iλ

N(λ)−(ri−1−1)
)

exp
{
− γS(r)− βM(r)

}
, λ > 0, r ∈ Skmax(Xλ),

and note that the partition function is given as

Zγ,βλ (Xλ) =
∑

r∈Skmax (Xλ)

Y(r). (3.17)

Then Theorem 1.2 says that its large-λ negative exponential rate is given as the
infimum of I(Ψ) + γS(Ψ) + βM(Ψ), taken over all admissible trajectory settings Ψ.
Throughout the proof, we assume that the configuration Xλ = Xλ(ω) comes from
some ω ∈ Ω1 defined in (3.1).

Having proved Propositions 3.1, 3.2 and 3.3, our strategy to prove Theorem 1.2
is the following. First, Proposition 3.3 gives a standard way of constructing from an
admissible trajectory setting Ψ satisfying I(Ψ) + γS(Ψ) + βM(Ψ) <∞ a controlled
standard setting Ψ that contains Ψ. Then the lower bound for the partition function
is easily given in terms of the objects that are contained in any such Ψ and using
the logarithmic asymptotics for their combinatorics from Propositions 3.1 and 3.2
and finally taking the infimum over all such Ψ, respectively Ψ. The upper bound
needs more care, since the entire sum over r has to be handled. First of all, we
show that the sum can be restricted for all λ > 0, modulo some error term that
is negligible on the exponential scale, to the sum of those configurations whose
congestion exponent is at most Cλ for some appropriate large constant C > 0. This
sum can be decomposed, for any δ ∈ B, to sums on configurations coming from a
particular choice of empirical measures on the δ-partitions of W . The number of
these empirical measures and the sum on the partitions is negligible in the limit
λ→∞, and the asymptotics of the sums on r in these partitions can be evaluated
with the help of our spatial discretization procedure, using arguments of the proofs
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of Propositions 3.1 and 3.2 in the limit λ→∞, followed by δ ↓ 0. Using these, we
arrive at the formula (1.24).

Let us give the details. We start with the proof of the lower bound. For any
admissible trajectory setting Ψ such that I(Ψ) + γS(Ψ) + βM(Ψ) < ∞, we pick
a controlled standard setting Ψ as in Proposition 3.3 and recall the configuration
class Jδ,λ(Ψ) from (2.6). Then, for any λ > 0 and δ ∈ B,

Zγ,βλ (Xλ) ≥
∑

r∈Jδ,λ(Ψ)

Y(r)

≥ #Jδ,λ(Ψ)

sup
r∈Jδ,λ(Ψ)

∏
i∈Iλ N(λ)−(ri−1−1)

exp
{
− sup
r∈Jδ,λ(Ψ)

(
γS(r) + βM(r)

)}
.

(3.18)
Hence,

lim inf
λ→∞

1

λ
logZγ,βλ (Xλ) ≥ lim inf

δ↓0
lim inf
λ→∞

1

λ
log

#Jδ,λ(Ψ)

supr∈Jδ,λ(Ψ)

∏
i∈Iλ N(λ)−(ri−1−1)

− γ lim sup
δ↓0

lim sup
λ→∞

sup
r∈Jδ,λ(Ψ)

1

λ
S(r)

− β lim sup
δ↓0

lim sup
λ→∞

sup
r∈Jδ,λ(Ψ)

1

λ
M(r)

= −I(Ψ)− γS(Ψ)− βM(Ψ).

(3.19)
In the last step we also used Propositions 3.1 and 3.2 together with the fact that
Ψ is controlled. Now take the supremum over all such Ψ on the r.h.s. of (3.19) to
conclude that the lower bound in (1.24) holds.

The upper bound of Theorem 1.2 requires some additional work. We start from
(3.17). For C > 0 we have

Zγ,βλ (Xλ) =
∑

r∈Skmax (Xλ) : M(r)≤λC

Y(r) +
∑

r∈Skmax (Xλ) : M(r)>λC

Y(r). (3.20)

Since the total mass of our a priori measure has a bounded large-λ exponential rate
(see Section 1.2.2) and S, M are bounded from below, we see that

lim sup
C→∞

lim sup
λ→∞

1

λ
log

∑
r∈Skmax (Xλ) : M(r)>λC

Y(r) = −∞.

Thus, for C sufficiently large, the exponential rate of Zγ,βλ (Xλ) is equal to the one
of the first term on the right-hand side of (3.20). We additionally require C so
large that

inf
Ψ adm. traj. stg.,

M(Ψ)≤C

(I(Ψ) + γS(Ψ) + βM(Ψ)) = inf
Ψ adm. traj. stg.

(I(Ψ) + γS(Ψ) + βM(Ψ)).

(3.21)

Let us write Skmax,C(Xλ) = {r ∈ Skmax
(Xλ) : M(r) ≤ λC} and Zγ,β,Cλ (Xλ) =∑

r∈Skmax,C(Xλ) Y(r). The upper bound of Theorem 1.2 follows as soon as we show



244 W. König and A. Tóbiás

that

lim sup
λ→∞

1

λ
logZγ,β,Cλ (Xλ) ≤ − inf

Ψ adm. trajectory setting, M(Ψ)≤C
(I(Ψ)+γS(Ψ)+βM(Ψ)).

(3.22)
Let us recall the set A from (1.29). For fixed λ > 0 and δ ∈ B, let us define

G(δ, λ) = G(δ, λ)(Xλ) :=
{

Ψδ,λ = ((νδ,λk )kmax

k=1 , (µ
δ,λ
m )∞m=0) ∈ A :

∀k ∈ [kmax],∀i0, . . . , ik−1 ∈ [δ−d] : νδ,λk (W δ
i0 × . . .×W

δ
ik−1

) ∈ 1

λ
N0,

and ∀m ∈ N0,∀i ∈ [δ−d] : µδ,λm (W δ
i ) ∈ 1

λ
N0,

and

kmax∑
k=1

π0ν
δ,λ
k = Lδλ,

∞∑
m=0

µδ,λm = Lδλ,

kmax∑
k=1

k−1∑
l=1

πlν
δ,λ
k =

∞∑
m=0

mµδ,λm

}
.

