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Abstract. This paper aims at comparing theoretical approximations of the tail
of the maximum of stochastic processes and the corresponding numerical evalua-
tions. More particularly, we focus on the Pickands or double sum method, the Rice
method, the Euler Characteristic method and a new one called the Poisson method.
The numerical evaluation, performed using mainly Quasi Monte-Carlo integration
and adaptations of the programs of Genz, show the domains of validity of each
method.

1. Introduction

The distribution of the maximum of a Gaussian vector, process or fields has
many application in Statistics and Spatial Modeling (see Worsley et al., 1996 or
Cressie, 2015). For instance, in the "signal plus noise model" on the real line, we
assume that the observation Y = (Y (t)); is the sum of a signal p = (u(t)): and a
noise x = (X(t)): which is a centered stationary Gaussian process. If we want to
test the null hypothesis Hy : © = 0, a natural statistic is

Mr = max X(t),
te[0,7]
the observed maximum over the interval [0,7]. Note that the maximum of the
absolute value is also a relevant statistics, but for the sake of simplicity, we will not
consider this last case which is very similar. Computing thresholds and power in
our case involve some computations on the distribution of M. Unfortunately, it is
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a largely unsolved problem and exact closed formulas exist only in some particular
cases. In the other cases, some bound or asymptotic expansions have been con-
structed starting from the pioneering work of Rice (1944) then Pickands IIT (1969)
and Adler (1981).

These expansions have generally good properties when T is fixed and v is large
(u — 00), but in statistical applications as computation of 0.95 fractile for My, T
and w are linked and both can be "rather large". In such a case nothing is known
on the properties of the considered expansions but if we focus on the Ornstein-
Uhlenbeck process and if we consider the Pickands approximations given by
exp(—u®/2)

V2r
a numerical study show a very interesting behaviour. Indeed, Figure 1.1 suggests
that the Pickands approximations are sharp for large values of 7" but unsuitable

for small values of T. Moreover, in this example the first approximation is a little
more precise than the second one but it is not always the case, see Section 4.4.1.

P{Mzr > u} ~ Tu x and P{ My > u} = Tu® x P(N(0,1) > u),
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FI1curE 1.1. Exact level of a test constructed for a nominal level of @ = 5% using the
Pickands method and the Ornstein-Uhlenbeck process. On the left: small intervals,
on the right: large intervals (see Section 2). The level corresponding to equation (2.2)
is given in brown while the one of equation (2.3) is given in green. Both are computed
thanks to the pou program (see Section 3.1.1) and according to the procedure of the
Section 4.1.

Furthermore, if we want to compute now the median of M7, and if we use the
Rice method defined in Section 2.2, Figure 1.2 shows that the method does not
perform accurately for large values of T

In light of the above examples, the main contribution of this paper will be three-
fold.

e In Section 2.3 we present a new approximation based on a Poisson approx-
imation.

e In Section 3.2.1 and 3.2.2, we present an extension of the MGP program
of Genz (see Azais and Genz, 2013), firstly to non-stationary case, secondly
to random fields.

e In Section 4, we use these programs and MGP to address the quality of
the above-mentioned expansions for two precise problems.

— Computing a critical value at level « for statistical purpose.
— Computing the median of the distribution of the maximum.
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FIGURE 1.2. Exact probability to be above the approximate median computed using
the Rice method (see Section 2). An upper bound (red line) and a lower bound
(blue line) of the level are computed by the program MGP (see Section 3.1.1). The
dotted lines indicate a relative variation of 50% with respect to the nominal level i.e.
47.5% and 52.5%. The process considered has covariance function p(t) = exp(—t*/2).

As far as we know, it is the first time that such a numerical experiment is conducted.

In addition, Section 2 describes the approximations widely encountered in the lit-
erature as well as the new Poisson approximation. Section 3 describes the numerical
methods that, except for those of Section 3.1, are modifications or improvements
of the seminal work of Genz (1992).

