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Abstract. We prove a Berry–Esseen type inequality for approximating expecta-
tions of sufficiently smooth functions f , like f = | · |3, with respect to standardized
convolutions of laws P1, . . . , Pn on the real line by corresponding expectations based
on symmetric two-point laws Q1, . . . , Qn isoscedastic to the Pi. Equality is attained
for every possible constellation of the Lipschitz constant ‖f ′′‖L and the variances
and the third centred absolute moments of the Pi. The error bound is strictly
smaller than 1

6 times the Lyapunov ratio times ‖f ′′‖L, and tends to zero also if n
is fixed and the third standardized absolute moments of the Pi tend to one.

In the homoscedastic case of equal variances of the Pi, and hence in particular
in the i.i.d. case, the approximating law is a standardized symmetric binomial one.

The inequality is strong enough to yield for some constellations, in particular in
the i.i.d. case with n large enough given the standardized third absolute moment
of P1, an improvement of a more classical and already optimal Berry–Esseen type
inequality of Tyurin (2009).

Auxiliary results presented include some inequalities either purely analytical or
concerning Zolotarev’s ζ-metrics, and some binomial moment calculations.
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1. Introduction and main results

1.1. Introduction. In statistics and various other applications of probability theory,
inconvenient or even intractable distributions are often approximated by relying
on some limit theorem. The most popular among such approximations is the nor-
mal approximation to distributions of sums of a large number n of independent or
weakly dependent random variables with appropriate mean and variance, which is
based on the central limit theorem. However, to use effectively any approximation
in practice, one needs an explicit and convenient estimate of its accuracy, and such
an estimate may be not as sharp as one might wish. For the purpose of improving
the error-bounds one can introduce further terms into the approximating law (lead-
ing to the so-called asymptotic expansions) and reach arbitrarily high accuracy, but
this requires some additional assumptions on the original distribution. For example,
in the case of approximating distributions of sums of independent random variables
these conditions are: (i) finiteness of the higher-order moments of the random sum-
mands and (ii) some kind of smoothness either of the distributions of the random
summands or of the metric under consideration, as in Osipov’s theorem presented
e.g. in Petrov (1995, pp. 172–173), Senatov (2013, 2015) and further references
therein for smooth distributions and "nonsmooth" (weighted) Kolmogorov metrics,
and in Butzer et al. (1975), Barbour (1986, Theorem on p. 294), Goldstein (2010),
Tyurin (2011, 2012) for possibly nonsmooth distributions but “smooth” Zolotarev
type metrics; see also the references given on pp. 494 near the end of this section 1.1.

On the other hand, from the general theory of summation of independent random
variables it follows that approximation by infinitely divisible distributions may be
more effective even without any moment conditions due to the better error-bound,
which is, in the i.i.d. case and for the Kolmogorov metric, of the order O(n−2/3),
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see e.g. Arak (1981a,b, 1982), Arak and Zaitsev (1988), rather than O(n−1/2) as
usual in the CLT, but such an approximation may be inconvenient, because the
sequence of penultimate approximating infinitely divisible distributions that guar-
antees the rate O(n−2/3) may be very complicated and usually is not given in an
explicit form. Let us recall that an approximation depending on the sample size
n not only through location-scale parameters and, in the present context, usually
being merely asymptotically normal itself, is sometimes called a penultimate ap-
proximation, a terminology apparently first introduced in extreme value theory by
Fisher and Tippett (1928). A recent example of an explicit and convenient penul-
timate approximation even in the total variation metric, but only for distributions
with an absolutely continuous part and finite fourth-order moments, can be found
in Boutsikas (2015), where an infinitely divisible shifted-gamma approximation with
matching first three moments was proved to have the rate O(n−1).

In this paper, as an alternative to the normal approximation, we propose and
evaluate another penultimate approximation only assuming finiteness of the third-
order moments. Our approximation is in the i.i.d. case of the same rate O(n−1/2)
as the normal approximation, but its error bound depends more favourably on the
standardized third absolute moments of the convolved distributions, and can in
fact tend to zero even for n fixed. As the approximating distribution we take the
n-fold convolution of the symmetric two-point laws with the same variances as the
original laws, which is asymptotically normal itself. Thus, in a terminology used
for example in Ledoux and Talagrand (2011, chapter 4), our approximations are
laws of Rademacher averages rather than Gaussian laws.

As a corollary, for the approximation of a standardized characteristic function
by its Taylor polynomial of degree 2, a new explicit and asymptotically exact error-
bound given the absolute third-order moment is obtained in (1.18) below.

Moreover, trivially using the triangle inequality together with the asymptotic
normality of the penultimate distribution, which is valid to a higher order due to
vanishing third cumulants and due to the smoothness of the metric under consider-
ation, we obtain a sharp upper bound for the accuracy of the normal approximation
which improves an already optimal estimate due to Tyurin (2009a,b, 2011) for some
constellations (see Theorems 1.2, 1.15 below). This improvement is possible due
to a more favourable dependence of our estimate on the moments of the convolved
distributions.

First attempts at a more effective use of the information on the first three mo-
ments of the convolved distributions in the estimates of the accuracy of the normal
approximation for the Kolmogorov metric were undertaken by Ikeda (1959) and
Zahl (1963), followed by Prawitz (1975) and Bentkus (1994) (for a detailed re-
view see Shevtsova (2016, Sections 2.1.1 and 2.4)). The problem of optimal use of
moment-type information in the estimates of the accuracy of the normal approxi-
mation was posed in Shevtsova (2012a,b,c, 2013) where it was called the problem
of optimization of the structure of convergence rate estimates and where this prob-
lem was partially solved for estimates of the Kolmogorov and the weighted uniform
metrics.

To be more precise, we should introduce some notation. Let Prob(R) stand for
the set of all probability distributions on the real line, Probs(R) := {P ∈ Prob(R) :
νs(P ) :=

∫
|x|s dP (x) < ∞} for s > 0, σ2(P ) := inf{

∫
(x − a)2 dP (x) : a ∈ R}

for P ∈ Prob(R), P3 := {P ∈ Prob3(R) : σ(P ) > 0}, µk(P ) :=
∫
xk dP (x) for
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P ∈ Probk(R) with k ∈ N, µ(·) := µ1(·). We write Nσ for the centred normal law
on R with standard deviation σ ∈ [0,∞[, and N := N1 for the standard normal law
with distribution function Φ. The one-point law concentrated at a ∈ R is denoted
by δa. For n ∈ N = {1, 2, . . .}, let Bn, 12

:= (1
2 (δ0 + δ1))∗n denote the binomial

law with Bn, 12 ({k}) = bn, 12 (k) :=
(
n
k

)
2−n for k ∈ N0 := N ∪ {0}. If P ∈ P3,

then we let P̃ denote its standardization, that is, the image of P under the map
x 7→ (x− µ(P ))/σ(P ), and

%(P ) := ν3

(
P̃
)

=

∫ ∣∣∣∣x− µ(P )

σ(P )

∣∣∣∣3 dP (x) = P̃ | · |3 = P

∣∣∣∣ · − µ(P )

σ(P )

∣∣∣∣3
its standardized third absolute moment; of course then %(P ) ≥ 1, and %(P ) = 1 iff
P̃ = 1

2 (δ−1 + δ1). Further, let P̃3 := {P ∈ P3 : µ(P ) = 0, σ(P ) = 1} = {P̃ : P ∈
P3}. The tilde notation just introduced should not lead to confusion with a more
standard one, used also here, for indicating equality of laws of random variables,
as in X ∼ Y , or for specifying the law of a random variable, as in X ∼ P . For
P, P1, . . . , Pn ∈ Prob(R) let further ∗ni=1 Pi denote the convolution of the laws
P1, . . . , Pn, and P ∗n the nth convolution power of P .

With the above notation, the problem of optimization of the structure of as-
ymptotic convergence rate estimates stated in Shevtsova (2012a,c,b, 2013) may be
formulated as follows: Find the pointwise greatest lower bound to all functions
g : [1,∞[→ R+ such that we have

∆n(P ) := sup
x∈R

∣∣∣P̃ ∗n(]−∞, x]
)
− Φ(x)

∣∣∣ ≤ g(%(P ))√
n

+εn(P ) for P ∈ P3 and n ∈ N

(1.1)
for some remainder term εn(P ) ≥ 0, possibly depending on g, satisfying

lim
`→0

ε(`)

`
= 0 with ε(`) := sup

P∈P3,n∈N : %(P )=`
√
n

εn(P ) for ` > 0, (1.2)

that is, εn(P ) = o(%(P )/
√
n ) for %(P )/

√
n → 0 with not only n but also %(P )

allowed to vary. It is easy to see that for any g satisfying (1.1) and (1.2) with some
εn(P ) we have g ≥ g∗, where
g∗(%) := lim

`→0
sup

{√
n∆n(P ) : n ∈ N, P ∈ P3, %(P ) = % ≤ `

√
n
}

for % ∈ [1,∞[ ;

moreover, for g = g∗ and, say, εn(P ) := max
{

0,∆n(P ) − g(%(P ))/
√
n
}
, we

have (1.1) and

lim sup
`→0

sup
n∈N,P∈P3 : %(P )=%=`

√
n

√
n εn(P ) = 0 for % ∈ [1,∞[, (1.3)

which is weaker than (1.2) since %(P ) is fixed in the supremum in (1.3). However, in
some cases, it is possible to construct εn(P ) satisfying the stronger condition (1.2)
such that inequality (1.1) holds with g = g∗. In what follows, we call g∗ the optimal
function.

The problem of explicitly determining the optimal function g∗ is very compli-
cated. Historically the first investigations were done for analogous problems with
either the functions εn ≥ 0 in (1.1) only required to satisfy a version of (1.2)
pointwise rather than uniformly in P , namely

sup
P∈P3

lim
n→∞

√
n εn(P ) = 0 (1.4)



Berry–Esseen for integrals of smooth functions 491

(which is even weaker than (1.3)), solved by Esseen (1945, 1956) and thus yielding a
lower bound for g∗, or the functions g satisfying (1.1) restricted to be linear (without
constant term), where Chistyakov (2002a,b, 2003), significantly sharpening Esseen’s
(1956) result, eventually found the optimal one. More precisely, restricting now
attention to P ∈ P̃3 rather than P ∈ P3 for notational convenience and without
loss of generality, from Esseen’s (1945) short Edgeworth expansion

P̃ ∗n
(
]−∞, x]

)
= Φ(x) + (1− x2)e−

x2

2 · µ3(P )

6
√

2πn
+ ψn(x)e−

x2

2 · h(P )√
2πn

+ o

(
1√
n

)
valid as n → ∞ uniformly in x ∈ R for every fixed P ∈ P̃3, where h(P ) is the
span in case of a lattice distribution P and h(P ) = 0 otherwise, and ψn is a certain
(h(P )/

√
n )-periodic [− 1

2 ,
1
2 ]-valued function, Esseen (1956) first deduced that

lim
n→∞

√
n∆n(P ) =

|µ3(P )|+ 3h(P )

6
√

2π
for P ∈ P̃3. (1.5)

Second, he considered and solved an extremal problem yielding an exact upper
bound of the R.H.S. of (1.5) in terms of %(P ) only, namely, he proved that

sup
P∈P̃3

µ3(P ) + 3h(P )

%(P )
=
√

10 + 3, (1.6)

with equality attained iff P = P%E , where for % ∈ [1,∞[ here and below, P% ∈ P̃3

denotes the two-point distribution uniquely defined by the conditions µ3(P%) ≥ 0
and ν3(P%) = %, namely

P%

({
−
√

p
q

})
= q := 1− p,

P%

({√
q
p

})
= p = p% :=

1

2
− 1

2

√
%

2

√
%2 + 8 − %2

2
− 1 ,

(1.7)

and having the span and the third moment

h% := h(P%) = 1/
√
pq = 2

√
2
/√

%2 − %
√
%2 + 8 + 4 ,

B(%) := µ3(P%) = (q − p)/√pq =

√
%2/2 + %

√
%2 + 8 /2− 2 , (1.8)

and where
%E :=

√
20(
√

10 − 3)/3 = 1.0401 . . .

corresponds to pE := p%E = (4 −
√

10 )/2 = 0.4188 . . . . Hence, (1.5) specialized to
P = P% yields the lower bound

g∗(%) ≥ B(%) + 3h%

6
√

2π
=

1

6
√

2π
·

2
√
%
√
%2 + 8 − %2 − 2 + 6

√
2√

%2 − %
√
%2 + 8 + 4

=: g0(%), % ≥ 1,

while combination of (1.5) and (1.6) allowed Esseen to find the so-called asymptot-
ically best constant

CE := sup
P∈P3

lim
n→∞

√
n∆n(P )

%(P )
=

√
10 + 3

6
√

2π
= 0.4097 . . . (1.9)

and consequently the necessary condition c ≥ CE for (1.1) to hold with the linear
function g(%) = c%. Let us remark in passing that Dinev and Mattner (2013) present
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Figure 1.1. Plots of the functions g0(%)/% (dashdot line),
g1(%)/% = CE = (

√
10 + 3)/(6

√
2π ) = 0.4097 . . . (solid line), and

g2(%)/% (dashed line) for % ∈ [1, 1.5] (left) and for % ∈ [1.5, 5]
(right).

√
2/π = 0.7978 . . . as the asymptotically best constant analogous to CE when

arbitrary intervals replace the unbounded ones ]−∞, x] in the definition of ∆n(P )
in (1.1).

We observe that (1.1) holds with g = g0 and εn(P ) satisfying the weakest condi-
tion (1.4). A plot of the normalized function g0(%)/% is given on Fig. 1.1. About 40
years after Esseen’s (1956) work, Chistyakov (1999, 2002a,b, 2003) finally managed
to find in particular the value of the asymptotically exact constant

lim
`→0

sup

{√
n∆n(P )

%(P )
: n ∈ N, P ∈ P3, %(P ) ≤ `

√
n

}
= CE (1.10)

(we are not aware of any really convincing names for the “Esseen constant” in (1.9)
and the “Chistyakov constant” in (1.10); the ones used above are at least compat-
ible with some earlier literature such as Shevtsova (2011)) and to prove that (1.1)
and (1.2) hold true with

g(%) = CE · % =: g1(%) for % ≥ 1

and ε(`) = O
(
`40/39| log `|7/6

)
(see Chistyakov, 2002a,b, 2003). We also remark

here that Chistyakov treats the more general non-i.i.d. case and that the results
cited above represent the corresponding specializations to the i.i.d. case. In the
more recent paper Shevtsova (2012a, Corollary 4.18 on p. 303), Chistyakov’s upper
bound for ε(`) was improved to ε(`) ≤ 4`4/3 in the general case and ε(`) ≤ 3`2 in
the i.i.d. case.