(3.23)

We will write Jδ,λ(Ψδ,λ) for the set Jδ,λ(Ψ) defined in (2.6). Then the union of
Jδ,λ(Ψδ,λ) over all Ψδ,λ with

∑∞
m=0 η(m)µδ,λm (W ) ≤ C is equal to{

((Rδλ,k(r))k∈[kmax], (P
δ
λ,m(r))m∈N0

) : r ∈ Skmax,C(Xλ)
}
,

since these three equations characterize the tuple of the measures (Rδλ,k(S))kmax

k=1

and (P δλ,m(S))∞m=0 if (Si)i∈Iλ ∈ Skmax,C(Xλ).
Using this, we can estimate, for any δ ∈ B,

Zγ,β,Cλ (Xλ) =
∑

Ψδ,λ∈G(δ,λ) : M(Ψδ,λ)≤C

∑
r∈Jδ,λ(Ψδ,λ)

Y(r)

≤ #G(δ, λ) sup
Ψδ,λ∈G(δ,λ) : M(Ψδ,λ)≤C

∑
r∈Jδ,λ(Ψδ,λ)

Y(r).
(3.24)

Hence,

lim sup
λ→∞

1

λ
logZγ,β,Cλ (Xλ)

≤ lim sup
δ↓0

lim sup
λ→∞

1

λ
log #G(δ, λ)

+ lim sup
δ↓0

lim sup
λ→∞

1

λ
log sup

Ψδ,λ∈G(δ,λ) : M(Ψδ,λ)≤C

[ #Jδ,λ(Ψδ,λ)

inf
r∈Jδ,λ(Ψδ,λ)

∏
i∈Iλ N(λ)−(ri−1−1)

− γ lim inf
δ↓0

lim inf
λ→∞

inf
r∈Jδ,λ(Ψδ,λ)

1

λ
S(r)− β lim inf

δ↓0
lim inf
λ→∞

inf
r∈Jδ,λ(Ψδ,λ)

1

λ
M(r)

]
.

(3.25)
According to Lemma 3.4 below, the first term on the right-hand side is equal to
zero. Now pick a sequence (δn)n and for each n a sequence (λn,j)j along which the
superior limits as n → ∞, respectively j → ∞, are realized. Now pick, for any n

and j, a maximizer Ψ̃δn,λn,j . Pick λ0 so large that N(λ) ≤ 2µ(W )λ for all λ ≥ λ0.
Hence,

⋃
λ>λ0,δ∈B

G(δ, λ) ⊆
( kmax∏
k=1

M≤2µ(W )(W
k)
)
×M≤2µ(W )(W )N0 , (3.26)
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where we recall that M≤α(V ) is the set of measures on a space V with total mass
≤ α. Note thatM≤2µ(W )(W

k) is compact in the weak topology ofM(W k) for any
k, according to Prohorov’s theorem.

Without loss of generality (using two diagonal sequence arguments), we can as-

sume that for all n ∈ N, Ψ̃δn,λn,j converges coordinatewise weakly to a collection

of measures Ψ̃δn = ((ν̃δnk )kmax

k=1 , (µ̃
δn
m )∞m=0) as j →∞, and Ψ̃δn converges coordinate-

wise weakly to a collection of measures Ψ̃ as n → ∞. Then, it is clear that Ψ̃
satisfies (i) from (1.19), and also that

lim
n→∞

lim
j→∞

kmax∑
k=1

k−1∑
l=1

πlν̃
δn,λn,j
k =

kmax∑
k=1

k−1∑
l=1

πlν̃k.

In order to see that (iii) holds for Ψ̃, it remains to show that

lim
n→∞

lim
j→∞

∞∑
m=0

mµ̃δn,λn,jm =

∞∑
m=0

mµ̃m.

For N ∈ N and for any continuous function f : W → R, we estimate∣∣∣∣∣
〈 ∞∑
m=0

m(µ̃δn,λn,jm − µ̃m), f

〉∣∣∣∣∣ ≤
N∑
m=0

m
∣∣〈µ̃δn,λn,jm − µ̃m, f〉

∣∣
+

∞∑
m=N+1

‖f‖∞m
∣∣µ̃δn,λn,jm (W )− µ̃m(W )

∣∣ .
The first term on the r.h.s. clearly tends to 0 as j → ∞, followed by n → ∞, for
any fixed N . The second term can further be estimated from above as follows

‖f‖∞
∑
m>N

η(m)
(

sup
m̃>N

m̃

η̃(m)

)
(µ̃δn,λn,jm (W ) + µ̃m(W )) ≤ 2‖f‖∞

(
sup
m̃>N

m̃

η̃(m)

)
C.

By the assumption that (η(N)/N) → ∞ as N → ∞, the right-hand side tends to

0. One can analogously show that
∑∞
m=0 µ̃

δn,λn,j
m tends to

∑∞
m=0 µ̃m as j → ∞

followed by n → ∞, and hence condition (ii) from (1.19) holds. Also we have∑∞
m=0 η(m)µ̃m(W ) ≤ C. Altogether, Ψ̃ is an admissible trajectory setting.
Now, using the arguments of the proofs of Propositions 3.1 and 3.2 (which also

involve the coarsened limits Ψ̃δn for fixed n ∈ N) for the subsequential limits j →∞
followed by n→∞, we conclude that

lim
n→∞

lim
j→∞

#Jδn,λn,j (Ψ̃δn,λn,j )

infr∈Jδn,λn,j (Ψ̃δn,λn,j )

∏
i∈Iλn,j N(λn,j)

−(ri−1−1)
= I(Ψ̃)

and, using the boundedness and continuity of each fk on M≤2µ(W )(W )×W k,

lim
n→∞

lim
j→∞

inf
r∈Jδn,λn,j (Ψ̃δn,λn,j )

1

λn,j
S(r) = S(Ψ̃).

Furthermore, the lower semicontinuity of M(W )N0 → (−∞,∞], (νm)m∈N0 7→∑
m∈N0

η(m)νm(W ), together with Fatou’s lemma implies that

−β lim inf
n→∞

lim inf
j→∞

inf
r∈Jδn,λn,j (Ψ̃δn,λn,j )

1

λn,j
M(r) ≤ −βM(Ψ̃). (3.27)
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Thus, we conclude that (3.22) (and therefore the upper bound in Theorem 1.2)
holds, as soon as Lemma 3.4 is formulated and verified. This we do now. Recall
that we are working with fixed ω ∈ Ω1, and that the notion of G(δ, λ) depends on
ω via G(δ, λ) = G(δ, λ)(Xλ(ω)).

Lemma 3.4. For any δ ∈ B and ω ∈ Ω1, we have

lim sup
λ→∞

1

λ
log #G(δ, λ) = 0.

Proof : For λ > 0, let G1(δ, λ) denote the set of (νδ,λk )kmax

k=1 satisfying part (2) from
Definition 2.1. It is easily seen that its cardinality increases only polynomially in

λ. Now, given (νδ,λk )kmax

k=1 ∈ G1(δ, λ), we will give an upper bound for the number

of (µδ,λm )∞m=0 such that the pair of these tuples is in G(δ, λ). This is much more
demanding, since there is a priori no upper bound for m. We will provide a λ-
dependent one.

For any λ > 0, Ψδ,λ ∈ G(δ, λ) and j = 1, . . . , δ−d we have that

λ

∞∑
m=0

mµδ,λm (W δ
j ) = λ

kmax∑
k=1

k−1∑
l=1

πlν
δ,λ
k (W δ

j ) ≤ (kmax − 1)N(λ),

and the numbers µδ,λ0 (W δ
j ), . . . , µδ,λ(kmax−1)N(λ)(W

δ
j ), are 1

λ times nonnegative inte-

gers. In particular, µδ,λm (W δ
j ) = 0 for m > (kmax − 1)N(λ).

Let ε > 0 be fixed. We claim that for all sufficiently large λ > 0, there are not
more than εN(λ) ∼ ελµ(W ) nonzero ones out of these quantities. Indeed, if there
were at least dεN(λ)e nonzero ones, denoted µδ,λm0

(W δ
j ), . . . , µδ,λmdεN(λ)e−1

(W δ
j ) with

0 ≤ m0 < m1 < . . . < mdεN(λ)e−1 ≤ (kmax − 1)N(λ), then we could estimate

(kmax − 1)N(λ) ≥
(kmax−1)N(λ)∑

m=0

λmµδ,λm (W δ
j )

≥
dεN(λ)e−1∑

i=0

λmiµ
δ,λ
mi (W

δ
j )1l
{
µδ,λmi (W

δ
j ) > 0

}
=

dεN(λ)e−1∑
i=0

λmiµ
δ,λ
mi (W

δ
j )1l
{
µδ,λmi (W

δ
j ) ≥ 1

λ

}
≥
dεN(λ)e−1∑

i=0

mi

≥
dεN(λ)e−1∑

m=0

m ∼ 1

2
(εN(λ))(εN(λ)− 1),

which would be a contradiction for all λ > 0 sufficiently large.

Now, #G(δ, λ) can be estimated as follows. Let us first fix (νδ,λk )kmax

k=1 ∈ G1(δ, λ),
i.e., satisfying part (2) from Definition 2.1, and let us count the number of collec-

tions of measures (µδ,λm )
(kmax−1)N(λ)
m=0 such that ((νδ,λk )kmax

k=1 , (µ
δ,λ
m )

(kmax−1)N(λ)
m=0 ) lies

in G(δ, λ). Out of the kmaxδ
−dN(λ) quantities µδ,λ0 (W δ

j ), . . . , µδ,λ(kmax−1)N(λ)(W
δ
j ),

j = 1, . . . , δ−d, at most dεN(λ)eδ−d are nonzero. The number of ways to choose

them equals
(kmaxN(λ)δ−d

dεN(λ)eδ−d
)
. Having chosen dεN(λ)eδ−d potentially nonzero ones so

that the remaining kmaxδ
−dN(λ)−dεN(λ)eδ−d ones are equal to zero, according to

part (5) of Definition 2.1 we note that the potentially nonzero ones sum up to N(λ),
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and each one has a value in 1
λN0. For this, there are at most

(N(λ)+dεN(λ)eδ−d−1
dεN(λ)eδ−d−1

)
combinations, for any choice of the set of the potentially nonzero ones. Since
ω ∈ Ω1, we have N(λ) = N(λ)(ω) = λ(µ(W ) + o(1)) as λ → ∞ (where the o(1)
term depends on ω). Therefore, using Stirling’s formula as in (3.4), we have the
following estimate in the limit λ→∞

#G(δ, λ) ≤ #G1(δ, λ)

(
kmaxN(λ)δ−d

dεN(λ)eδ−d

)(
N(λ) + dεN(λ)eδ−d − 1

dεN(λ)eδ−d − 1

)
= eo(λ) exp

(
− λµ(W )

(
(kmax − ε)δ−d log

(kmax − ε)δ−d

kmaxδ−d
+ εδ−d log

εδ−d

kmaxδ−d

))
× exp

(
− λµ(W )

(
εδ−d log

εδ−d

1 + εδ−d
+ log

1

1 + εδ−d

))
.

Letting ε ↓ 0, we conclude that lim supλ→∞
1
λ log #G(δ, λ) = 0. �

3.5. The large deviation principle: proof of Theorem 1.4(i). In this section, we
prove Theorem 1.4(i). The combinatorial essence of this theorem has already been
proved in Proposition 3.1, including the relations with δ-coarsenings. What remains
to be done is to relate this to the coordinatewise weak convergence on A. We will
be able to use some of the arguments of Section 3.4.

The lower semicontinuity of I + µ(W ) log kmax was already discussed in Sec-
tion 1.3, the nonnegativity in Section1.5. These together mean that I+µ(W )log kmax

is a rate function.
We proceed with the proof of the lower bound. Let G ⊆ A be open. If infG I =

∞, then there is nothing to show, therefore let us assume that there exists Ψ ∈
G with I(Ψ) < ∞. According to Proposition 3.3, there is a standard setting Ψ
containing Ψ; let this Ψ be defined according to the contruction in the proof of that
proposition. Since G is open, there exists % > 0 such that B%(Ψ) ⊆ G. Let us choose
δ0 ∈ B and, for any B 3 δ ≤ δ0, some λ0 = λ0(δ) > 0 such that Ψδ,Ψδ,λ ∈ B%(Ψ)
for any λ > λ0. Now we can estimate, for these δ and λ,

P0,0
λ,Xλ

(Ψλ(S) ∈ G) ≥ P0,0
λ,Xλ

(Ψλ(S) ∈ B%(Ψ)) ≥ P0,0
λ,Xλ

(
(Ψλ(S))δ = Ψδ,λ

)
=

1

Z0,0
λ (Xλ)

∑
r∈Jδ,λ(Ψδ,λ)

1∏
i∈Iλ N(λ)r

i
−1−1

≥ #Jδ,λ(Ψδ,λ)

k
N(λ)
max supr∈Jδ,λ(Ψδ,λ)

∏
i∈Iλ N(λ)r

i
−1−1

.