Discarding now the restriction to linear functions, we note that Chistyakov’s
result reported above yields g∗(%) ≤ g1(%) for every % ∈ [1,∞[, with equality in case
of % = %E, and that a result of Hipp and Mattner (2008) yields g∗(1) = 1/

√
2π =

0.3989 . . . < g1(1). The recent papers Shevtsova (2012b) and Shevtsova (2012a,
Theorem4.13, Corollary 4.17) succeeded in particular in proving that in fact the
equality g∗ = g0 holds on an interval containing the previously treated points 1 and
%E, namely,

g∗(%) = g0(%) for 1 ≤ % ≤ %0 := 31/4(4−
√

3 )/
√

6 = 1.2185 . . . ,

g∗(%) ≤ g2(%) for all % ≥ 1
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with

g2(%) :=
2%

3
√

2π
+

√
2
√

3 − 3

6π
for % ≥ 1,

g2(%0) = g0(%0), and g2 is asymptotically optimal for %→∞ in the sense of

lim
%→∞

g∗(%)

g2(%)
= 1.

Observe that g2(%) < CE · % for % > 2
3

√
2/
√

3 − 1 (
√

10 + 1) = 1.0914 . . . , in
particular, for % ≥ %0, and that each of the functions g1 and g2 is tangent to g∗
at the points %E and %0, respectively. Plots of the normalized functions gk(%)/%,
k = 0, 1, 2, are given in Fig. 1.1. We also note that it follows from Schulz (2016,
p. 16) that the equality g∗ = g0 cannot hold on the whole ray [1,∞[ even in the
binomial case, namely,

g∗(%) > g0(%) for % > 3.8021 . . . ,

which corresponds to p% < p∗, where p∗ = 0.05822 . . . is the unique root of the
equation 7− 130p+ 165p2 + 50p3 − 23p4 = 0 on the interval 0 < p < 1/3.

In Shevtsova (2012b) and Shevtsova (2012a, Theorem 4.13 on p. 298 and Corol-
lary 4.17 on p. 302) there have also been obtained explicit uniform upper bounds for
the remainder term εn(P ) in (1.1) and (1.2) with the continuous function g defined
by g(%) := g0(%) for % ∈ [1, %0] and g(%) := g2(%) for % > %0, namely, ε(`) ≤ 2`3/2

for all ` > 0.
Moreover, in the same papers an extension of (1.1) to the non-i.i.d. case was

obtained in the form

sup
n∈N, P1,...,Pn∈P3

sup
x∈R

∣∣∣∣ ñ∗i=1
Pi
(
]−∞, x]

)
− Φ(x)

∣∣∣∣ ≤ τ · g(`/τ) + 3`7/6

with the same function g as defined in the preceding paragraph for the case of co-
inciding P1, . . . , Pn, where the supremum is taken over all n and all centred distribu-
tions P1, . . . , Pn ∈ P3 such that

∑n
i=1 ν3(Pi)/(

∑n
i=1 σ

2
i )3/2 = `,∑n

i=1 σ
3
i /(
∑n
i=1 σ

2
i )3/2 = τ , σ2

i := σ2(Pi) for i ∈ {1, . . . , n}. Moreover, there has
also been proved a sharpened upper bound for εn(P ) in (1.1) and (1.2) with the
linear function g(%) = CE · %, namely, ε(`) ≤ 3`2 in the i.i.d. case and ε(`) ≤ 4`4/3

in the non-i.i.d. case. These bounds improve the earlier results of Prawitz (1975)
and Bentkus (1994).

Recently Schulz (2016, Theorem 1 on p. 1) proved that the remainder term εn(P )
in (1.1) with g = g0 can be omitted in case of two-point distribution P = P% for
1 ≤ % ≤ 5

√
2 /6 = 1.1785 . . . (which corresponds to p% ∈ [1/3, 1/2]), generalizing

the earlier result by Hipp and Mattner (2008) originally obtained for % = 1. Also,
in Schulz (2016, Theorem 1 on p. 1) it is proved that ∆n(P%) ≤ CE · % for every
% ≥ 1 and n ∈ N.

The present paper can in its main parts be regarded as a transfer and then
improvement of some of the above results from the Kolmogorov to the appropriate
Zolotarev metric, namely ζ3.

For the related topic of asymptotic expansions of expectations of smooth func-
tions in the CLT, where rigorous results go back at least to Cramér (1928, p. 45,
(41a)) in the case of characteristic functions, and to von Bahr (1965) in the case of
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moments and absolute moments, we may refer in chronological order to the surveys
in Bhattacharya and Rao (2010, section 25, that section apparently unchanged from
its earlier 1986 edition), Ghosh (1994, Chapter 2), and Petrov (1995, pp. 196–197),
and to the more recent papers Borisov and Skilyagina (1996), Borisov et al. (1998),
Jiao (2012). From the vast literature on asymptotic expansions of distribution func-
tions, and thus expectations of certain non-smooth functions, for which one may
also consult the monographs just cited, let us mention only the recent paper Angst
and Poly (2017).

This paper is organized as follows. Subsections 1.2, 1.3, and 1.4 present exact
formulations of the main results with discussion. Sections 5 and 6 contain the
proofs of the main results. The latter are based on Hoeffding’s (1955) and Tyurin’s
(2009a,b, 2011) results for extremal values of linear and quasi-convex functionals
under given moment conditions treated in a novel way in section 3, the previously
obtained bound on the third-order moment given the absolute third-order mo-
ment Shevtsova (2014) as well as a new exact absolute third moment recentering
inequality presented in Lemma 2.5, various properties of ζ-metrics, in particular in
connection with the s-convex ordering, see e.g. Denuit et al. (1998), as treated in
section 4, and the properties of the Krawtchouk polynomials, see e.g. MacWilliams
and Sloane (1977), associated to the symmetric binomial law used in section 6.

The main results of this paper have been announced without proofs in Mattner
and Shevtsova (2017).

1.2. Further notation, properties of the function B. Terms like “positive”, “increas-
ing”, and “convex” are understood in the wide sense, adding “strictly” when appro-
priate. Also, “interval” may refer to any convex subset of R, possibly degenerated
to one point or even to the empty set. We use the de Finetti indicator notation,
(statement) := 1 if “statement” is true, (statement) := 0 otherwise, for example
in (2.20) below.

If I ⊆ R is an interval and E is a Banach space over R or C, and with its norm
denoted by | · | since the most interesting cases here are E = R and E = C, then
we use the standard notation C(I, E) for the continuous E-valued functions on I,
Cm(I, E) for the ones m ∈ N0 times continuously differentiable, and Cm,α(I, E) for
those f ∈ Cm(I, E) whose m-th derivative f (m) has a finite Hölder constant

‖f (m)‖L,α := sup
x, y∈I, x6=y

|f (m)(x)− f (m)(y)|
|x− y|α

(1.11)

of order α ∈ ]0, 1]. It is well known that for E finite-dimensional, and also more
generally as discussed in Diestel and Uhl Jr. (1977), the condition f ∈ Cm,1(I, E)
is equivalent to f (m) being absolutely continuous with its then Lebesgue-almost
everywhere existing derivative f (m+1) satisfying

‖f (m)‖L := ‖f (m)‖L,1 = ‖f (m+1)‖∞
:= inf{M ∈ R : |fm+1| ≤M Lebesgue-almost everywhere on I}.

Recalling the definition of B(%) given in (1.8) for % ∈ [1,∞[, let us also put

A(%) := %−1B(%) =

√
1
2

√
1 + 8%−2 + 1

2 − 2%−2 for % ∈ [1,∞[. (1.12)
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The notation A here is as used in Shevtsova (2014, pp. 194, 208), so let us note
that there is an inconsequential typo in the formula for A′(%) in Shevtsova (2014,
p. 208), where %3/2 should be %3/2.

Lemma 1.1. The functions A and B are continuous, strictly concave and increas-
ing, with A(1) = B(1) = 0, lim%→1A(%)/

√
%− 1 =

√
8/3 , and lim%→∞A(%) = 1.

In particular, we have 0 < A(%) < 1 and %− 1 < B(%) < % for % ∈ ]1,∞[.

Proof : We have
(
A2(%)

)′
= 4%−3(1−(1+8%−2)−1/2) strictly decreasing and positive

for % ∈ [1,∞[, hence A2 strictly concave and increasing, thus A =
√
A2 strictly

concave and increasing as well, and also lim%→1A
2(%)/(% − 1) =

(
A2
)′

(1) = 8/3.
B is obviously strictly increasing and, by Shevtsova (2014, p. 209), satisfies B′′ < 0
and is hence strictly concave; hence B(%)/(%−1) = (B(%)−B(1))/(%−1) is strictly
decreasing and hence > 1. �

1.3. The main result (Rademacher average approximation) and some consequences.
Our main result is:

Theorem 1.2. Let n ∈ N, P1, . . . , Pn ∈ P3, E be a Banach space, and f ∈
C2,1(R, E). Then we have∣∣∣∣∣ ñ∗i=1

Pi f −
ñ∗
i=1

Qi f

∣∣∣∣∣ ≤ ‖f ′′‖L
6

n∑
i=1

σ3
i

σ3
B(%i) (1.13)

with σi := σ(Pi), Qi := 1
2 (δ−σi + δσi), σ :=

(∑n
i=1 σ

2
i

)1/2
, and %i := %(Pi). If each

Pi is a two-point law and if the centred third moments of the Pi are all ≥ 0 or all
≤ 0, and if also f(x) = cx3 for x ∈ R, with a constant c ∈ E, then equality holds
in (1.13).

The proof of Theorem 1.2 is given in section 5 on p. 519.
Clearly, in the homoscedastic case of σ1 = . . . = σn, the approximating law
∗̃ni=1Qi in Theorem 1.2 is just the standardized symmetric binomial law B̃n, 12 .
And in the i.i.d. case of P1 = . . . = Pn =: P , inequality (1.13) further simplifies to∣∣∣P̃ ∗nf − B̃n, 12 f

∣∣∣ ≤ B(%(P ))

6
√
n
‖f ′′‖L, (1.14)

with equality whenever P is a two-point law and f(x) = cx3.
Here are three examples of applications of Theorem 1.2, of which the first one,

however, is a mock one.

Example 1.3. Theorem 1.2 formally yields Shevtsova (2014, Theorem 6), namely

max
P∈P3 : %(P )=%

∣∣∣∣∫ x3 dP̃ (x)

∣∣∣∣ = B(%) for % ∈ [1,∞[ (1.15)

with equality attained for two-point laws, by applying (1.14) with E = R, n = 1,
and f(x) := x3, since for P ∈ P3, we have∣∣∣∣∫ x3 dP̃ (x)

∣∣∣∣ =
∣∣∣P̃ f − B̃1, 12

f
∣∣∣

and ‖f ′′‖L = 6. However, (1.15) is used in Step 6 of our proof of Theorem 1.2.
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Example 1.4. In Theorem 1.2, let E = C and f(x) = eitx for some t ∈ R. Then,
writing here ϕ for the characteristic function of ∗̃ni=1 Pi, we get∣∣∣∣∣ϕ(t)−

n∏
i=1

cos

(
σit

σ

)∣∣∣∣∣ ≤ |t|3

6

n∑
i=1

σ3
iB(%i)

σ3
, (1.16)

since here ‖f ′′‖L = supx∈R |f ′′′(x)| = |t|3. In (1.16), we have asymptotic equality
for t → 0 if all the Pi are two-point laws with equi-signed third centred moments,
by equality in (1.13) for f = (·)3 and by a Taylor expansion inside the modulus on
the left hand side of (1.16).

Moreover, using

0 ≤
n∏
i=1

cos ti − 1 +
1

2

n∑
i=1

t2i ≤
1

24

n∑
i=1

t4i +
1

4

∑
i<j

t2i t
2
j for t ∈ Rn, (1.17)

which follows by rewriting the central term in (1.17) with the help of i.i.d.
Rademacher variables ξ1, . . . , ξn as

n∏
i=1

Eeitiξi − 1 +
1

2

n∑
i=1

t2iEξ2i = E
(

cos
( n∑
i=1

tiξi

)
− 1 +

1

2

( n∑
i=1

tiξi

)2)
and applying 0 ≤ cosx − 1 + 1

2x
2 ≤ 1

24x
4 inside the last expectation above, we

obtain from (1.16) the following estimate for the accuracy of the approximation of
ϕ by the first terms of its Taylor expansion:∣∣∣∣ϕ(t)− 1 +

t2

2

∣∣∣∣ ≤ |t|3

6

n∑
i=1

σ3
iB(%i)

σ3
+
t4

24

n∑
i=1

σ4
i

σ4
+
t4

4

∑
i<j

σ2
i σ

2
j

σ4
for t ∈ R.

In particular, with n = 1 we have∣∣∣∣EeitX − 1 +
t2

2

∣∣∣∣ ≤ A(%)
%|t|3

6
+
t4

24
(1.18)

for all t ∈ R and an arbitrary r.v. X with EX = 0, EX2 = 1, % := E|X|3 < ∞,
where the inequality turns into the asymptotic equality as t → 0 whenever X is
a two-point r.v. (more precisely, either X ∼ P% or −X ∼ P% with P% defined
in (1.7)).

Inequality (1.18) for small t improves the bound∣∣∣∣EeitX − 1 +
t2

2

∣∣∣∣ ≤ %|t|3

6
inf

0<λ<1/2
{λA(%) + q3(λ)}

obtained in Shevtsova (2014, Corollary 4), where

q3(λ) := sup
x>0

6

x3

∣∣∣∣eix − 1− ix− (ix)2

2
− λ (ix)3

6

∣∣∣∣ ≥ 1− λ for 0 ≤ λ ≤ 1/2,

with the final inequality following from considering x ↓ 0. Indeed, for every % ≥ 1,
we have A(%) < 1 by Lemma 1.1 and hence get

inf
0<λ<1/2

{λA(%) + q3(λ)} ≥ inf
0<λ<1/2

{λA(%) + 1− λ} =
A(%) + 1

2
> A(%).
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Example 1.5. Applying Theorem 1.2 to E = R and f = | · |3 in the i.i.d. case yields:
For i.i.d. Xi ∼ P ∈ P3, we have∣∣∣∣E∣∣∣∑̃n

i=1Xi

∣∣∣3 − B̃n, 12 | · |
3

∣∣∣∣ ≤ B(%(P ))√
n

, (1.19)

by ‖f ′′‖L = 6, where by formula (6.4) stated and proved below, we have explicitly

B̃n, 12 | · |
3 =


(

2n
1
2 + n−

1
2 − n− 3

2

)
b
n, 12

(bn2 c) if n is odd,

2n
1
2 b

n, 12
(n2 ) if n is even.

Let us note that B̃n, 12 | · |
3 can not be replaced by any other function of n without

invalidating (1.19), since the R.H.S. of (1.19) is zero if the Xi are symmetrically
Bernoulli-distributed; an analogous remark applies to every application of Theo-
rem 1.2 in the i.i.d. case.

In Theorem 1.8 below, we rewrite Theorem 1.2 in terms of Zolotarev’s distance
ζ3. On the one hand this actually prepares for the proof of Theorem 1.2. On
the other hand it allows, by simply using the triangle inequality combined with
Theorem 1.10 below, to obtain the quite sharp normal approximation result in
Theorem 1.11. Since in turn the proof of Theorem 1.10 uses ζ4, let us recall here
the definition and some basic and well-known properties of ζs in general. For
more properties of Zolotarev distances needed in the present paper, including new
results as well as apparently previously unpublished detailed proofs of some “well-
known” results, we refer to section 4 below. Standard references on ζ-distances
include the monographs Zolotarev (1997, Chapter 1), Rachev (1991), Senatov (1998,
Chapter 2).