Now, using Proposition 3.1 and the fact that N(λ)/λ→ µ(W ), we obtain

lim inf
λ→∞

1

λ
log P0,0

λ,Xλ
(Ψλ(S) ∈ G) ≥ −µ(W ) log kmax − I(Ψ).

Note that Ψ is not necessarily controlled because M(Ψ) < ∞ is not guaranteed.
However, since for all δ ∈ B, s = 1, . . . , δ−d, λ > 0, µδ,λm (W δ

s )/µδm(W δ
s ) does

not depend on m, modulo some error terms summing up to O(1/λ), we easily
see that Proposition 3.1 holds for this Ψ as well. Now, take the supremum over
Ψ ∈ G ∩ {I <∞} to conclude that the lower bound holds.

We continue with the upper bound. Let F ⊆ A be closed. Let us choose an
increasing sequence (λn)n∈N of positive numbers along which the limit superior in
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(1.30) is realized. For λ > 0, let us put

O(λ) =
{

Ψ ∈ A : P0,0
λ,Xλ

(Ψλ(S) = Ψ) > 0
}
.

If for all but finitely many n ∈ N we have F ∩O(λn) = ∅, then

lim sup
λ→∞

1

λ
log P0,0

λ,Xλ
(Ψλ(S) ∈ F ) = −∞. (3.28)

Therefore, without loss of generality, we can assume that O(λn) ∩ F is non-empty
for all n ∈ N. For δ ∈ B and A ⊂ A, let us write Aδ = {Ψδ : Ψ ∈ A}, where Ψδ is
the coordinatewise δ-coarsened version of Ψ. Then we have

P0,0
λn,Xλn

(
Ψλn(S) ∈ F ) = P0,0

λn,Xλn

(
Ψλn(S) ∈ F ∩O(λn)

)
= P0,0

λn,Xλn

(
(Ψλn(S))δ ∈ (F ∩O(λn))δ)

≤ #(F ∩O(λn))δ

× sup
Ψ∈F∩O(λn)

#Jδ,λn(Ψδ)

k
N(λn)
max infr∈Jδ,λn (Ψδ)

∏
i∈Iλn N(λn)r

i
−1−1

.

(3.29)
It is clear that (F ∩O(λn))δ ⊆ G(δ, λn) = (O(λn))δ for all n ∈ N and δ ∈ B, where
G(δ, λn) was defined in Section 3.4. Hence, by Lemma 3.4,

lim sup
δ↓0

lim sup
n→∞

1

λn
log #(F ∩O(λn))δ = 0.

It remains to show that

lim sup
δ↓0

lim sup
n→∞

1

λn
log
[

sup
Ψ∈F∩O(λn)

#Jδ,λn(Ψδ)

inf
r∈Jδ,λn (Ψδ)

∏
i∈Iλn N(λn)r

i
−1−1

]
≤ − inf

Ψ∈F
I(Ψ).

(3.30)
One can do this analogously to the proof of the upper bound of Theorem 1.2
starting from (3.25). Indeed, using Prohorov’s theorem together with a diagonal
sequence argument, we find Ψ∗ ∈ A that the maximizer in (3.29) converges to
along a subsequence of δ’s and λn’s. The limit lies in F because F is closed. Using
the lower semicontinuity of I together with Fatou’s lemma, we conclude that the
left-hand side of (3.30) is not larger than −I(Ψ∗), which itself is not larger than
− infF I. This finishes the proof of the upper bound in Theorem 1.4(i).

4. Analysis of the minimizers

This section is devoted to the proof of Proposition 1.3. In particular, in Sec-
tion 4.1, we show that the infimum in (1.24) is attained and, for any minimizer

Ψ = ((νk)kmax

k=1 , (µm)∞m=0), for any k ∈ [kmax], µ⊗k is absolutely continuous with
respect to νk and µ is absolutely continuous with respect to each µm. Further,
for all k ∈ [kmax] and m ∈ N0, there exist constants ck > 0, k ∈ [kmax], and
c′m > 0, m ∈ N0 such that νk(A) ≥ ckµ

⊗k(A) for all A ⊆ W k measurable and
µm(A′) ≥ c′m(A′) for all A′ ⊆ W measurable. This is a prerequisite for perturbing
the minimizer in many admissible directions. In Section 4.2 we finish the proof
of Proposition 1.3 by deriving the Euler–Lagrange equations. For the rest of the
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section, we fix all parameters W,µ, γ, β and kmax. Moreover, we use the following
representation of I from (1.23).

I(Ψ) =

kmax∑
k=1

HWk(µ⊗M⊗(k−1))+

∞∑
m=0

HW (µm | µ)−µm(W ) log
(eµ(W ))−m

m!
. (4.1)

4.1. Existence and positivity of the minimizers. We start with the following lemma,
which follows almost immediately from the arguments of the proof of the upper
bound of Theorem 1.2 in Section 3.4.

Lemma 4.1. The set of minimizers of the variational formula in (1.24) is non-
empty, compact and convex.

Proof : Recall that the three functionals I, S, M are lower semicontinuous and con-
vex. Furthermore, it is clear that we can restrict the infimum in (1.24) to those Ψ
that satisfy also M(Ψ) ≤ C for any sufficiently large C. But, as we have seen in
Section 3.4, this set of Ψ’s is compact. From this, all our assertions easily follow. �

Now we prove that, for each minimizer Ψ, µ⊗k is absolutely continuous with
respect to νk and µ is absolutely continuous with respect to each µm, and the
corresponding Radon–Nikodym derivatives are even bounded away from 0. (Note
that the opposite absolute continuities are true by finiteness of the relative en-
tropies in (1.23).) We need to show this only for kmax > 1, as we explained after
Proposition 1.3. Let us start with verifying the absolute continuities.

Lemma 4.2. If kmax > 1 and Ψ = ((νk)kmax

k=1 , (µm)∞m=0) is a minimizer of (1.24),

then µ⊗k � νk for any k ∈ [kmax], and µ� µm for any m ∈ N0.

Proof : The essence of the proof is the following. The functionals M(·) and S(·)
are linear in each µm respectively νk, as well as the third term in I(·) in (1.23)
in each µm. On the other hand, the function x 7→ x log x has the slope −∞ at
x ↓ 0. We show the following assertions about the minimizer Ψ step by step as

follows. Recall that M =
∑
m∈N0

mµm =
∑
k∈[kmax]

∑k−1
l=1 πlνk. We write ≥ and

>, respectively, between measures in M(W k) if their difference lies in M(W k),
respectively in M(W k) \ {0}.

Fix a measurable set A ⊂W such that µ(A) > 0. Then we have:

(1) M(A) > 0.
(2) for any m1 < m0 < m2 such that µm1

(A) > 0 and µm2
(A) > 0, also

µm0
(A) > 0.

(3) µ0(A) > 0.
(4) µm(A) > 0 for any m ≥ kmax.
(5) νk(Ak) > 0 for any k ∈ [kmax].

Indeed, these steps are verified respectively as follows. In each of the steps, for
ε ∈ (0, 1), we construct an admissible trajectory setting Ψε = ((νεk)kmax

k=1 , (µ
ε
m)∞m=0)

such that I(Ψε) + γS(Ψε) + βM(Ψε) < I(Ψ) + γS(Ψ) + βM(Ψ) for sufficiently small
ε > 0, and therefore Ψ is not a minimizer of (1.24).

(1) If M(A) = 0, then in particular µ0(A) = ν1(A) = µ(A) and µm(A) = 0 for
all m > 0. Also, π1ν2(A) = ν2(W × A) = 0, according to the definition of
M .
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Let us define Ψε as follows: νε2 = (1−ε)ν2 +ε(µ⊗2)/µ(W ), νεk = (1−ε)νk
for k 6= 2, µε1 = (1 − ε)µ1 + εµ and µεm = (1 − ε)µm for m 6= 1. Then we
compute and estimate the three terms of the entropy I(Ψ) as follows.

kmax∑
k=1

HWk

(
νεk | µ⊗ (Mε)⊗(k−1)

)
≤
kmax∑
k=1

HW×(W\A)k−1((1− ε)νk | µ⊗ (Mε)⊗(k−1))

+HW×A

( εµ⊗2

µ(W )
| εµ⊗2

)
+O(ε)

≤
kmax∑
k=1

HWk(µ⊗M⊗(k−1)) +O(ε),

furthermore,
∞∑
m=0

HW (µεm | µ)− µεm(W ) log
(eµ(W ))−m

m!

≤ HW ((1− ε)µm | µ)− µm(W ) log
(eµ(W ))−m

m!
+ µ(A)ε log ε+O(ε).

(4.2)

For the second term we used the convexity of the relative entropy in the
form

HW ((1− ε)µ1 + εµ | µ) ≤ (1− ε)HW (µ1 | µ) ≤ HW (µ1 | µ) +O(ε). (4.3)

This in turn follows from Hirsch et al. (2018a, Lemmas 3.10, 3.11), which
implies that, for any k ∈ N, ξ, η ∈M(W k) with η 6= 0 and ξ � η,∣∣∣HWk(ξ | η)−HWk((1− ε)ξ | η)

∣∣∣ �
ε↓0

ε.

It follows that, as ε ↓ 0,

I(Ψε) + γS(Ψε) + βM(Ψε)−
[
I(Ψ) + γS(Ψ) + βM(Ψ)

]
≤ O(ε) + µ(A)ε log ε, (4.4)

which is negative for all sufficiently small ε > 0. Thus, Ψ is not a minimizer.
(2) If M(A) > 0 but µm1

(A) > 0, µm2
(A) > 0 and µm0

(A) = 0 for some
m1 < m0 < m2, then let νεk = νk for all k ∈ [kmax] and let µεm0

= (1 −
ε)µm0 + ε(α1µm1 + α2µm2), µεm1

= (1 − α1ε)µm1 , µεm2
= (1 − εα2)µm2 ,

where α1, α2 ∈ (0, 1) are such that α1 + α2 = 1 and m1α1 + m2α2 = m0.
Then, Ψε is an admissible trajectory setting with Mε = M . It follows
similarly to the previous computation that I(Ψε) + γS(Ψε) + βM(Ψε) <
I(Ψ) + γS(Ψ) + βM(Ψ) for all sufficiently small ε > 0. However, instead of
(4.2), we have

∞∑
m=0

HW (µεm | µ)− µεm(W ) log
(eµ(W ))−m

m!

≤
∞∑
m=0

HW (µm | µ)− µm(W ) log
(eµ(W ))−m

m!

+ (α1µm1(A) + α2µm2(A))ε log ε+O(ε),

as ε ↓ 0.



A Gibbsian model for message routeing 251

(3) If M(A) > 0 but µ0(A) = 0, let νεk = (1 − ε)νk for all 1 < k ≤ kmax,
µεm = (1− ε)µm for all m > 0, µε0 = εµ+ (1− ε)µ0 and νε1 = (1− ε)ν1 + εµ.
It is again sufficient to consider the entropy terms in I. The summands on
k > 1 can be estimated as follows.

kmax∑
k=2

HWk(νεk | µ⊗ (Mε)(k−1)) =

kmax∑
k=2

HWk((1− ε)νk | (1− ε)k−1µ⊗Mk−1)

≤
kmax∑
k=2

HWk(νk | µ⊗M (k−1)) +O(ε).