We will use the notation introduced around (1.11), here with I = E = R.

Definition 1.6 (ζ-distances). Let s > 0. With m := ds−1e ∈ N0 and α := s−m ∈
]0, 1], we put

Fs := {f ∈ Cm,α(R,R) : ‖f (m)‖L,α ≤ 1}, F∞s := {f ∈ Fs : f bounded}.
For P,Q ∈ Prob(R) then

ζs(P,Q) := sup
f∈F∞s

|Pf −Qf | (1.20)

is called the Zolotarev distance of order s from P to Q, and one further defines a
weighted variation distance as

νs(P,Q) :=

∫
|x|s d|P −Q|(x),

which is also called the s-th absolute pseudomoment Zolotarev (1997, p. 67).

Let us note that in Zolotarev (1997, p. 44) and Senatov (1998, p. 100), our
F∞s is denoted by Fs, and that in these books our Fs is implicitly used without
any convenient notation. The latter may have led to some of the clearly existing
confusion in the literature. For example, one finds in several publications, usually
obscured by employing random variable notation, in effect the definition (1.20) with
Fs in place of F∞s , which makes sense, and then no difference by the apparently not
completely trivial Theorem 1.7(d) below, iff P,Q ∈ Probs(R). As a recent example
of such an unclear “definition” without assuming P,Q ∈ Probs(R), we can mention
Neininger and Sulzbach (2015, (8), the case of s = 1, µ = ν the standard Cauchy



498 L. Mattner and I. Shevtsova

law, once Y = X and once Y = −X, f the identity) where, however, the error is
immediately admitted.

Theorem 1.7 (Well-known facts about ζs). Let s = m+α be as in Definition 1.6.
(a) For P,Q ∈ Prob(R), the value of ζs(P,Q) does not change if in the definition

of Fs the functions f are assumed to be E-valued rather than R-valued, with E any
Banach space not degenerated to one point.

(b) On Prob(R), ζs is an extended metric, that is, a metric except that it may
also assume the value ∞.

(c) For P ∈ Prob(R) and Q ∈ Probs(R), we have the equivalence chain

ζs(P,Q) <∞ ⇔ P ∈ Probs(R) and µj(P ) = µj(Q) for j ∈ {1, . . . ,m}

⇔ P ∈ Probs(R) and ζs (P,Q) ≤ Γ(1 + α)

Γ(1 + s)
νs(P,Q). (1.21)

Hence, if c1, . . . , cm ∈ R are given, then ζs is a metric on the (possibly empty) set
{P ∈ Probs(R) : µj(P ) = cj for j ∈ {1, . . . ,m}}. In particular, ζ3 is a metric
on P̃3.

(d) Let P,Q ∈ Probs(R). Then we may omit the boundedness condition on f in
the definition (1.20), that is, we have

ζs(P,Q) = sup
f∈Fs

|Pf −Qf |, (1.22)

and we further have

|Pf −Qf | ≤ ‖f (m)‖L,α ζs(P,Q) if f ∈ Cm,α(R,R) and ζs(P,Q) <∞. (1.23)

References or proofs for Theorem 1.7 are given in section 4 on p. 513, together
with further facts about ζs. With the above preparations, we can state:

Theorem 1.8 (essentially Theorem 1.2 rewritten). Let n ∈ N and Pi, σi, Qi, σ, %i
for i ∈ {1, . . . , n} be as in Theorem 1.2. Then we have

ζ3

(
ñ∗
i=1

Pi ,
ñ∗
i=1

Qi

)
≤ 1

6σ3

n∑
i=1

σ3
iB(%i), (1.24)

with equality whenever each Pi is a two-point law and also the centred third moments
of the Pi are all ≥ 0 or all ≤ 0.

Indeed, if Theorem 1.2 is assumed to be true, then applying the definition of
ζ3 immediately yields inequality (1.24), and using also (1.22) from Theorem 1.7(d)
yields the accompanying equality statement. Conversely, if (1.24) is proved, then,
using (1.23), we get Theorem 1.2 in the case of E = R and except for the equality
statement.

Remark 1.9. Under the assumptions of Theorem 1.8, we have the equivalence

L.H.S.(1.24) = 0 ⇔ R.H.S.(1.24) = 0. (1.25)

Here the implication “⇐” of course follows trivially from (1.24). Conversely, if
we have L.H.S.(1.24) = 0, then we get ∗̃ni=1 Pi = ∗̃ni=1Qi and hence, assuming
from now on without loss of generality the Pi to be centred, and recalling that
σ(Pi) = σi = σ(Qi) for each i, we have

n∗
i=1

Pi =
n∗
i=1

Qi. (1.26)
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We now use some well-known elementary facts about cumulants, for which we may
refer to Hald (2000) and Mattner (1999, 2004). Cumulants are certain functions
κ` : Prob`(R) → R for ` ∈ N, most importantly κ1 = µ(·), κ2 = σ2(·), κ3(P ) =∫

(x−µ(P ))3 dP (x) for P ∈ Prob3(R), and κ4(P ) =
∫

(x−µ(P ))4 dP (x)− 3σ4(P )
for P ∈ Prob4(R), designed to enjoy the additivity

κ`(P ∗Q) = κ`(P ) + κ`(Q) for ` ∈ N and P,Q ∈ Prob`(R). (1.27)

Observing now that, for a centred P ∈ Prob4(R), we have

κ4(P ) =

∫
x4 dP (x)− 3σ4(P ) ≥

(∫
x2 dP (x)

)2

− 3σ4(P ) = −2σ4(P )

with equality throughout iff P = 1
2

(
δ−σ(P ) + δσ(P )

)
, by, say, Jensen’s inequality

with the strictly convex square function and by centredness of P , we get from
(1.26), using (1.27) with ` = 4 in the first step,

n∑
i=1

κ4(Pi) =

n∑
i=1

κ4(Qi) =

n∑
i=1

(
−2σ4(Qi)

)
=

n∑
i=1

(
−2σ4(Pi)

)
,

and thus Pi = Qi and hence %(Pi) = 1 for each i, and hence R.H.S.(1.24) = 0 due
to B(1) = 0.

Thus the error bound (1.24) in Theorem 1.8 enjoys the property (1.25) in anal-
ogy to classical refinements of the Berry–Esseen bound for normal approximations
to convolution products first obtained in the i.i.d. case, after a preliminary result
of Zolotarev (1965), by Paulauskas (1969), and then quickly generalized or sharp-
ened in publications up to 1973 by Sazonov (1972), Nagaev and Rotar’ (1973),
and Zolotarev (1973); reviews by Sazonov (1981, pp. 9, 68), Rotar’ (1982, §2),
Petrov (1995, pp. 190–191, subsections 5.10.16–5.10.18), and Zolotarev (1997, sec-
tion 6.5.1) point to further relevant works, including several ones by the authors
already mentioned here and by Ulyanov, in particular Ul’yanov (1976, 1979), to
which one can add, among others, the papers of Shiganov (1989), Paditz (1988),
and, treating asymptotic expansions, Yaroslavtseva (2009).

In contrast to our bound in (1.24), those refinements have to use some so-called
(absolute) pseudo– or difference–moments instead of ordinary absolute moments of
the involved distributions.

1.4. Normal approximation. Coming now to the normal approximation results fol-
lowing from Theorem 1.8, let us first consider in Theorem 1.11 below the i.i.d. case.
There

εn := ζ3

(
B̃n, 12 ,N

)
for n ∈ N (1.28)

plays the role of a higher order error term, as is made explicit by the following
auxiliary result.
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Theorem 1.10. For n ∈ N, we have, with the first equality to be read from right
to left due to the O(n−2),

1

6
√

2π n
+O

(
1

n2

)
=

1

6


∣∣∣(2n

1
2 + n−

1
2 − n− 3

2

)
b
n, 12

(bn2 c)−
4√
2π

∣∣∣ if n is odd,∣∣∣2n 1
2 b

n, 12
(n2 )− 4√

2π

∣∣∣ if n is even


=

∣∣∣(B̃n, 12 −N
)
| · |3
6

∣∣∣ ≤ εn

<
1

3
√

2π n
+

(
4 + ζ( 1

2 )
√

2π
− 1

)
1

6n3/2

<
0.1330

n
+

0.0022

n3/2
≤ 0.1352

n
,

where ζ(·) is the Riemann zeta-function, in particular ζ( 1
2 ) = −1.4603 . . . .

The proof of Theorem 1.10 is given in section 6 on p. 522.
The above lower bound for εn holds even with equality in case of n = 1, by

Example 4.3 below, and we conjecture that, in the general case, it is at least asymp-
totically exact.

Theorem 1.11. For P ∈ P3 and n ∈ N, we have

ζ3

(
P̃ ∗n,N

)
≤ B(%(P ))

6
√
n

+ εn, (1.29)

where, on the right, the leading term for n→∞ is optimal in the sense of
B(%)

6
= lim

n→∞

√
n ζ3

(
P̃ ∗n% ,N

)
=
√
k
∣∣∣P̃ ∗k% f −Nf

∣∣∣ for % ≥ 1 and k ∈ N, (1.30)

with P% ∈ P3 being the two-point law defined in (1.7) and satisfying %(P%) = %, and
with f ∈ F3 given by f(x) = x3/6 for x ∈ R, and the leading term for % → 1 is
asymptotically exact in the sense of

εn = lim
P∈P3 : %(P )→1

ζ3

(
P̃ ∗n,N

)
for n ∈ N. (1.31)

The proof of Theorem 1.11 is given in section 6 on p. 524.

Remark 1.12. In view of (1.29) and εn = O(n−1), the first equation in (1.30) yields,
as an alternative formulation of the large n optimality of (1.29):

B(%)

6
= max

P∈P3 : %(P )=%
lim
n→∞

√
n ζ3

(
P̃ ∗n,N

)
for % ∈ [1,∞[, (1.32)

with the maximum attained for P = P%. We suspect that in (1.32) one can replace
“lim” by “lim”, since if P ∈ P3 is given and if also f ∈ F3 is fixed, then we have

lim
n→∞

√
n
∣∣∣P̃ ∗nf −Nf ∣∣∣ = |Ef | (1.33)

with E denoting here the signed measure on R with the distribution function x 7→
(1− x2)e−x

2/2µ3(P )/(6
√

2π ) occurring in the short Edgeworth expansion for P̃ ∗n,
by applying Götze and Hipp (1978, Theorem (3.6) in the i.i.d. case with k = 1,
s = s0 = 3, p = 2 for |α| = 1). However, for an arbitrary P ∈ P3, we are not aware
of a reference conveniently yielding the convergence in (1.33) uniformly in f ∈ F3,
which would then yield the existence of limn→∞

√
n ζ3

(
P̃ ∗n,N

)
= supf∈F3

|Ef |.
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In the special case of P = P% this limit exists, as claimed in (1.30), by the proof of
Theorem 1.11.

Remark 1.13. Inequality (1.29) often improves estimates in Tyurin (2009a, Theo-
rem 4), Tyurin (2009b), Tyurin (2011, Theorem 4) (with Tyurin, 2009a actually
being the final one among the three papers)

ζ3

(
ñ∗
i=1

Pi, N

)
≤ 1

6σ3

n∑
i=1

σ3
i %i for P1 . . . , Pn ∈ P3 (1.34)

in the i.i.d. case, where the latter takes the form

ζ3(P̃ ∗n,N) ≤ %(P )

6
√
n

for P ∈ P3 and n ∈ N (1.35)

and is optimal in the sense that the constant factor 1/6 cannot be made less if %(P )
is allowed to be arbitrarily large. Indeed, in view of B(%) < % and εn = O(n−1),
inequality (1.29) improves (1.35) for every value of % ≥ 1 and every sufficiently
large n ∈ N, namely iff

6
√
n εn < %−B(%),

which, by Theorem 1.10, is surely true for

n ≥
(6 · 0.1352

%−B(%)

)2
=

0.65804 . . .

(%−B(%))2
. (1.36)

Here is a table of the values of % and n satisfying condition (1.36), where, for
convenience, we also provide values of B(%) rounded up:

% ≤ 1.01 1.10 1.18 1.24 1.30 1.52 1.66 1.77 1.94 2.17 2.33 2.519

B(%) 0.17 0.53 0.72 0.83 0.94 1.27 1.45 1.59 1.80 2.06 2.24 2.438

n ≥ 1 2 3 4 5 10 15 20 30 50 70 100

Example 1.14. Let P be an exponential distribution. Then % = 12e−1 − 2 =
2.4145 . . . , B(%) = 2.3248 . . . , and condition (1.36) holds for n ≥ 82.

If P is a uniform distribution on an interval, then % = 3
√

3 /4 = 1.2990 . . . ,
B(%) = 0.9302 . . . , and condition (1.36) holds for n ≥ 5.

If P is the Bernoulli distribution with parameter p ∈ ]0, 12 ], then, denoting q :=

1− p, we have %(P ) = (p2 + q2)/
√
pq , B(%) = (q − p)/√pq , %− B(%) = 2p

√
p/q ,

and condition (1.36) holds for:
n ≥ 1 if p ≥ 0.45, n ≥ 2 if p ≥ 0.38, n ≥ 3 if p ≥ 0.34,
n ≥ 4 if p ≥ 0.31, n ≥ 17 if p ≥ 0.2, n ≥ 149 if p ≥ 0.1.

In particular, in the symmetric case (p = 1/2) our bound (1.29) is of course sharper
than (1.35) for every n ∈ N.

If P is the Poisson distribution with parameter λ > 0, then:
if λ = 1 we have % = 1.7357 . . . , B(%) = 1.5448 . . . , and (1.36) holds for n ≥ 19;
if λ = 2 we have % = 1.6640 . . . , B(%) = 1.4543 . . . , and (1.36) holds for n ≥ 15;
if λ = 4 we have % = 1.6294 . . . , B(%) = 1.4096 . . . , and (1.36) holds for n ≥ 14;
if λ = 8 we have % = 1.6125 . . . , B(%) = 1.3874 . . . , and (1.36) holds for n ≥ 13.

If P is the geometric distribution with Pi({k}) = p(1 − p)k for k = 0, 1, 2, . . . ,
then, with p = 0.1, we have % = 2.4158 . . . , B(%) = 2.3262 . . . , and (1.36) holds for
n ≥ 83.

Now we present extensions of some of the above results to the non-i.i.d. case.
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Theorem 1.15. For Pi, Qi, %i, σi, σ as in Theorem 1.2 we have

ζ3

(
ñ∗
i=1

Pi, N

)
≤ 1

6σ3

n∑
i=1

σ3
iB(%i) + ζ3

(
ñ∗
i=1

Qi, N

)
. (1.37)

Further, if σ1 ≥ σ2 ≥ . . . ≥ σn, then

ζ3

(
ñ∗
i=1

Qi, N

)
≤ 1

6

(
2

√
2

π
− 1

)
σ3
1

σ3
+

1

6
√

2π

n−1∑
k=1

σ3
k+1 min{1,

√
n σk+1/σ}

σ3
√
k

≤ 0.0993 · σ
3
1

σ3
+ 0.0665

n−1∑
k=1

σ3
k+1

σ3
√
k
.

The proof of Theorem 1.15 is given in section 6 on p. 521.

Remark 1.16. Inequality (1.37) improves Tyurin’s already optimal bound (1.34) iff

ζ3

(
ñ∗
i=1

Qi, N

)
<

1

6σ3

n∑
i=1

σ3
i (%i −B(%i)) .

Thus, as already indicated at the end of subsection 1.1, Theorems 1.2 and 1.15
can be regarded as extensions of the results previously obtained in Shevtsova
(2012b,c), Shevtsova (2012a, Corollary 4.7 on p. 284, Theorem 4.13 on p. 298, The-
orem 4.14 on p. 300, Corollary 4.17 on p. 302), Shevtsova (2013, Theorems 2.3, 2.4)
for the uniform metric to ζ3-metric, so that the inequalities (1.29) and (1.37) can
be called estimates with an asymptotically optimal structure.

2. Auxiliary analytic results

2.1. Two-point Hermite interpolation, and approximation in Fs. The purpose of
the presumably well-known Lemma 2.1 is to prepare through its parts (c) and (d)
for a proof of Lemma 2.2, which in turn is used in section 4 below in our proof of
Theorem 1.7.

Lemma 2.1 (On two-point Hermite interpolation polynomials). Let m0,m1 ∈ N0,
Vi := R{0,...,mi} for i ∈ {0, 1}, and V := V0 × V1. For distinct x0, x1 ∈ R and for
y = (y0, y1) =

(
(y0,j)

m0
j=0, (y1,j)

m1
j=0

)
∈ V , let p = px0,x1,y = px0,x1,y0,y1 denote the

Hermite interpolation polynomial defined by being a polynomial of degree at most
m0 +m1 + 1 and satisfying the condition

p(j)(xi) = yi,j for i ∈ {0, 1} and j ∈ {0, . . . ,mi}. (2.1)

(a) Linearity. Given distinct x0, x1 ∈ R, the map V 3 y 7→ px0,x1,y is
linear with respect to the obvious vector space structures; in particular we have
px0,x1,y0,y1 = px0,x1,y0,0+px0,x1,0,y1 = px0,x1,y0,0+px1,x0,y1,0 for y0 ∈ V0 and y1 ∈ V1.

(b) Change of variables. For y ∈ V and distinct x0, x1 ∈ R, we have

px0,x1,y(x) = p0,1,z
( x− x0
x1 − x0

)
for x ∈ R

with z ∈ V defined by zi,j := (x1 − x0)jyi,j for i ∈ {0, 1} and j ∈ {0, . . . ,mi}.
(c) Positivity. Let −∞ < x0 < x1 <∞ and let (y0, y1) ∈ V satisfy

y0,j ≥ 0 for j ∈ {0, . . . ,m0}, (−1)jy1,j ≥ 0 for j ∈ {0, . . . ,m1}. (2.2)

Then either p > 0 on ]x0, x1[, or y0 = 0, y1 = 0, p = 0.
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(d) Bounds. Let ‖ · ‖ be a norm on the vector space V . Then there exists a
constant c = c‖·‖ ∈ ]0,∞[ such that the following holds: If y ∈ V and if −∞ <

x0 < x1 <∞, then

sup
x∈[x0,x1]

∣∣∣p(k)x0,x1,y(x)
∣∣∣ ≤ c ‖y‖ 1 ∨ |x1 − x0|m0∨m1

|x1 − x0|k
for k ∈ N0. (2.3)

Proof : The existence and uniqueness of p are well-known, and easily imply (a)
and (b).

(c) By (a) and (b), the latter applied to px0,x1,y0,0 and also to px1,x0,y1,0, we may
assume that we have x0 = 0, x1 = 1, y1 = 0. Then the case of y0 = 0 is trivial,
and so we assume from now on that at least one coordinate of y0 is even strictly
positive, and we put

k := max{j ∈ {0, . . . ,m0} : y0,j > 0}.
We then have

p(j)(x) > 0 for x > 0 sufficiently close to 0 (2.4)

for j ∈ {0, . . . , k}.
Assume from now on, to get a contradiction, that we do not have p > 0 on

]0, 1[. Then, by (2.4) with j = 0 and by the intermediate value theorem, we have
p(ξ) = 0 for some ξ ∈ ]0, 1[. Hence, understanding “n zeros” to mean “at least n
zeros, counting multiplicity” in this proof, p = p(0) has 1 + (m1 + 1) = m1 + 2 zeros
in ]0, 1], namely one zero at ξ and m1 + 1 zeros at 1.

If now k ≥ 1 and if j ∈ {0, . . . , k− 1} is such that p(j) has m1 + 2 zeros in ]0, 1],
then there is an η = ηj ∈ ]0, 1] with p(j)(η) = 0 and such that p(j) has m1 + 2

zeros in [η, 1], and then (2.4) with j + 1 in place of j together with p(j)(0) ≥ 0
implies that the maximum of p(j) over [0, η] is attained at a point in ]0, η[, and
hence, in addition applying Rolle’s theorem on [η, 1], we conclude that p(j+1) has
1 + (m1 + 2− 1) = m1 + 2 zeros in ]0, 1].

The preceding two paragraphs yield that p(k) has m1 + 2 zeros in ]0, 1], and we
have p(k+1)(0) = . . . = p(m0)(0) = 0, with the latter condition of course being empty
if k = m0. Hence p(k+1) has (m0−k)+(m1 +2−1) = m0 +m1 +1−k zeros in [0,1]
and is of degree at most m0 +m1 +1−(k+1) = m0 +m1−k, so we have p(k+1) = 0
and hence p of degree at most k ≤ m0, yielding p(ξ) =

∑m0

j=0 y0,jξ
j/j! > 0, a

contradiction.
(d) If k ≥ m0 +m1 + 2, then p(k) = 0, and then (2.3) is trivially true even with

c = 0; hence we may assume that k ∈ {0, . . . ,m0 + m1 + 1} is fixed in this proof.
Using finite-dimensionality of V , we may further assume that ‖ · ‖ = ‖ · ‖∞, that is,
‖y‖ = maxi,j |yi,j | for y ∈ V , see e.g. Schwartz (1991, pp. 192, 175). Given now y
and x0, x1 as in the claim, we apply (b) with z as defined there to get

sup
x∈[x0,x1]

∣∣∣p(k)x0,x1,y(x)
∣∣∣ = sup

x∈[x0,x1]

∣∣∣ 1
(x1−x0)k

p
(k)
0,1,z

(
x−x0

x1−x0

)∣∣∣
≤ c

(x1−x0)k
‖z‖∞ ≤ R.H.S.(2.3),

where c denotes the norm of the linear map V 3 z 7→ p
(k)
0,1,z|[0,1] ∈ C([0, 1],R),

with respect to the supremum norms on the two vector spaces, and c < ∞ by
finite-dimensionality of V again, see e.g. Schwartz (1991, p. 279). �

We recall the definitions of F∞s and Fs from Definition 1.6.
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Lemma 2.2 (Denseness of F∞s in Fs). Let s ∈ ]0,∞[ and f ∈ Fs. Then there
exist a sequence (fn) in F∞s and constants a, b ∈ [0,∞[ with fn → f pointwise and
|fn| ≤ a + b| · |s for n ∈ N. If f = c| · |s with c ≥ 0, then (fn) can be chosen to
satisfy also fn ≥ 0 for n ∈ N.

Proof : Let m ∈ N0 and α ∈ ]0, 1] with s = m + α. We will use the notation of
Lemma 2.1 with m1 := m2 := m.

Let n ∈ N. We define y ∈ V = R{0,...,m} × R{0,...,m} by y0,j := n−1
n f (j)(n) and

y1,j := 0 for j ∈ {0, . . . ,m}, and we then apply Lemma 2.1(d) with k := m + 1,
x0 := n, and x1 := bn with bn ≥ n+1 chosen so large that we have c‖y‖(bn−n)−α ≤
1
2n and hence, by (2.3), so that pn := pn,bn,y satisfies∣∣p(m+1)

n (x)
∣∣ ≤ 1

2n (bn − n)α−1 for x ∈ [n, bn]. (2.5)

We analogously choose an ≤ −n − 1 with |an| so large that the polynomial qn of
degree at most 2m + 1 and with q

(j)
n (an) = 0 and q

(j)
n (−n) = n−1

n f (j)(−n) for
j ∈ {0, . . . ,m} satisfies∣∣q(m+1)

n (x)
∣∣ ≤ 1

2n (−n− an)α−1 for x ∈ [an,−n]. (2.6)

We finally put, using the de Finetti notation introduced in subsection 1.2,

fn(x) := (an ≤ x ≤ −n)qn(x) + (|x| < n)n−1n f(x) + (n ≤ x ≤ bn)pn(x)

for x ∈ R. Then fn ∈ Cm(R,R) and fn is bounded. Thus to get fn ∈ F∞s , it
remains to prove that

sup
u, v∈R, u<v

|f (m)
n (v)− f (m)

n (u)|
|v − u|α

≤ 1. (2.7)

So let −∞ < u < v < ∞, and let us abbreviate g := f
(m)
n . Then g(u) = g(u ∨ an)

and g(v) = g(v ∧ bn) and hence |g(v)− g(u)|/|v− u|α ≤ |g(v ∧ bn)− g(u∨ an)|/|v ∧
bn−u∨an|α, and so we may assume an ≤ u and v ≤ bn. In the case of an ≤ u ≤ −n
and n ≤ v ≤ bn, we use in the second step below (2.5) and (2.6), and also (2.7)
with f in place of fn, to get

|g(v)− g(u)| ≤ |g(v)− g(n)|+ |g(n)− g(−n)|+ |g(−n)− g(u)|
≤ 1

2n (bn − n)α−1|v − n|+ n−1
n |n− (−n)|α

+ 1
2n (−n− an)α−1| − n− u|

≤ 1
2n |v − n|

α + n−1
n |n− (−n)|α + 1

2n | − n− u|
α

≤ |v − n|α ∨ |n− (−n)|α ∨ | − n− u|α

≤ |v − u|α.

The remaining cases needed to prove (2.7) are similar or simpler.
Obviously, fn → f pointwise. Further, by Lemma 2.1(c), we have fn ≥ 0 in case

of f = c| · |s with c ≥ 0.
Let g ∈ Fs. If s ≤ 1, then we have |g(x)− g(0)| ≤ |x|s and hence |g| ≤ a+ b| · |s

for a := g(0) and b := 1. If s > 1, then we have for x ∈ R the Taylor formula

g(x) =

m−1∑
j=0

g(j)(0)

j!
xj +

∫ 1

0

(1− λ)m−1

(m− 1)!
g(m)(λx)xm dλ (2.8)



Berry–Esseen for integrals of smooth functions 505

and get |g(x)| ≤
∑m−1
j=0 cj |x|j +

∫ 1

0
(1−λ)m−1

(m−1)!
(
|g(m)(0)|+ |x|α

)
|x|m dλ ≤ a + b|x|s

for certain constants cj and a, b depending only on the availability of bounds for
the derivatives up to the order m of g at zero. Hence, by the construction of the
sequence (fn), we have constants a, b with |fn| ≤ a+ b| · |s for each n. �

2.2. On some special osculatory interpolations and a moment inequality. Here our
goal is the elementary Lemma 2.4, whose trivial consequence Lemma 2.5 is used in
the final Step 7 of the proof of Theorem 1.2 in section 5. As for the title of the
present subsection, recall that a function f is called first order osculatory at a point
x0 to a function g if we have f(x0) = g(x0) and f ′(x0) = g′(x0).

Let I ⊆ R be a nondegenerate interval and s ∈ N0. Then, following here
closely Pinkus and Wulbert (2005), a function f : I → R is said to be s-convex
on I iff for every choice of s+ 1 pairwise distinct points x0, . . . , xs ∈ I the (s+ 1)-st
divided difference [x0, x1, . . . , xs; f ] is positive (recall that “positive” means ≥ 0, see
subsection 1.2). This divided difference may be defined as

[x0, x1, . . . , xs; f ] :=
U(x0, . . . , xs; f)

V (x0, . . . , xs)
,

where

U(x0, . . . , xs; f) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x0 x1 . . . xs
...

...
. . .

...
xs−10 xs−11 . . . xs−1s

f(x0) f(x1) . . . f(xs)

∣∣∣∣∣∣∣∣∣∣∣
,

V (x0, . . . , xs) := U(x0, . . . , xs; (·)s) =
∏
i<j(xj − xi) is the Vandermonde determi-

nant. Alternatively one can set (see e.g. Kuczma, 2009, Chapter 15)

[x; f ] = f(x), [x0, x1, . . . , xk; f ] =
[x1, . . . , xk; f ]− [x0, . . . , xk−1; f ]

xk − x0
for k ∈ {1, . . . , s}. As V (x0, . . . , xs) > 0 for x0 < x1 < . . . < xs, a function f
is s-convex on I iff we have U(x0, . . . , xs; f) ≥ 0 for all x0 < x1 < . . . < xs ∈ I.
Thus, from the definition it immediately follows that a function is 0-convex iff it
is nonnegative, 1-convex iff it is nondecreasing, and 2-convex iff it is convex in the
usual sense. Higher order convexity was first considered by Hopf (1926) and was
further extensively developed by Popoviciu (1933).

If P (x1, . . . , xs; f |·) is the unique Lagrange polynomial of degree at most s − 1
that interpolates f at the points x1 < x2 < . . . < xs, then, by Popoviciu (1933) or
Kuczma (2009, Chapter 15),

f(x)− P (x1, . . . , xs; f |x) =
U(x1, . . . , xs, x; f)

V (x1, . . . , xs)
= [x1, . . . , xs, x; f ]

s∏
i=1

(x− xi),

and thus f is s-convex on I iff for every choice of −∞ =: x0 < x1 < . . . < xs <
xs+1 := +∞ we have

(−1)i+s(f(x)− P (x1, . . . , xs; f |x)) ≥ 0 for i ∈ {0, . . . , s}, x ∈ ]xi, xi+1[ ∩ I.
If s ≥ 2, then a continuous function f is s-convex on I iff on the interior of I

the derivative f (s−2) exists and is convex, see Hopf (1926), Popoviciu (1933), or
Kuczma (2009). If f is s times differentiable on I, then f is s-convex iff f (s) ≥ 0
on I, see Popoviciu (1933) or Kuczma (2009).
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Lemma 2.3. Let I ⊆ R be an interval, s, t ∈ I with s 6= t, and f : I → R twice
differentiable with

f(s) = f ′(s) = f(t) = f ′(t) = 0 (2.9)

and f ′′ convex on I. Then we have f ≥ 0 on I. If further u ∈ I \ {s, t} satisfies
f(u) = 0, then we have f = 0 on the convex hull of {s, t, u}.

Proof : The existence of f ′′ and its convexity yield the 4-convexity of f ; hence for
every choice of t1, t2, t3, t4 ∈ I with t1 < t2 < t3 < t4, the Lagrange interpolation
polynomial p of degree ≤ 3 with p(tj) = f(tj) for each j satisfies for x ∈ I respec-
tively f(x) ≥ p(x) if t4 ≤ x or t2 ≤ x ≤ t3 or x ≤ t1, and f(x) ≤ p(x) if t3 ≤ x ≤ t4
or t1 ≤ x ≤ t2. This continues to hold if some, but not all, of the tj coincide and p
is accordingly the corresponding Hermite interpolation polynomial, in view of the
continuous dependence of the latter on (t1, t2, t3, t4) due to the continuity of f ′′,
compare DeVore and Lorentz (1993, p. 119, Theorem 6.3).