The summand for k = 1 can be estimated with the help of (4.3). For the
summand for m = 0, we have

HW (µε0 | µ) = HW\A((1− ε)µ0 + εµ | µ) + µ(A)ε log ε

≤ HW\A((1− ε)µ0 | µ) + µ(A)ε log ε+O(ε)

= HW (µ0 | µ) + µ(A)ε log ε+O(ε).

while the remaining sum is handled as follows.
∞∑
m=1

HW (µεm | µ)− µεm(W ) log
(eµ(W ))−m

m!

=

∞∑
m=1

HW ((1− ε)µm | µ)− µm(W ) log
(eµ(W ))−m

m!
+O(ε).

Thus, (4.4) holds also here, which implies the claim.
(4) If M(A) > 0 but µm0

(A) = 0 for some m0 ≥ kmax, let µεm0
= (1− ε)µm0

+
εM/m0, µεm = (1 − ε)µm for m /∈ {0,m0}, and νεk = νk for all k ∈ [kmax].
Then,

∞∑
m=1

mµεm = (1− ε)
∞∑
m=1

mµm +
εm0

m0

kmax∑
k=1

k−1∑
l=1

πlνk =

kmax∑
k=1

k−1∑
l=1

πlνk.

On the other hand, we have

µ−
∞∑
m=1

µεm ≥ µ−(1−ε)
∞∑
m=1

µm−
ε(kmax − 1)

m0
µ ≥ (1−ε)

(
µ−

∞∑
m=1

µm

)
= (1−ε)µ0.

Therefore, if we put µε0 = µ −
∑∞
m=1 µ

ε
m, then µε0 ≥ (1 − ε)µ0 ≥ 0, in

particular Ψε is an admissible trajectory setting. Now we can proceed
analogously to (3) to conclude that I(Ψε) + γS(Ψε) + βM(Ψε) < I(Ψ) +
γS(Ψ) + βM(Ψ) for sufficiently small ε > 0.

The proof of (5) is very similar to the ones of (2), (3) and (4), thus we leave it to
the reader. �

The proof of the following lemma is similar to the one of Lemma 4.2, therefore
we omit its proof.

Lemma 4.3. If kmax > 1 and Ψ = ((νk)kmax

k=1 , (µm)∞m=0) is a minimizer of (1.24),

then for each k ∈ [kmax], there exists ck > 0 such that for all A ⊆ W k measurable,
νk(A) ≥ ckµ⊗k(A) holds. Similarly, for each m ∈ N0, there exists c′m > 0 such that
for all A′ ⊆W measurable, µm(A′) ≥ c′mµ(A′) holds.
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4.2. Deriving the Euler–Lagrange equations. In this section, we finish the proof of
Proposition 1.3. According to the results of Section 4.1, now we see that (1.24)
exhibits at least one minimizer, and all minimizers have almost everywhere positive
Lebesgue density on the corresponding powers of supp µ. Knowing this, we now
carry out the perturbation analysis for the minimizer(s) of the optimization problem
in (1.24) and derive the shape of the minimizers in most explicit terms.

We use the method of Lagrange multipliers in the framework of a perturbation
argument. Let Ψ = ((νk)kmax

k=1 , (µm)∞m=0) minimize (1.24). Fix any collection of

finite signed measures Φ = ((τk)kmax

k=1 , (σm)∞m=0) such that only finitely many σm’s

are different from zero, the Radon–Nikodym derivative dτk
dµ⊗k

is a simple function for

each k, also dσm
dµ is a simple function for each m, further they satisfy the following

constraints:

(i)

kmax∑
k=1

π0τk = 0, (ii)

∞∑
m=0

σm = 0, (iii) MΦ :=

∞∑
m=0

mσm =

kmax∑
k=1

k−1∑
l=1

πlτk.

(4.5)
Then it follows from Lemma 4.3 that, for any ε ∈ R with sufficiently small |ε|,
Ψ+εΦ = ((νk+ετk)kmax

k=1 , (µm+εσm)∞m=0) is a collection of (non-negative!) measures
that satisfies (1.19) and is therefore admissible in the variational formula in (1.24).
That (1.19) is satisfied follows easily from (4.5). Furthermore, using the notation of
Section 4.1, the non-negativity follows from the fact that each τk respectively each
σm is a finite linear combination of measures of the form 1lA dµ⊗k with A ⊂ W k

respectively of the form 1lB dµ with B ⊂ W , and we have 1lA dµ⊗k ≤ c−1
k 1lA νk

respectively 1lB dµ ≤ c′−1
m 1lB dµm. Since only finitely many such summands are

involved, there is a constant C > 0 such that |τk| ≤ Cνk and |σm| ≤ Cµm for any
k ∈ [kmax] and m ∈ N0, and hence it suffices to take |ε| < 1/C.

From minimality, we deduce that

0 =
∂

∂ε

∣∣∣
ε=0

(
I(Ψ + εΦ) + γS(Ψ + εΦ) + βM(Ψ + εΦ)

)
. (4.6)

We calculate the latter two terms as

∂

∂ε

∣∣∣
ε=0

(
γS(Ψ + εΦ) + βM(Ψ + εΦ)

)
= γ

∑
k∈[kmax]

〈τk, f̃k〉+ β
∑
m∈N0

η(m)σm(W ),

where, as before, we used the notation 〈ν, f〉 for the integral of a function f with

respect to a measure ν. Abbreviating M =
∑
k∈[kmax]

∑k−1
l=1 πlνk and using the

representation (3.3) of I(·), we see that

∂

∂ε

∣∣∣
ε=0

I(Ψ + εΦ)

=
∑

k∈[kmax]

〈
τk, 1 + log

dνk
dµ⊗k

〉
−
〈
MΦ, 1 + log

dM

dµ

〉
+
∑
m∈N0

〈
σm, 1 + log

dµm
d(cmµ)

〉
,

(4.7)
where we recall that cm = e−1/(eµ(W ))(eµ(W ))−m/m!. Summarizing, we obtain
from (4.6) that

0 =
〈

Φ,
(
(hk)k∈[kmax], (gm)m∈N0

)〉
, (4.8)
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where

hk = γf̃k + 2− k + log
dνk

d(µ⊗M⊗(k−1))

and

gm = βη(m) + 1 + log
dµm
dµ
− log

(eµ(W ))−m

m!
.

We conceive Φ as an element of the vector space

A± =
∏

k∈[kmax]

M±(W k)×M±(W )N0

where M± is the set of signed measures equipped with the weak topology, and
((hk)k∈[kmax], (gm)m∈N0

) as a function on
∏
k∈[kmax]W

k ×WN0 . The condition in

(4.5) means that Φ is perpendicular to any function in

F =
{

((ϕk)k∈[kmax], (ψm)m∈N0
) :

ϕk : W k → R, ψm : W → R bounded and measurable for any k,m,

∃Ã, B̃, C̃ : W → R : ϕk(x0, . . . , xk−1) = Ã(x0) +

k−1∑
l=1

C̃(xl),

and ψm(x) = B̃(x)−mC̃(x) for x, x0, . . . , xk−1 ∈W
}
.

We have shown that, if Φ is perpendicular to any simple function in F , then it is
also perpendicular to ((hk)k∈[kmax], (gm)m∈N0

). Since F is a closed linear subspace
of A±, it follows that it contains this element. That is, there are three functions

Ã, B̃, C̃ on W such that, for any k respectively m,

hk(x0, . . . , xk−1) = Ã(x0) +

k−1∑
l=1

C̃(xl) and gm(x) = B̃(x)−mC̃(x),

for all x, x0, . . . , xk−1 ∈W . Using an obvious substitution, this is equivalent to the
existence of three positive functions A,B,C such that

νk(dx0, . . . ,dxk−1) = µ(dx0)A(x0)

k−1∏
l=1

(
C(xl)M(dxl)

)
e−γf̃k(x0,...,xk−1), k ∈ [kmax],

(4.9)

µm(dx) = µ(dx)B(x)
(C(x)µ(W ))−m

m!
e−βη(m), m ∈ N0. (4.10)

From (i) and (ii) in (1.19), we can identify A and B as

1

A(x0)
=

∑
k∈[kmax]

∫
Wk−1

k−1∏
l=1

(
C(xl)M(dxl)

)
e−γf̃k(x0,...,xk−1), (4.11)

1

B(x)
=

∑
m∈N0

(C(x)µ(W ))−m

m!
e−βη(m). (4.12)

Furthermore, condition (iii) says that

1

C(x)
=

1

C(x)

µ(dx)

M(dx)
ϕ
( 1

C(x)µ(W )

)
= Γ(C dM,x), x ∈W, (4.13)
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where ϕ(α) =
∑
m∈N0

mαm

m! e−βη(m)/
∑
m∈N0

αm

m! e−βη(m) for α ∈ [0,∞) and

Γ(dM̃, x) =

∫
W

µ(dx0)

∑
k∈[kmax]

∫
Wk−2

∏k−2
l=1 M̃(dxl)Fk(x0, x1, . . . , xk−2, x)∑

k∈[kmax]

∫
Wk−1

∏k−1
l=1 M̃(dxl) e−γf̃k(x0,...,xk−1)

,

(4.14)
where

Fk(x0, x1, . . . , xk−2, x) =

k−1∑
l=1

e−γf̃k(x0,y
l), (4.15)

yl is the vector of length k−1, consisting of x1, . . . , xk−2; augmented by x at the l-th

place, and M̃(dx) = C(x)M(dx). This ends our derivation of the Euler–Lagrange
equations for any minimizer Ψ of (1.24).

This description of C and M is rather implicit and involved, therefore we cannot
offer any simple criterion for the uniqueness of the minimizers of (1.24). Also, the
question of continuity of the tilting functions A, B and C is open.

Since I + γS + βM is convex, it follows that any admissible trajectory setting Ψ
satisfying (4.9)–(4.15) is a minimizer of (1.24).

5. Proof of Proposition 1.5

We proceed analogously to Sections 2 and 3, and thus we start with part (2), i.e.,
with verifying (1.34). We use the discretization argument from Section 2.1 again.
We now provide the definition of a transmission setting, the analogue of Defini-
tion 2.1 of a standard setting with no reference to users receiving given numbers of
incoming hops.

Definition 5.1. A transmission setting is a collection of measures

Σ =
(

Σ = (νk)kmax

k=1 , ((ν
δ
k)kmax

k=1 )δ∈B, ((ν
δ,λ
k )kmax

k=1 )δ∈B,λ>0, (µ
δ,λ)δ∈B,λ>0

)
(5.1)

such that for any δ, δ′ ∈ B, λ > 0, k ∈ [kmax] and s, s0, . . . , sk−1 = 1, . . . , δ−d,
respectively, νk ∈M(W k), and parts (1), (2), (3) and (4) of Definition 2.1 hold.

Recall that Definition 5.1 implies parts (A), (B), (C) and (D) of Remark 2.2.
Further, it is easy to see that for any transmission setting Σ, Σ is an asymptotic
routeing strategy.

The following lemma describes the combinatorics of the choices of message tra-
jectories in the system. We recall the empirical measures (Rλ,k(s))k∈[kmax] from
(1.5).

Lemma 5.2. Let Σ be a transmission setting. For δ ∈ B and λ > 0 let

Kδ,λ(Σ) =
{
s ∈ Skmax

(Xλ) : Rδλ,k(s) = νδ,λk ∀k = 1, . . . , kmax

}
.

Then we have #Kδ,λ(Σ) = N1
δ,λ(Σ)×N4

δ,λ(Σ), where N1
δ,λ(Σ) equals N1

δ,λ(Ψ) from

(2.8) for any standard setting Ψ containing Σ, and

N4
δ,λ(Σ) =

δ−d∏
j=1

(λµδ,λ(W δ
j ))λ

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

j ).

Proof : We proceed in two steps by counting first the trajectories, registering only
the partition sets W δ

i that they travel through, second, the choices of the relays
for each hop in each partition set. Since every choice in the two steps can be
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freely combined with the other one, the product of the two cardinalities is equal to
the number of all trajectory configurations with the prescribed coarsened empirical
measures.

(A) Number of the transmitters of trajectories passing through given sequences
of δ-subcubes. This is equal to the corresponding quantity in the proof of
Lemma 2.6, hence it equals N1

δ,λ(Σ).