To prove now the lemma, we may assume s < t. Assumption (2.9) says that
p := 0 is the Hermite interpolation polynomial of degree ≤ 3 for f and the nodes
t1 := t2 := s and t3 := t4 := t, and hence we get f ≥ 0 on I. If further u is as stated,
then we prove also f ≤ 0 on the convex hull of {s, t, u}, by applying the previous
paragraph to p := 0, but now with (t1, t2, t3, t4) := (u, s, s, t) if u < s, := (s, u, u, t)
if s < u < t, using that then also f ′(u) = 0 due to f ≥ 0 and f(u) = 0, and finally
:= (s, t, t, u) if t < u. �

Lemma 2.4. Let f : R→ R be differentiable and let s, t ∈ R with |s| 6= |t|.
(a) There are unique a, b, c, d ∈ R such that

g(x) := a+ bx+ cx2 + d|x|3 for x ∈ R

satisfies

g(s) = f(s), g′(s) = f ′(s), g(t) = f(t), g′(t) = f ′(t). (2.10)

(b) If f is a polynomial of degree at most 3, then g is a global upper or lower
bound for f . More precisely, if f(x) = A + Bx + Cx2 + Dx3 for x ∈ R, then we
have the equivalence chains

f ≤ g on R ⇔ d ≥ 0 ⇔ D · (s+ t) ≥ 0, (2.11)
f ≥ g on R ⇔ d ≤ 0 ⇔ D · (s+ t) ≤ 0, (2.12)

and the inequality between f and g in (2.11) or (2.12) is strict on all of R\{s, t} iff
D 6= 0 and st < 0. In any case, we have a = A+Da0, b = B +Db0, c = C +Dc0,
d = Dd0, where

a0 =
4|st|3

(s+ t)(s2 + 4|st|+ t2)
, b0 =

6s2t2

s2 + 4|st|+ t2
,

c0 = − 12s2t2

(s+ t)(s2 + 4|st|+ t2)
, d0 =

(|s|+ |t|)3

(s+ t)(s2 + 4|st|+ t2)

in case of st ≤ 0, and a0 = b0 = c0 = 0 and d0 = sgn(s) = sgn(t) in case of st > 0.
(c) If f(x) = |x− r|3 for x ∈ R, with some r ∈ R \ {0}, and if s = v · sgn(r) and

t = −u · sgn(r) for some u, v with u > v ≥ 0, then we have f ≤ g on R, and this
inequality is strict on R \ {s, t} unless v = 0. More explicitly,

|x− r|3 ≤ a+ bx+ cx2 + d|x|3, (2.13)
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Figure 2.2. Left: plots of the functions f(x) = |x+1|3 (solid line)
and g(x) = a+ bx+ cx2 + d|x|3 (dashdot line) from Lemma 2.4(c)
with u = 3/2, v = 2/3. Right: plot of the difference g(x)− f(x).

where a = ar(u, v), b = br(u, v), c = cr(u, v), d = dr(u, v), with

ar(u, v) = |r|3 +
4u3v3

(u− v)(u2 + 4uv + v2)
, (2.14)

br(u, v) = −sgn(r)

(
3r2 +

6u2v2

u2 + 4uv + v2

)
, (2.15)

cr(u, v) = 3|r| − 12u2v2

(u− v)(u2 + 4uv + v2)
, (2.16)

dr(u, v) =
(u+ v)3

(u− v)(u2 + 4uv + v2)
(2.17)

for v ≤ |r| and

ar(u, v) = |r|
6u4v2+6u2v4+12u3v2|r|−12u2v3|r|−4u3vr2−4uv3r2−u4r2−v4r2+6u2v2r2

(u− v) (u+ v) (u2 + 4uv + v2)
,

br(u, v) = 3r
−4u2v2 − 4u3v − 4uv3 − 3u2v|r|+ 3uv2|r|+ u3|r| − v3|r| − 4uvr2

(u+ v) (u2 + 4uv + v2)
,

cr(u, v) = 3|r|
u4 + v4 − 6u2v2 − 4u3v − 4uv3 + 4u3|r| − 4v3|r|+ 2u2r2 + 2v2r2

(u− v) (u+ v) (u2 + 4uv + v2)
,

dr(u, v) =
(u− v + 2|r|)

(
u2 + v2 + 4uv − 2u|r|+ 2v|r| − 2r2

)
(u− v) (u2 + 4uv + v2)

for v > |r|. Equality in (2.13) is attained at least (and at most as well if v > 0) at
the two points x = −u · sgn(r) and x = v · sgn(r).

Using monotonicity of the expectation, Lemma 2.4(c) trivially yields the follow-
ing

Lemma 2.5. For every r ∈ R \ {0}, u > v > 0 and every P ∈ Prob3(R), we have∫
|x− r|3 dP (x) ≤ a+ b

∫
xdP (x) + c

∫
x2 dP (x) + d

∫
|x|3 dP (x),

where the coefficients a = ar(u, v), b = br(u, v), c = cr(u, v), and d = dr(u, v) are
defined in Lemma 2.4(c), with equality iff the distribution P is concentrated in the
two points v · sgn(r), −u · sgn(r).
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Remark 2.6. Lemma 2.5 generalizes Shevtsova (2018, Lemma 2), where the stated
inequality was proved only in the case of v > |r|.
Proof of Lemma 2.4: (a) Condition (2.10) is a system of linear equations for a, b, c, d
with the determinant∣∣∣∣∣∣∣∣

1 s s2 |s|3
0 1 2s 3s|s|
1 t t2 |t|3
0 1 2t 3t|t|

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 2s 3s|s|

t− s t2 − s2 |t|3 − |s|3
1 2t 3t|t|

∣∣∣∣∣∣
=

∣∣∣∣t2 − s2 − 2s(t− s) |t|3 − |s|3 − 3(t− s)s|s|
2t− 2s 3t|t| − 3s|s|

∣∣∣∣
= (t− s)

∣∣∣∣t− s |t|3 + 2|s|3 − 3ts|s|
2 3t|t| − 3s|s|

∣∣∣∣
= (t− s)

(
(t− s)(3t|t| − 3s|s|)− 2|t|3 − 4|s|3 + 6ts|s|

)
= (t− s)

(
|t|3 − |s|3 + 3ts|s| − 3ts|t|

)
= (t− s) (|t| − |s|)

(
t2 + s2 + |ts| − 3ts

)
6= 0.

(b) Lemma 2.3 applied to g− f or to f − g yields the first equivalences in (2.11)
and (2.12), even without knowing d explicitly. One next easily checks in case
of A = B = C = 0 and D = 1 that the stated formulae for a, b, c, d solve the
interpolation problem (2.10). The case of arbitray A,B,C,D then follows by the
linearity of the interpolation operator mapping f to g according to part (a). Using
now the explicit formula for d = Dd0, one obviously gets the second equivalences
in (2.11) and (2.12).

In case of D = 0 or st ≥ 0, we have g identical to f at least on a half-line. In
case of D 6= 0 and st < 0, the existence of any u ∈ R \ {s, t} with f(u) = g(u)
would imply by Lemma 2.3 that f = g holds in some neighbourhood of zero, which
implies D = d = 0, a contradiction to D 6= 0.

(c) The case v > |r| is proved in Shevtsova (2018, Lemma 1). Let now v ≤ |r|.
By writing f(x) = |r|3

∣∣∣ x−r + 1
∣∣∣3 and considering x

−r as the new variable, we may
assume that r = −1, that is, f(x) = |x+ 1|3 for x ∈ R, and

−1 ≤ s = −v ≤ 0 ≤ v < t = u, v ≤ 1. (2.18)

Let f̃(x) = (x + 1)3 for x ∈ R. Since s, t ∈ [−1,∞[ and f = f̃ on [−1,∞[, our
present g is also the osculatory interpolation to the polynomial f̃ . Hence the present
formulae for the coefficients of g follow from part (b) with A = D = 1, B = C = 3,
and in view of s+ t = u− v > 0 we get from (2.11) that f(x) = f̃(x) ≤ g(x) holds
for x ∈ [−1,∞[, and in view of st = −uv ≤ 0 we have either equality iff x ∈ {s, t},
or s = v = 0. So, setting

h(x) := g(x)− f(x) = a+ 1 + (b+ 3)x+ (c+ 3)x2 + (1− d)x3

for x ∈ ]−∞,−1], it is enough to prove now h < 0 on ]−∞,−1[.
We have

h′(x) = b+ 3 + 2(c+ 3)x+ 3(1− d)x2, h′′(x) = 2(c+ 3) + 6(1− d)x,

and, using u > v ≥ 0 from (2.18) and also (2.17), we get

W := (u− v)(u2 + 4uv + v2) > 0, d− 1 =
2v2(3u+ v)

W
≥ 0
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and hence, for x ∈ ]−∞,−1[, using (2.16) with r = −1 in the central step, and
v ∈ [0, 1] from (2.18) in the last,

h′′(x) ≥ 2(c+ 3) + 6(d− 1) =
12

W
u2
(
u+ 3v − 2v2

)
> 0

Thus h′ is strictly increasing, and hence we get, for x ∈ ]−∞,−1[,

h′(x) < h′(−1) = b− 2c− 3d = −6u2(1− v)(u+ 3v + v(u− v))

W
≤ 0,

so that h is strictly decreasing, and we get, again for x ∈ ]−∞,−1[,

h(x) > h(−1) = a− b+ c+ d =
2u2(v − 1)2(2uv + u+ 3v)

W
≥ 0

as desired. �

2.3. Sign change counting. The notation and facts of this subsection are used in
the formulation and the proof of Theorem 4.2, which in turn is used in Steps 6
and 7 of the proof of Theorem 1.2 in section 5. Lemma 2.8 refines Denuit et al.
(1998, Lemma 4.2).

For sets A,B ⊆ R and n ∈ N0, we put An< := {x ∈ An : x1 < x2 < . . . < xn},
An≤ := {x ∈ An : x1 ≤ x2 ≤ . . . ≤ xn}, and A ≤ B :⇔ x ≤ y for every choice of
x ∈ A and y ∈ B, and we define A < B similarly.

Let now D ⊆ R and let f : D → R be a function. Then, with a notation as
in Karlin (1968, p. 20), one calls

S−(f) := sup{n ∈ N0 : ∃x ∈ Dn+1
< with f(xi)f(xi+1) < 0 for i ∈ {1, . . . , n}}

∈ N0 ∪ {∞}

the (possibly infinite) number of (inequivalent) sign changes of f , and the restric-
tions of f obey the rule

S−(f |A∪B) ≤ S−(f |A) + S−(f |B) + 1 for A,B ⊆ D with A ≤ B.(2.19)

Let us from now on assume for simplicity that D = I is an interval. For n ∈ N0

then clearly S−(f) = n is equivalent to the following condition: There exist a
z = (z1, . . . , zn) ∈ In≤ and nonempty (but possibly one-point) intervals I0, . . . , In
with

⋃n
j=0 Ij = I and such that, for j ∈ {0, . . . , n}, we have f(x)f(y) ≥ 0 for

x, y ∈ Ij , but in case of j ≥ 1 also sup Ij−1 = zj = inf Ij and f(x)f(y) < 0 for some
x ∈ Ij−1 and y ∈ Ij . If this condition holds, let us call every z as above a sign
change tuple of f , every entry zi of such a z a sign change of f , and two different
sign changes of f inequivalent if they both occur in one sign change tuple. If in
addition f is left- or right-continuous, then obviously every such z belongs to In<
and the corresponding intervals Ij are nondegenerate. Let us finally call f : I → R
lastly positive if we have f ≥ 0 on I or there is an x0 ∈ I with f(x0) > 0 and f ≥ 0
on ]x0,∞[ ∩ I, and essentially lastly positive if we have f ≥ 0 Lebesgue-a.e. on I
or there is an x0 ∈ I with f ≥ 0 Lebesgue-a.e. on [x0,∞[ ∩ I and not f = 0
Lebesgue-a.e. on [x0,∞[ ∩ I.

We will need the following variant of Rolle’s theorem.

Lemma 2.7. Let I ⊆ R be an interval and let f : I → [0,∞[ be absolutely contin-
uous, not identically zero, and vanishing in the limit at the boundary points inf I
and sup I. Then there exist ξ, η ∈ I with ξ < η and f ′(ξ) > 0 > f ′(η).
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Proof : We choose a maximizer x0 for f . Then x0 is not a boundary point of I, and
we have

∫ x0

x
f ′(t) dt = f(x0)− f(x) > 0 for some x < x0 sufficiently close to inf I,

and then f ′(ξ) > 0 for some ξ ∈ ]x, x0[. Similarly, f ′(η) < 0 for some η ∈ ]x0, x[
with some x > x0 close to sup I. �

Lemma 2.8. Let I be a nondegenerate interval, a = inf I, b = sup I, f : I → R be
absolutely continuous, and let f ′ : I → R be almost everywhere a derivative of f .

(a) If limt→b− f(t) = 0 and if f ′ is essentially lastly positive, then so is −f .
(b) We have

S−(f) ≤ S−(f ′) + 1−
(

lim
x→a+

f(x) = 0

)
−
(

lim
x→b−

f(x) = 0

)
(2.20)

except when f = 0 and S−(f ′) = 0.
More precisely, if S−(f ′) = n ∈ N0, then also m := S−(f) is finite, and, if f is

not identically zero, with y ∈ Im< and z ∈ In≤ denoting any sign change tuples of f
and f ′ respectively, and with

J :=

{
j ∈ {0, . . . ,m} : 1 ≤ j ≤ m− 1, or j = 0 and lim

x→a+
f(x) = 0, (2.21)

or j = m and lim
x→b−

f(x) = 0

}
and y0 := a and ym+1 := b, for every j ∈ J , there is a k ∈ {1, . . . , n} with
zk ∈ ]yj , yj+1[.

Proof : (a) Obvious from −f(x) = limy→b−(f(y)− f(x)) = limy→b−
∫ y
x
f ′(t) dt for

x ∈ I.
(b) It suffices to prove the second claim since, under the stated conditions, it

yields the existence of an injective function k(·) : J → {1, . . . , n}, hence #J ≤ n
and thus (2.20), and since the remaining cases of S−(f ′) =∞ or f = 0 are trivial.

So let S−(f ′) = n ∈ N0, f not identically zero, and z ∈ In≤ a sign change
tuple of f ′. With corresponding intervals I0, . . . , In as above, we have, for each
j ∈ {0, . . . , n}, either f ′ ≤ 0 on Ij or f ′ ≥ 0 on Ij , and hence S−(f |Ij ) ≤ 1, and
hence m := S−(f) ≤ 2n + 1 < ∞, by applying (2.19) n times. So let y ∈ Im< be a
sign change tuple of f , let J be defined by (2.21), y0 := a, ym+1 := b, and let j ∈ J .
Applying Lemma 2.7 to f |]yj ,yj+1[ or its negative yields a k as claimed. �

2.4. Partial sums of reciprocals of square roots. As usual, the symbol ζ without
any subscript denotes the Riemann zeta-function. In particular, ζ( 1

2 ) is a negative
number as indicated in (2.22) below, see oeis.org/A059750 in Sloane (2010).