(B) Number of assignments of the hops to the relays. For each i = 1, . . . , δ−d,

there are λ
∑kmax

k=1

∑k−1
l=1 πlνk(W δ

i ) incoming hops arriving to the relays in W δ
i

in total. Each incoming hop arriving at W δ
i can choose any of the λµδ,λ(W δ

i )
users as the corresponding relay. Such choices between different hops in W δ

i

are independent, moreover all the choices in W δ
i are independent from all the

choices in W δ
j for j 6= i. It follows that the number of assignments equals

N4
δ,λ(Σ).

We also see that all the choices in the two parts are independent of each other,
i.e., they can be freely combined with each other and yield different combinations.
Hence, we arrived at the assertion. �

Using the arguments of the proof of Proposition 3.1, the next lemma immediately
follows.

Lemma 5.3. Let Σ be a transmission setting. Then

lim
δ↓0

lim
λ→∞

1

λ
log

#Kδ,λ(Σ)

N0
δ,λ(Σ)

= −J(Σ) ∈ (−∞,∞], (5.2)

where N0
δ,λ(Σ) equals N0

δ,λ(Ψ) from (3.2) for any standard setting Ψ containing Σ.

Moreover, if the r.h.s. of (5.2) is finite, then

lim
δ↓0

lim
λ→∞

1

λ log λ
log #Kδ,λ(Σ) = M(W ) =

kmax∑
k=1

(k − 1)νk(W ).

Now, the identity in (1.34) follows from the proof of Theorem 1.2, using trans-
mission settings instead of standard settings and replacing Proposition 3.1 by our
Lemma 5.3. There is one more major change in the proof. Indeed, instead of the
compactness of {Ψ: Ψ adm. trajectory setting, M(Ψ) ≤ y} for all y ≥ 0 in Sec-
tion 3.4 and the fact that any level set of I + γS + βM is contained in a larger level
set of M, one shall use the following argument. Using that S is continuous on the
set of asymptotic routeing strategies, and that J is lower semicontinuous, bounded
from below and it has compact level sets Dembo and Zeitouni (1998, Section 6.2),
it follows that each level set of J + γS is included in a larger level set of S. Now,
for all y ∈ R, the set {Σ: Σ asymptotic routeing strategy, S(Σ) ≤ y} is compact,
because it is closed and contained in the set{

Σ: Σ asymptotic routeing strategy,

kmax∑
k=1

kνk(W k) ≤ y′
}

for all sufficiently large y′ ∈ R, and such sets are compact by Prohorov’s theorem.
These together allow us to conclude (1.34).

From this, parts (1) and (4) of Proposition 1.5 can be derived analogously to
how Theorem 1.4 was derived from Theorem 1.2 in Section 3.5. The additional
fact that the rate function J + µ(W ) log kmax has compact level sets holds because
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relative entropies with respect to fixed reference measures have compact level sets
Dembo and Zeitouni (1998, Section 6.2).

Lastly, we verify (3), i.e., we prove that (1.35) is the unique minimizer of (1.34).
The fact that the set of minimizers of the variational formula on the right-hand
side of (1.34) is non-empty, compact and convex follows similarly to Lemma 4.1,
again by Prohorov’s theorem and the compactness of the sets

{Σ: Σ asymptotic routeing strategy,S(Ψ) ≤ y},

y > 0. Further, an argument analogous to Lemmas 4.2 and 4.3 shows that for all
minimizers Σ = (νk)k∈[kmax], we have that νk � µ⊗k � νk and dνk

dµ⊗k
is bounded

away from zero, for all k ∈ [kmax]. Deriving the Euler–Lagrange equations similarly
to Section 4.2, it follows that (1.35)–(1.36) hold for any minimizer Σ = (νk)k∈[kmax]

of (1.34). This also implies that the minimizer Σ is unique. Thus, we conclude
Proposition 1.5. �

Appendix A. Representations of the entropy term

We defined the entropy term Ψ 7→ I(Ψ) via the formula (1.23), which we inter-
preted in Section 1.8.2. It is easy to see that (1.23) is equivalent to the representa-
tion in (4.1), which we used for analytical investigations. Now we show that (1.23)
is equivalent to (3.3), which arises from the combinatorics in Section 3.1.

Recall that for k ∈ N and ξ, η ∈ M(W k), we have HWk(ξ|η) = HWk(ξ|η) −
ξ(W k) + η(W k). Further, for an admissible trajectory setting Ψ = ((νk)k∈[kmax],

(µm)m∈N0), recall the measure M =
∑kmax

k=1

∑k−1
l=1 πlνk =

∑∞
m=0mµm. Starting

from the definition of I(·), in (1.23), we compute

I(Ψ) =

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
+

∞∑
m=0

HW (µm | µcm)

+ µ(W )
(

1−
kmax∑
k=1

M(W )k−1
)
− 1

e

=

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
−
kmax∑
k=1

νk(W k) + µ(W )

kmax∑
k=1

M(W )k−1

+

∞∑
m=0

HW (µm | µcm) + µ(W )
(

1−
kmax∑
k=1

M(W )k−1
)
− 1

e

=

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
+

∞∑
m=0

HW (µm | µcm)− 1

e
,

where we used (1.44), and the fact that
∑kmax

k=1 νk(W k) = µ(W ) by (i) in (1.19). By
the definition of the measure M , it suffices to show that

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
=

kmax∑
k=1

HWk(νk|µ⊗k)−HW (M |µ). (A.1)
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Clearly, if any of the sides of (A.1) is infinite, then so is the other side. Else, we
verify (A.1) as follows

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
=

kmax∑
k=1

∫
Wk

dνk(x0, . . . , xk−1)
[

log
dνk

dµ⊗k
(x0, . . . , xk−1)

− log
d(µ⊗M⊗(k−1))

dµ⊗k
(x0, . . . , xk−1)

]
=

kmax∑
k=1

∫
Wk

dνk(x0, . . . , xk−1)
[

log
dνk

dµ⊗k
(x0, . . . , xk−1)− log

( k−1∏
l=1

dM

dµ
(xl)

)]
=

kmax∑
k=1

∫
Wk

dνk(x0, . . . , xk−1) log
dνk

dµ⊗k
(x0, . . . , xk−1)

−
kmax∑
k=1

k−1∑
l=1

∫
W

πlνk(dxl) log
dM

dµ
(xl)

=

kmax∑
k=1

HWk(νk|µ⊗k)−HW (M |µ).
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