Lemma 2.9. For n ∈ N = {1, 2, . . .}, we have
n−1∑
k=1

1√
k
− 2
√
n < ζ( 1

2 ) = −1.46035 . . . , (2.22)

with equality in the limit as n→∞.

Proof : Let an denote the left hand side of the inequality in (2.22). Then an−an+1 =

2
√
n
(√

1 + 1
n −

(
1 + 1

2n

))
< 0 by the tangent bound at 1 for the concave function

√
· . Hence the sequence (an)n≥1 is strictly increasing. Since we have limn→∞ an =
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ζ(1/2) by Hardy (1949, p. 333, (13.10.7) with s = σ = 1
2 ), or see Wirths (2015,

p. 192, (4.1)) for a more elementary proof, the inequality in (2.22) follows. �

3. On few-point reduction theorems

In this section, we recall some reduction theorems partially used below, with
apparently some novelty in part (b) of the first one. For Tyurin’s Theorem 3.3 we
provide a proof perhaps more natural than the original one.

The term “component” below is meant in the usual topological sense of “maximal
connected subset”, here of a subset M of Rk.

Theorem 3.1 (essentially Richter, 1957). Let P be a law on the measurable space
(X ,A), let k ∈ N, and let f1, . . . , fk be real-valued and P -integrable functions on
X .

(a) There exists a law Q on (X ,A) concentrated in k + 1 or fewer points such
that Pfi = Qfi holds for each i ∈ {1, . . . , k}.

(b) Assume in addition that M := {(f1(x), . . . , fk(x)) : x ∈ X} has at most
k components. Then conclusion (a) holds with “k or fewer” in place of “k + 1 or
fewer”.

Proof : Let F (x) := (f1(x), . . . , fk(x)) for x ∈ X , so that M as defined in part (b)
above is the image of the function F , and let C denote the convex hull of M .
Then we have y :=

∫
F dP ∈ C, by part of the multivariate Jensen inequality as in

Ferguson (1967, p. 74, Lemma 3) or Dudley (2002, p. 348, Theorem 10.2.6), noting
that the measurability condition imposed on C in the second reference is not used
anywhere in the proof.

(a) By the Carathéodory theorem as in Hiriart-Urruty and Lemaréchal (2001,
p. 29, Theorem 1.3.6), the point y is a convex combination of k+1 or fewer points in
M , that is, there exist not necessarily distinct x1, . . . , xk+1 ∈ X and p1, . . . , pk+1 ∈
[0, 1] with

∑k+1
j=1 pj = 1 and y =

∑k+1
j=1 pjF (xj), that is, Pfi = Qfi holds for

Q =
∑k+1
j=1 pjδxj and each i ∈ {1, . . . , k}.

(b) Under the additional hypothesis, the Fenchel-Bunt refinement in Hiriart-
Urruty and Lemaréchal (2001, p. 30, Theorem 1.3.7, see also pp. 245–246) of the
Carathéodory theorem yields that y is a convex combination of k or fewer points
in C, and we conclude as before. �

For X a Borel subset of R, Theorem 3.1(a) is contained in Richter (1957, p. 153,
Satz 4). For X an interval in R and for the special case of continuous fi, in which
case M is connected, Theorem 3.1(b) is Richter (1957, p. 153, Satz 5), whereas in
our version and say in case of k ≥ 3, one of the functions fi could for example be
an indicator of a subinterval of X , since then, assuming the remaining functions to
be continuous, M would have at most three components. For a general measurable
space (X ,A), Theorem 3.1(a) is stated in Kemperman (1968), where also further
references are given.

In the course of the proof of our main result below, Theorem 3.1(a) allows us
to restrict attention to 5-point laws, which are still rather complex objects. Using
instead Theorem 3.1(b) would permit us to consider only 4-point laws. However,
the following generalization of Hoeffding’s (1955, p. 269, Theorem 2.1 with n = 1)
result, combined with Theorem 3.1(a) and with the concavity of the function B
from (1.8), allows a reduction to 3-point laws, which turn out to be sufficiently
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tractable analytically. Let us remark that using just Hoeffding’s result would again
only lead to a reduction to 4-point laws. So in the end, of the theory of this section,
we later use in the present paper only Theorems 3.1(a) and 3.3, and in the former
"finite" in place of "k + 1 or fewer" would actually be enough.

For the rest of this section all laws considered are finitely supported and are
hence for notational simplicity regarded as defined on the power set of the basic set
X .

Theorem 3.2 (implicitly Hoeffding, 1955). Let X be a set, let k ∈ N, and let
f1, . . . , fk be real-valued functions on X . Then every finitely supported law P on X
is a finite convex combination

∑n
j=1 λjPj of laws Pj each concentrated on k+ 1 or

fewer support points of P and satisfying Pjfi = Pfi for each i ∈ {1, . . . , k}.

Proof : Replacing X by {x ∈ X : P ({x}) > 0}, we may assume that X is finite and
is the set of all support points of P . Then

K := {Q ∈ Prob(X ) : Qfi = Pfi for i ∈ {1, . . . , k}}

is a convex and compact subset of the finite-dimensional vector space of all R-valued
measures on X , with P ∈ K. Hence, by Minkowski’s theorem in Hiriart-Urruty
and Lemaréchal (2001, p. 42, Theorem 2.3.4), P is a finite convex combination∑n
j=1 λjPj of extreme points Pj of K, and then each Pj is concentrated in at most

k + 1 points:
Indeed, suppose that Q =

∑
x∈X qxδx ∈ K is such that its set of support points

X0 := {x ∈ X : qx > 0} contains at least k + 2 elements. Then{
r ∈ RX0 :

∑
x∈X0

rx = 0,
∑
x∈X0

rxfi(x) = 0 for i ∈ {1, . . . , k}

}

is a subspace of dimension at least 1 of RX0 , hence contains a nonzero r, so that
we have

Q± := Q± ε
∑
x∈X0

rxδx ∈ K \ {Q}

for some ε > 0, and Q = 1
2 (Q+ +Q−). Thus Q is not an extreme point of K. �

Theorem 3.3 (Tyurin, 2009a,b, 2011). Let X be a set, k ∈ N, f1, . . . , fk real-valued
functions on X , c1, . . . , ck ∈ R, and

P := {P ∈ Prob(X ) : #suppP <∞, Pfi = ci for i ∈ {1, . . . , k}} .

Let F : P → R be quasi-convex, that is, satisfying F (λP + (1 − λ)Q) ≤
max{F (P ), F (Q)} for P,Q ∈ P and λ ∈ [0, 1]. Then

sup{F (P ) : P ∈ P} = sup{F (P ) : P ∈ P, #suppP ≤ k + 1}.

Proof : Applying the representation P =
∑n
j=1 λjPj from Theorem 3.2, and the

quasi-convexity condition on F extended by induction, immediately yields the
claim. �

Let us finally mention Winkler (1988) and Pinelis (2016) as starting points for
some more sophisticated results related to this section.
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4. Auxiliary results for Zolotarev’s ζ-metrics

Proof of Theorem 1.7: (a) An obvious Hahn-Banach argument, as in Step 2 of the
proof of Theorem 1.2 in section 5 below.

(b) Definiteness of ζs, that is, the implication ζs(P,Q) = 0 ⇒ P = Q, is of
course very well-known, for example as a consequence of the uniqueness theorem
for characteristic functions. The remaining claims are obvious.

(d) Relation (1.22) follows from Lemma 2.2 using dominated convergence. In-
equality (1.23) follows from (1.21) in case of ‖f‖L,α = 0, and otherwise from (1.22)
applied to f/‖f‖L,α.

(c) If ζs(P,Q) <∞, then we apply Lemma 2.2 to f :=
(∏m−1

j=0 (s− j)
)−1
| · |s ∈

Fs to get ∞ > ζs(P,Q) ≥ |Pfn −Qfn| → |Pf −Qf | using dominated convergence
for Qfn, dominated convergence for Pfn in case of Pf <∞, and Fatou’s Lemma for
Pfn in case of Pf =∞, and we conclude that Pf <∞, that is P ∈ Probs(R); and
for j ∈ {1, . . . ,m} and n ∈ N then (1.22) from part (d) applies to the monomial
n(·)j ∈ Fs, and letting n → ∞ yields µj(P ) = µj(Q). If the second condition
in (1.21) holds, then the third follows easily using (2.8), compare Senatov (1998,
pp. 102–103). Finally, the third condition in (1.21) implies the first, in view of
νs(P,Q) ≤ νs(P ) + νs(Q). The remaining claims follow obviously. �

Let us next recall two further well-known properties of ζs, with s ∈ ]0,∞[ arbi-
trary, needed below. The first is its regularity

ζs(P ∗R,Q ∗R) ≤ ζs(P,Q) for P,Q,R ∈ Prob(R) (4.1)

proved e.g. in Senatov (1998, p. 101), which, given Theorem 1.7(b), is equivalent
to its semiadditivity

ζs
( n∗
i=1

Pi,
n∗
i=1

Qi
)
≤

n∑
i=1

ζs(Pi, Qi) for n ∈ N and Pi, Qi ∈ Prob(R), (4.2)

compare Senatov (1998, p. 48). To formulate the second, we use here, as well as
later in some proofs, the obvious random variable notation ζs(X,Y ) := ζs(P,Q) if
X,Y are R-valued r.v.’s with X ∼ P and Y ∼ Q. Then we have the homogeneity

ζs(aX, aY ) = asζs(X,Y ) for a ∈ [0,∞[ and R-valued r.v.’s X and Y , (4.3)

the obvious proof of which being given in Senatov (1998, p. 102).
The following Lemma, which is presented in Senatov (1998, pp. 108-112) without

explicit constants, allows us in the proof of Theorem 1.15, in a case where aX ∼ P
and aY ∼ Q with small a, to use the homogeneity (4.3) with a better exponent
than possible by just using (4.1). We recall that Nσ denotes the centred normal
law on R with variance σ2.

Lemma 4.1. Let P,Q ∈ Prob(R) and s, t, σ ∈ ]0,∞[. Then we have

ζs(P ∗Nσ, Q ∗Nσ) ≤ Cs,t
ζs+t(P,Q)

σt
(4.4)

with the finite constant Cs,t defined as follows: Writing

s = `+ α, t = m+ β with `,m ∈ N0 and α, β ∈ ]0, 1]
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and letting ϕ denote the standard normal density, we put

Dk :=

∫
|ϕ(k)(x)|dx, Dk,α :=

∫
|x|α |ϕ(k)(x)|dx for k ∈ N0,

Cs,t :=


D

1−α−β
1−α

m ·D
β

1−α
m+1,α if α+ β ≤ 1,

D
α+β−1
α

m+1 · (2Dm+1,α)
1−β
α if α+ β > 1.

In particular, if t ∈ N, hence m = t−1, β = 1, and α+β > 1, then Cs,t = Dm+1 =

Dt =
∫
|ϕ(t)(x)|dx, and the first few of these constants can be explicitly computed,

for example

Cs,1 =

∫
|ϕ′(x)|dx =

2√
2π

, Cs,2 =

∫
|ϕ′′(x)|dx =

4√
2πe

.

Proof : We shall follow the outline of the reasoning employed in Senatov (1998,
Lemma 2.10.1). Let ϕσ(x) := σ−1ϕ(x/σ) for x ∈ R. Given any f ∈ F∞s , and
writing

g(x) :=

∫
f(x+ z)ϕσ(z) dz and h(x) :=

σtg(x)

Cs,t
for x ∈ R, (4.5)

it is sufficient to prove that h ∈ F∞s+t, for then we would get

|(P ∗Nσ)f − (Q ∗Nσ)f | = |Pg −Qg| =
Cs,t
σt
|Ph−Qh| ≤ R.H.S.(4.4)

as desired. So let f ∈ F∞s and let g and h be defined through (4.5). Then h is
obviously bounded, and, with

n := ds+ t− 1e =

{
`+m

`+m+ 1

}
if α+ β

{
≤
>

}
1 and γ := s+ t− n ∈ ]0, 1],

it remains to prove that we have∣∣∣g(n)(x)− g(n)(y)
∣∣∣ ≤ Cs,t

σt
|x− y|γ for x, y ∈ R. (4.6)

If k ∈ N0 with k ≥ `, then we obtain, for x, y ∈ R,

g(`)(x) =

∫
f (`)(x+ z)ϕσ(z) dz =

∫
f (`)(z)ϕσ(x− z) dz, (4.7)

g(k)(x) =

∫
f (`)(z)ϕ(k−`)

σ (x− z) dz =

∫
f (`)(x− z)ϕ(k−`)

σ (z) dz, (4.8)

|g(k)(x)−g(k)(y)| ≤
∫ ∣∣∣f (`)(x−z)− f (`)(y−z)∣∣∣ ∣∣∣ϕ(k−`)

σ (z)
∣∣∣ dz

≤ |x−y|αDk−`

σk−`
(4.9)

where, to justify differentiation under the integral, we may in (4.7) apply the domi-
nated convergence theorem successively using polynomial bounds on the derivatives
f ′, . . . , f (`), compare (2.8) and the ensuing line, and we may treat (4.8) similarly,
or remember it as a well-known special case of the differentiability of Laplace trans-
forms, see for example Mattner (2001, Example); in the last step in (4.9) we used
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f ∈ Fs and the change of variables z 7→ σz. Specializing (4.8) to k := ` + m + 1

and using in the first step below
∫
ϕ
(m+1)
σ (z) dz = 0 yields

|g(`+m+1)(x)| =

∣∣∣∣∫ (f (`)(x− z)− f (`)(x)
)
ϕ(m+1)
σ (z) dz

∣∣∣∣ (4.10)

≤
∫
|z|α

∣∣∣ϕ(m+1)
σ (z)

∣∣∣ dz =
Dm+1,α

σm+1−α for x ∈ R.

Let us now first assume that we have α + β ≤ 1, and hence n = ` + m and
γ = α+ β. Then, using (4.10) in the second step below, we get

L.H.S.(4.6) ≤ ‖g(n+1)‖∞ · |x− y| ≤
Dm+1,α

σm+1−α |x− y| for x, y ∈ R,

and taking a geometric mean of this bound and the one from (4.9) with k := n,
with the exponents u := β/(1 − α) ∈ ]0, 1] and 1 − u, yields (4.6) in the present
case.

Let us finally assume that we have α + β > 1, and hence n = ` + m + 1 and
γ = α+ β − 1. Then, applying below (4.10) to x and to y, we get

L.H.S.(4.6) ≤ 2Dm+1,α

σm+1−α for x, y ∈ R,

and taking a geometric mean of this bound and the one from (4.9) with k := n,
with the exponents v := (1− β)/α ∈ [0, 1[ and 1− v, yields (4.6) again. �

In Steps 6 and 7 of our proof of Theorem 1.2, we will use Theorem 4.2 stated
below, which collects or refines results known from Zolotarev (1997), Denuit et al.
(1998), and Boutsikas and Vaggelatou (2002). In particular, Theorem 4.2(b) con-
tains Denuit et al. (1998, Theorems 3.3 and 4.3) and Boutsikas and Vaggelatou
(2002, p. 353, first part of Theorem 2), and adds a converse to the latter, while
Theorem 4.2(c,d) seems to be new.

Let us first recall the definition of the s-convex order of laws on R in accordance
with Denuit et al. (1998, p. 590), Boutsikas and Vaggelatou (2002, p. 351), Müller
and Stoyan (2002, p. 39, Definition 1.6.2 a)), and Shaked and Shanthikumar (2007,
p. 139), but being here somewhat more explicit with respect to the appropriate
integrability assumptions: If s ∈ N, then

P ≤s-cx Q (4.11)

is defined to mean that P,Q ∈ Probs−1(R) and that Pf ≤ Qf holds for every
s-convex function f : R → R such that Pf and Qf are well-defined (possibly
infinite). Thus ≤1-cx is just the usual stochastic order ≤st on Prob(R), ≤2-cx is
the usual convex order ≤cx on Prob1(R), and ≤3-cx is what we use below. By
considering the s-convex function ±(·)k with k ∈ {1, . . . , s−1}, it is clear that (4.11)
necessitates

µj(P ) = µj(Q) ∈ R for j ∈ {1, . . . , s− 1}. (4.12)

For x ∈ R and α ∈ [0,∞[, we agree to the standard notation xα− := (x−)α and
xα+ := (x+)α if α > 0, and x0− := (x ≤ 0) and x0+ := (x ≥ 0), which is not in general
the same as (x−)0 and (x+)0 due to 00 := 1. For a law P ∈ Prob(R), let F and F
denote its ordinary and “upper” distribution functions, that is, F (x) := P (]−∞, x])
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and F (x) := P ([x,∞[) for x ∈ R, and we then define Fk(t) and F k(t) for k ∈ N
and t ∈ R inductively by F1 := F , F 1 := F ,

Fk+1(t) :=

∫ t

−∞
Fk(x) dx, F k+1(t) :=

∫ ∞
t

F k(x) dx, (4.13)

and hence get, as follows by inserting the right hand sides from (4.14) into the
integrals in (4.13) and using Fubini,

Fk(t) =

∫
(x− t)k−1−

(k − 1)!
dP (x), F k(t) =

∫
(x− t)k−1+

(k − 1)!
dP (x). (4.14)

By (4.14), the functions Fk and F k are finite-valued in particular if P ∈ Probk−1(R),
and then (4.13) with k − 1 in place of k yields

lim
t→−∞

Fk(t) = 0, lim
t→∞

F k(t) = 0. (4.15)

In Theorem 4.2(a,d) below, symmetry of P −Q is to be understood in the usual
sense of (P −Q)(B) = (P −Q)(−B) for every Borel set B ⊆ R.

Theorem 4.2 (ζ-distances, s-convex orderings, cut conditions). Let s ∈ N and
let P,Q ∈ Probs−1(R) satisfy the moment condition (4.12). Let further F, F ,G,G
denote the respective ordinary and complementary distribution functions of P,Q
and, with Fk, F k, Gk, Gk as in (4.13) and (4.14), let Hk := Gk − Fk and Hk :=
Gk − F k for k ∈ {1, . . . , s}.

(a) For k ∈ {1, . . . , s} and t ∈ R, we have

(−1)k−1Hk(t) +Hk(t+) = 0, (4.16)
(−1)k−1Hk(t−) +Hk(t) = 0, (4.17)

and, if P −Q is symmetric, then also

Hk(−t) = (−1)kHk(t+) ; (4.18)

here the one-sided limit signs, namely “+” in the argument of Hk in (4.16) and
(4.18), and “−” in the argument of Hk in (4.17), can be omitted if k ≥ 2.

Let I denote the smallest interval satisfying P (I) = Q(I) = 1. Then, for each
k ∈ {1, . . . , s}, we have Hk = 0 on R \ I and

lim
t→−∞

Hk(t) = lim
t→∞

Hk(t) = 0. (4.19)

If in addition P,Q ∈ Probs(R), then we have

ζs(P,Q) =

∫
|Hs(x)|dx, (4.20)

and a function f ∈ Fs satisfies

ζs(P,Q) = Qf − Pf (4.21)

iff its Lebesgue-a.e. existing derivative of order s satisfies

f (s)(x) =

{
−1
1

}
if Hs(x)

{
<
>

}
0, for Lebesgue-a.e. x ∈ I. (4.22)

(b) For k ∈ {1, . . . , s}, let (Bk) denote the condition “Hk has at most s − k
sign changes and is lastly positive”. Then we have the implications (B1)⇒ (B2)⇒
. . . ⇒ (Bs) ⇔ Hs ≥ 0 ⇔ P ≤s−cx Q. If in addition P,Q ∈ Probs(R), then
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P ≤s−cx Q is further equivalent to ζs(P,Q) = 1
s! (µs(Q)− µs(P )), that is, to (4.21)

holding for the function f ∈ Fs given by

f(x) := 1
s!x

s for x ∈ R. (4.23)

(c) For k ∈ {1, . . . , s}, let (Ck) denote the condition “Hk has exactly s − k + 1
sign changes and is lastly positive”. Then we have the implications (C1)⇒ (C2)⇒
. . .⇒ (Cs). If in addition P,Q ∈ Probs(R), then (Cs) is further equivalent to (4.21)
holding, with some sign change point x0 of Hs, for the function f ∈ Fs given by

f(x) := 1
s! |x− x0|

s for x ∈ R, (4.24)

and this remains true if “some” is replaced by “some and every”. Further, if (Ck)
holds for some k ∈ {1, . . . , s− 1}, then each sign change point of Hs belongs to the
interior of the convex hull of the entries of every sign change tuple of Hk.

(d) Assume that we have P,Q ∈ Probs(R), P − Q symmetric, and Hs with
exactly one sign change. Then s is odd, and (4.21) holds with f(x) := |x|s/s! for
x ∈ R.

Proof : (a) For every t ∈ R, (4.14) yields that

(−1)k−1Fk(t) + F k(t+) = (−1)k−1Fk(t−) + F k(t) =

∫
(x− t)k−1

(k − 1)!
dP (x)

is a function of µ1(P ), . . . , µk−1(P ), and (−1)k−1Gk(t)+Gk(t+) is the same function
of µ1(Q), . . . , µk−1(Q); hence (4.12) yields (4.16) and (4.17). If now P − Q is
assumed to be symmetric, then, using this in the second step below, and using (4.14)
applied to Q and to P in the first and fourth steps, and (4.16) in the fifth, we
get (4.18) through

Hk(−t) =

∫
(x+ t)k−1+

(k − 1)!
d(Q− P )(x) =

∫
(−x+ t)k−1+

(k − 1)!
d(Q− P )(x)

=

∫
(x− t)k−1−

(k − 1)!
d(Q− P )(x) = Hk(t) = (−1)kHk(t+).

Back in the general case, since (· − t)k−1+ is (P + Q)-a.e. equal to a polynomial
of degree ≤ k− 1 if t ∈ R \ I, namely (P +Q)-a.e. (· − t)k−1+ = (· − t)k−1 if {t} < I

and (· − t)k−1+ = 0 if {t} > I, we get Hk = 0 on R \ I. Claim (4.19) follows using
(4.15) and (4.16).

Assume now P,Q ∈ Probs(R). If f ∈ Fs, then the representation f(x) =∑s−1
j=0

f(j)(0)
j! xj +

∫ x
0

(x−y)s−1

(s−1)! f (s)(y) dy =
∑s−1
j=0

f(j)(0)
j! xj +

∫
R
(
(0 ≤ y < x) − (x ≤

y < 0)
) (x−y)s−1

(s−1)! f (s)(y) dy and a Fubini calculation, valid due to ‖f (s)‖∞ ≤ 1 and
the moment assumption just introduced, and using (4.16) with k = s, yield the
formula

Qf − Pf =

∫
f (s)(x)Hs(x) dx. (4.25)

By applying (4.25) to f ∈ F∞s and using ‖f (s)‖∞ ≤ 1 we get “≤” in (4.20). By
applying (4.25) to a function f ∈ Fs with f (s)(x) = sgn(Hs(x)) for Lebesgue-a.e. x,
and using Theorem 1.7(d), we get “≥” in (4.20). Finally, (4.20) and (4.25) yield
the claim involving (4.22).
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(b) Using (4.19), the implications (B1) ⇒ (B2) ⇒ . . . ⇒ (Bs) follow from
Lemma 2.8 up to the statement involving (2.20), since (4.13) yields H

′
k+1(t) =

−Hk(t) for k ∈ {1, . . . , s − 1} and t ∈ R, except for at most countably many t in
case of k = 1. The equivalence (Bs)⇔ Hs ≥ 0 is trivial, and the equivalence Hs ≥
0 ⇔ P ≤s−cx Q is Denuit et al. (1998, Theorem 3.2), using (4.14). Since (4.22)
holds for f from (4.23) iff Hs ≥ 0, using the left-continuity of Hs and also Hs = 0
on R \ I for the “only if” part, the final equivalence follows from part (a).

(c) Let k ∈ {1, . . . , s − 1} and assume (Ck). Then, as in the proof of part (b),
we deduce that Hk+1 has at most s − k sign changes and is lastly positive. If
Hk+1 even had at most s − k − 2 = (s − 1) − (k + 1) ∈ N0 sign changes, then
k + 1 ≤ s − 1, and hence part (b) applied with s − 1 in place of s would yield
P ≤(s−1)−cx Q and hence ζs−1(P,Q) = 1

(s−1)! (µs−1(Q) − µs−1(P )) = 0 and thus
P = Q by Theorem 1.7(b), in contradiction to (Ck). If Hk+1 had exactly s− k− 1
sign changes, then, on the one hand, part (b) as it stands would yield Hs ≥ 0,
but on the other hand, by (Ck), there would exist a t0 ∈ R such that the left-
continuous function (−1)s−k+1Hk would be ≥ 0 on ]−∞, t0] and actually > 0 on
some nondegenerate subinterval ]t1, t0], so that, in view of Hk(t+) = (−1)kHk(t)
by (4.16), the expression (−1)s+1Hk(t) = (−1)s−k+1Hk(t+) would be ≥ 0 for
t ∈ ]−∞, t0[ and > 0 for t ∈ [t1, t0[, and hence Hs(t0) = (−1)sHs(t0−) < 0
by (4.17) and the recursion (4.13), a contradiction. Thus indeed (Ck+1) holds.

Let x0 ∈ R and f be as in (4.24). Then f (s)(x) = sgn(x− x0) for x ∈ R \ {x0},
and hence (4.22) holds iff (x0) is a sign change tuple forHs andHs is lastly positive.
Hence the stated equivalence involving “some” and “some and every” follows using
part (a).

The final claim of part (c) follows using the “More precisely” statement of
Lemma 2.8.

(d) Suppose that 0 were no sign change point ofHs =: h. Then at least one of the
following three conditions would be violated: (i) h(x)h(y) ≥ 0 for x, y ∈ ]−∞, 0[,
(ii) h(x)h(y) ≥ 0 for x, y ∈ ]0,∞[, (iii) h(x)h(y) < 0 for some x < 0 < y. If (i)
or (ii) were false, that is, h(x)h(y) < 0 for some x, y ∈ I with I = ]−∞, 0[ or
I = ]0,∞[, then (4.18) would yield h(−x+)h(−y+) < 0, and hence h(u)h(v) < 0
for some u, v ∈ −I, leading to S−(h) ≥ 2, a contradiction. If (i) and (ii) were true
but (iii) not, then S−(h) = 0, again a contradiction.

Thus 0 is a sign change point of Hs, and hence part (c) yields, since condition
(Cs) is fulfilled, that (4.21) holds with f from (4.24) with x0 = 0.

Hence, if s were even, then (4.21) would hold with f from (4.23), but then by
part (b) we would have (Bs), that is, Hs would have no sign changes, a contradic-
tion. Therefore s is odd. �

From the following example, which in particular computes ε1 from (1.28), the
results (4.26) and (4.27) are used in the proofs of Theorems 1.15 and 1.10 in section 6
below.

Example 4.3. Let Q := 1
2 (δ−1 + δ1). Then we have

ε1 = ζ3(Q,N) = 1
6

(
4√
2π
− 1
)

< 0.0993, (4.26)

ζ4(Q,N) = 1
12 < 0.0834, (4.27)

ζs(Q,N) = ∞ for s ∈ ]4,∞[. (4.28)
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Proof : Claim (4.28) follows from Theorem 1.7(c) with m ≥ 4, since µ4(Q) = 1 6=
3 = µ4(N).

For proving (4.26) and (4.27) using Theorem 4.2, let us change here the notation
and put for the rest of this proof

P := 1
2 (δ−1 + δ1), Q := N.

Then, using from now on the notation of Theorem 4.2 with these P,Q, and first with
s ∈ {1, 2, 3, 4} arbitrary, we have (4.12), and the function H1 = G − F obviously
has the unique sign change tuple (−1, 0, 1) and hence exactly three sign changes,
and is lastly positive.

If now s = 4, then assumption (B1) of Theorem 4.2(b) is fulfilled, and, with
f(x) := x4/4! from (4.23), we accordingly get

ζ4(P,Q) = Qf − Pf =
1

4!
(3− 1) =

1

12
.

If, finally, s = 3, then assumption (C1) of Theorem 4.2(c) is fulfilled, hence so is
(C3), and, by symmetry of P and of Q, Theorem 4.2(d) now yields

ζ3(P,Q) =
1

3!

(
Q| · |3 − P | · |3

)
=

1

6

(
4√
2π
− 1

)
.

�

5. Proof of the main result

Proof of Theorem 1.2: We will use random variable notation whenever this appears
to be more convenient. So, in addition to the assumptions of Theorem 1.2, let
Xi ∼ Pi and Yi ∼ Qi be 2n independent random variables on some probability
space with expectation operator E. Without loss of generality, we assume the Pi
to be centred, that is, EXi = 0 for each i.

Step 1. Equality in (1.13) occurs under the stated conditions. Indeed, we then
have ∗̃ni=1Qi f = 0 by symmetry, and thus

L.H.S.(1.13) =

∣∣∣∣∣∣E c
(

1

σ

n∑
i=1

Xi

)3
∣∣∣∣∣∣ =

1

6σ3

∣∣∣∣∣
n∑
i=1

EX3
i

∣∣∣∣∣ 6|c|
=

1

6σ3

n∑
i=1

σ3
i

∣∣∣∣∣E
(
Xi

σi

)3
∣∣∣∣∣ ‖f ′′‖L = R.H.S.(1.13)

by using in the third step above the additivity of the third centred moment for
independent random variables, that is, (1.27) with ` = 3, and in the last step the
equality statement in Example 1.3, that is, a rather easy part of Shevtsova (2014,
Theorem 6).

Step 2. We may assume that the Banach space E is the real line R, with the
norm being the usual modulus. Indeed, assume Theorem 1.2 to be true in this
special case. Then, for the given general f , the Hahn-Banach theorem as in Rudin
(1987, Theorem 5.20) yields an R-linear functional ` : E → R of norm 1 satisfying
the first of the following equalities

L.H.S.(1.13) = `

(
ñ∗
i=1

Pi f −
ñ∗
i=1

Qi f

)
=

ñ∗
i=1

Pi `◦f −
ñ∗
i=1

Qi `◦f,
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and thus an application of inequality (1.13) to ◦̀f in place of f and using ‖(`◦f)′′‖L
= ‖ ◦̀f ′′‖L ≤ ‖f ′′‖L yields inequality (1.13) as stated (for example, in the particular
case of E = C we may put `(z) := <(cz), where < stands for the real part and
c = cf ∈ C is such that |c| = 1 and c ·

(∗̃ni=1 Pi f − ∗̃ni=1Qi f
)
is real and ≥ 0).

Step 3. It is enough to prove inequality (1.24), since we have |Pf − Qf | ≤
‖f ′′‖L ζ3(P,Q) for P,Q ∈ Prob3(R) and f ∈ C2,1(R,R) by (1.23) with s := 3, and
in view of Steps 1 and 2.

Step 4. It is enough to prove inequality (1.24) in case of n = 1, since assuming
this special case to be true yields the penultimate step below in

L.H.S.(1.24) = ζ3

(
1

σ

n∑
i=1

Xi ,
1

σ

n∑
i=1

Yi

)
=

1

σ3
ζ3

(
n∑
i=1

Xi ,

n∑
i=1

Yi

)

≤ 1

σ3

n∑
i=1

ζ3(Xi, Yi) =
1

σ3

n∑
i=1

σ3
i ζ3(X̃i, Ỹi)

≤ 1

σ3

n∑
i=1

σ3
i

B(%i)

6
= R.H.S.(1.24),

where we have used the homogeneity (4.3) in the second and fourth steps, and the
semiadditivity (4.2) in the third.

Step 5. Let us write for the rest of this proof

Q := 1
2 (δ−1 + δ1). (5.1)

By Step 4, it remains to prove that we have

ζ3(P,Q)− B(%(P ))

6
≤ 0 (5.2)

for P ∈ P̃3 or, equivalently in view of the alternative representation (1.22) of ζ3,
that

Pf −Qf − B(%(P ))

6
≤ 0 (5.3)

holds for P ∈ P̃3 and f ∈ C2,1(R,R) with ‖f ′′‖L ≤ 1. Let f1(x) := x, f2(x) := x2,
and f3(x) := |x|3 for x ∈ R. Given now P ∈ P̃3 and f ∈ C2,1(R,R) with ‖f ′′‖L ≤ 1,
we can apply Theorem 3.1(a) to P and to the functions f1, f2, f3, and f4 := f to
conclude, since the left hand side of (5.3) is a function of Pf3 and Pf4, that it
is enough to prove (5.3) under the additional assumption that P has at most 5
support points. (Using instead of Theorem 3.1(a) the a bit deeper Theorem 3.1(b),
which applies by the continuity of the functions fi and the connectedness of R, we
could reduce “5” above to “4”, but this does not appear to help in what follows.)
Hence it is enough to prove (5.2) for P ∈ P where

P := {P ∈ Prob(R) : #suppP <∞, Pf1 = 0, Pf2 = 1}.

Let F (P ) be the left hand side of (5.2) for P ∈ P. Then F is a convex R-valued
functional on P, since P 7→ %(P ) = Pf3 is linear on P, B is concave by Lemma 1.1,
and P 7→ ζ3(P,Q) is convex since it is the supremum of the affine functionals
P 7→ Pf − Qf with f ∈ C2,1(R,R). Hence Tyurin’s Theorem 3.3, with k := 2,
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shows that it is enough to prove (5.2) for P standardized and having at most three
support points. So, for the remaining two steps, let

P = pδα + qδβ + (1− p− q)δγ (5.4)

with some α ≤ β ≤ γ, p, q > 0, p + q < 1, pα + qβ + (1 − p − q)γ = 0, and
pα2 +qβ2 +(1−p−q)γ2 = 1. Let us further apply the notation Hk of Theorem 4.2
with s := 3 to the present P from (5.4) and Q from (5.1). Then H1 has at most
5 − 2 = 3 sign changes, since with S := {α,−1, β, 1, γ}, only the elements of
S \ {minS,maxS} can be sign changes.

Step 6. Assume in this step that H1 has at most two sign changes. Then, since
H1 or −H1 is lastly positive, Theorem 4.2(b) applied to (P,Q) or to (Q,P ) yields
the first equality in

ζ3(P,Q) =

∣∣∣∣∫ x3

6
d(P −Q)(x)

∣∣∣∣ =
1

6

∣∣∣∣∫ x3 dP (x)

∣∣∣∣ ≤ B(%(P ))

6
,

where the final inequality comes from Shevtsova (2014, Theorem 6), that is, from
(1.15) of Example 1.3.

Step 7. Assume finally thatH1 has exactly three sign changes. Then we have α <
−1 < β < 1 < γ, and the (unique) sign change tuple of H1 is (−1, β, 1), with the
interior of the convex hull of its coordinates being ]−1, 1[. Hence Theorem 4.2(c),
with s = 3 and with the condition (C1) being fulfilled, yields the existence of an
r ∈ ]−1, 1[ satisfying

ζ3(P,Q) =
1

6

(∫
|x− r|3 dP (x)−

∫
|x− r|3 dQ(x)

)
. (5.5)

If r = 0, then R.H.S.(5.5) = 1
6 (%(P )− 1) ≤ 1

6B(%(P )), using Lemma 1.1.
So let now r 6= 0. Then there is a (unique) two-point law P ′ ∈ P̃3 with %(P ′) =

%(P ) and concentrated in points v · sgn(r) and −u · sgn(r) with certain u > v > 0,
compare the distribution of X% in subsection 1.1 above. Lemma 2.5 yields∫

|x− r|3 dP (x) < ar(u, v) + cr(u, v) + dr(u, v)%(P ) =

∫
|x− r|3 dP ′(x)

using also standardizedness of P, P ′ and %(P ′) = %(P ). Hence, using also (5.5) in
the first step below, we get

ζ3(P,Q) <

∫
1

6
|x− r|3 d(P ′ −Q)(x) ≤ ζ3(P ′, Q).

Finally, Step 6 applied to P ′ in place of P , which is legitimate since the H1 corre-
sponding to the two-point law P ′ has at most two sign changes, yields ζ3(P ′, Q) ≤
1
6B(%(P ′)) = 1

6B(%(P )). �

6. Proofs involving ζ3-distances between normal and convolutions of
symmetric two-point laws

Proof of Theorem 1.15: Inequality (1.37) follows from (1.24) in Theorem 1.8 by
using the triangle inequality for ζ3 recalled in Theorem 1.7(b). For the remaining
claim, we assume without loss of generality that

n∑
i=1

σ2
i = 1. (6.1)
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Let Y, Y1, . . . , Yn, Z, Z1, . . . , Zn be independent r.v.’s with Y ∼ 1
2 (δ−1 + δ1), Yi ∼

Qi = 1
2 (δ−σi+δσi) and hence Yi ∼ σiY , Z ∼ N, and Zi ∼ Nσi , so that Zi ∼ σiZ, for

i ∈ {1, . . . , n}. Let further Tk := Z1 + . . .+Zk +Yk+1 + . . .+Yn for k ∈ {0, . . . , n}.
Then, using (6.1), we get T0 ∼ ∗ni=1Qi = ∗̃ni=1Qi and Tn ∼ N and hence, writing
in this proof εn for a quantity more general than the one introduced in (1.28), we
get

εn := ζ3

(
ñ∗
i=1

Qi, N

)
= ζ3(T0, Tn) ≤ ζ3(T0, T1) +

n−1∑
k=1

ζ3(Tk, Tk+1)

by using the triangle inequality in the last step.
The regularity (4.1) and the homogeneity (4.3) of ζ3 yield

ζ3(T0, T1) ≤ ζ3(Y1, Z1) = σ3
1ζ3(Y, Z).

Noting that the r.v. Z1 + . . . + Zk occurring in Tk and in Tk+1 has the centred
normal distribution with variance

∑k
i=1 σ

2
i and applying Lemma 4.1 with s = 3

and t = 1, we get

ζ3(Tk, Tk+1) ≤
√

2

π
· ζ4(Yk+1, Zk+1)√∑k

i=1 σ
2
i

=

√
2

π
·
ζ4(Y, Z)σ4

k+1√∑k
i=1 σ

2
i

for k ∈ {1, . . . , n−1},

so that

εn ≤ ζ3(Y,Z)σ3
1 +

√
2

π
ζ4(Y, Z)

n−1∑
k=1

σ4
k+1√∑k
i=1 σ

2
i

.

Using now the assumptions σ1 ≥ σ2 ≥ . . . ≥ σn and (6.1), we have σ2
1 + . . .+ σ2

k ≥
k/n and also σ2

1 + . . .+ σ2
k ≥ kσ2

k+1, which yields

εn ≤ ζ3(Y,Z)σ3
1 +

√
2

π
ζ4(Y, Z)

n−1∑
k=1

σ3
k+1 min{1,

√
n σk+1}√

k
. (6.2)

Inserting now the values for ζ3(Y, Z) and ζ4(Y, Z) from (4.26) and (4.27) in Exam-
ple 4.3 yields the claim. �

Proof of Theorem 1.10: For the upper bound we observe that formula (6.2), spe-
cialized to the homoscedastic case σ1 = . . . = σn = 1/

√
n , yields

εn = ζ3

(
B̃n, 12 ,N

)
≤ ζ3(Y, Z)

n3/2
+

√
2

π
· ζ4(Y, Z)

n3/2

n−1∑
k=1

1√
k
,

which can further be simplified by use of Lemma 2.9 to give

εn < 2

√
2

π
· ζ4(Y,Z)

n
+
ζ3(Y,Z) + ζ( 1

2 )
√

2
π ζ4(Y, Z)

n3/2
,

and now the claimed upper bound for εn follows if we substitute the explicit values
of ζ3(Y,Z) and ζ4(Y,Z) as in the preceding proof.

For the lower bound, let us recall for n, k ∈ N0 the kth Krawtchouk polynomial
Pnk associated to the symmetric binomial law Bn, 12 as defined in MacWilliams and
Sloane (1977, pp. 130, 151–154, the case of q = 2 and hence γ = 1) and also, with
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the unnecessary restriction k ≤ n, in Diaconis and Zabell (1991, section 6.2 on
p. 298, the special case of p = 1

2 and hence γ = 1), that is,

Pnk (x) :=

k∑
j=0

(−1)j
(
x

j

)(
n− x
k − j

)
for x ∈ R,

so that we have in particular

Pn0 (x) = 1, Pn1 (x) = −2
(
x− n

2

)
and the recursion

(k + 1)Pnk+1(x) = (n− 2x)Pnk (x)− (n− k + 1)Pnk−1(x) for k ∈ {1, . . . , n− 1}

and hence further

Pn2 (x) = 2
((
x− n

2

)2 − n
4

)
,

Pn3 (x) = − 4
3

(
x− n

2

)3
+
(
n− 2

3

) (
x− n

2

)
.

If now n, k ∈ N, then, from the cited sources, we have for a ∈ N0

a∑
x=0

Pnk (x)bn, 12 (x) = n−a
k Pn−1k−1 (a)bn, 12 (a), (6.3)

and hence in particular
a∑
x=0

Pn1 (x)bn, 12 (x) = (n− a)bn, 12 (a),

a∑
x=0

Pn3 (x)bn, 12 (x) = 2
3 (n− a)

((
a− n−1

2

)2 − n−1
4

)
bn, 12 (a)

and thus
a∑
x=0

(
x− n

2

)
bn, 12 (x) = a−n

2 bn, 12 (a),

a∑
x=0

(
x− n

2

)3
bn, 12 (x) =

a∑
x=0

(
− 3

4P
n
3 (x)−

(
3
8n−

1
4

)
Pn1 (x)

)
bn, 12 (x)

= a−n
2

((
a− n−1

2

)2
+ 1

2n−
1
4

)
bn, 12 (a),

and finally

n∑
x=0

∣∣x− n
2

∣∣3 bn, 12 (x) = −2

bn2 c∑
x=0

(
x− n

2

)3
bn, 12 (x) (6.4)

=

{
1
4n

2bn, 12 (n2 ) if n is even,(
1
4n

2 + 1
8n−

1
8

)
bn, 12 (bn2 c) if n is odd.

Recalling the local Edgeworth expansion for binomial laws (see e.g. Gnedenko and
Kolmogorov, 1954, § 51, Theorem1)√

n
4 bn, 12

(k) = Φ′(z)

(
1− z4 − 6z2 + 3

12n

)
+O(n−2)
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uniformly in z := (k − n
2 )/
√

n
4 with k ∈ Z, we thus get, writing αn := n

2 − b
n
2 c,

and using in the last step below 2α2
n = αn,

εn ≥
∣∣∣∣∫ | · |36

d
(

N− B̃n, 12

)∣∣∣∣
=

1

6

∣∣∣∣∣ 4√
2π
− 23

n3/2

n∑
x=0

∣∣x− n
2

∣∣3 bn, 12 (x)

∣∣∣∣∣
=

1

6

∣∣∣∣ 4√
2π
− 23

n3/2
R.H.S.(6.4)

∣∣∣∣
=

1

6

∣∣∣∣ 4√
2π
− 23

n3/2

(
n2

4 + αn
n
4 +O(1)

)√
4
n

×
(

Φ′
(
−αn/

√
n
4

)(
1− 3+O(n−1)

12n

)
+O(n−2)

)∣∣∣∣
=

4

6
√

2π

∣∣∣1− (1 + αn
n

) (
1− 2α2

n

n

) (
1− 1

4n

)
+O(n−2)

∣∣∣
=

1

6
√

2π n
+O

(
1
n2

)
.

�

Proof of Theorem 1.11: Inequality (1.29) results from (1.37) in Theorem 1.15, al-
ready proved above, when specialized to the i.i.d. case. Alternatively, we may first
specialize Theorem 1.8 to the i.i.d. case and then apply the triangle inequality
similarly to (6.5) below.

Let now % ∈ [1,∞[ and f(x) = x3/6 for x ∈ R. Then we have

√
k
∣∣∣P̃ ∗k% f −Nf

∣∣∣ =
√
k
∣∣∣P̃ ∗k% f

∣∣∣ =
1

k

∣∣P ∗k% f
∣∣ =

B(%)

6
for k ∈ N

by using in the last step above (1.27) with ` = 3, as we did in Step 1 of the proof
of Theorem 1.2, and hence we get

B(%)

6
≤ lim

n→∞

√
n ζ3

(
P̃ ∗n% ,N

)
≤ lim

n→∞

√
n ζ3

(
P̃ ∗n% ,N

)
≤ B(%)

6

using in the last step (1.29) with P = P% and εn = O(n−1). This proves (1.30).
Let finally n ∈ N. For P ∈ P3 using the triangle inequality for ζ3 in the first

step below and the i.i.d. case of Theorem 1.8 in the second we then have∣∣∣ζ3 (P̃ ∗n,N)− εn∣∣∣ ≤ ζ3

(
P̃ ∗n, B̃n, 12

)
≤ 1

6B(%(P )), (6.5)

and (1.31) follows using lim%→1B(%) = 0. �
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