2. Description of the approximations

We provide here a brief summary of approximation methods for P(M > u) where
M is the maximum of a Gaussian process or random field on sets detailed below.
Before we introduce our assumption and notation.

e x = (X(t)): is a Gaussian process defined on [0,7] or a Gaussian field
defined on the rectangle [0,77] x [0,Ts] (excepting the Bessel process of
Section 3.1.1). Its expectation is m(t), its covariance is 7(s, t) in the general
case and p(h) = r(t,t + h) if x is stationary.

e My and My, 1, are respectively the maximum of X (¢) on [0,7] and [0, T3] X
[07 TQ} :

e ¢ and ¢ denote respectively the probability density function and the cumu-
lative distribution function of a standard normal variable. Moreover, set

d=1-9.
e In case of stationarity, we suppose that x is centered and reduced, i.e.
p(0) = 1.

e In case of stationarity and differentiability, we suppose that x is centered,
reduced with unit speed, i.e. Var(X'(t)) = —p”(0) = 1.

e 7 = max(z,0) is the positive part of z.

e pz(z) denotes the density of the random variable Z at point z when it
exists.

2.1. Pickands method. Let 0 < 8 < 2 and x be a S-process i.e. stationary Gaussian
process with covariance function p satisfying

p(t) =1—C|t]® + o(|t|?) as t — 0, (2.1)
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where C' > 0, then the Pickands approximations, as u tends to infinity, are given
by

P{Myp > u} ~ TCYPu2/P = p(u)Hy, (2.2)
see Pickands IIT (1969), Piterbarg (1996) or
P{Mr > u} ~ TCYPu P &(u)Hyg, (2.3)

see Pickands IIT (1969), Albin and Choi (2010) or Michna (2017). More precisely,
the Hg are the Pickands constants and 7" > 0.

The main drawback of the method is that the constants Hg are known explicitly
only in the cases H; = 1 and Hy = (7)~/? (see Leadbetter et al., 1983 or Albin
and Choi, 2010). In the other cases, some numerical approximation must be used
as in Dieker and Yakir (2014) where the conjecture

Hy = (D(571)
with I the Gamma function, is discussed. Indeed, this conjecture has been proved
to be false by Harper (2017) for small values of S.

In addition, the approximations given by (2.2) and (2.3) are obviously not effi-
cient when T is small. An heuristic improvement would be to add the factor ®(u)
that appears in the Rice method hereunder leading to four versions of the Pickands
approximation and raising the question:

‘Which method is the best one?

This question will be addressed in Section 4. Finally, note that the Pickands
method, also called double sum method, has received a lot of generalization to
various situations. The interested reader may consult Debicki et al. (2016) and
references therein.

2.2. Rice method. Let x be a stationary Gaussian differentiable process then the
Rice bound is given by

P{Mz > u} < ®(u) + TM (2.4)

Nors

Note that both Rice and Pickands approximations apply ( the second with C' = %
since we have assumed that p”(0) = —1 ) when S =2 in (2.1). In that case, Rice is
asymptotically more precise as u — +00 (see Azals and Wschebor, 2009, chapter 4).
Moreover, the Rice bound, under some regularity conditions, is super-exponentially
sharp in the sense that the error is bounded by

oy (D)

for some positive constants C' and § > 0. Finally, there exists a non stationary
version of formula (2.4) given by

T
P(Mr > u) <P(X(0) > u) +/O E((X'(1)) "X (t) = u)px s (w)dt,

where the conditional expectation may be easily computed in the Gaussian case.
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2.3. Poisson method :A new approximation . Let us focus on stationary differen-
tiable Gaussian processes. In that case, we already know that the Rice method,
see Azals and Wschebor (2009), gives the upper bound (2.4). This bound is very
efficient for small intervals and rather high levels. But of course it cannot be very
accurate if u is fixed and T is very large, as it can be even larger than 1, so, al-
most every time, a better approximation is given by using the Poisson Clamping
heuristic of Aldous (1989). Basically, it assumes that the number U, (x, [0,T]) of
up-crossings of the level v on [0, T] follows a Poisson distribution so that the proba-
bility of having at least one crossing is approximatively 1 — exp(—E(U,(x, [0,T1])))-
Note that when w and T tend jointly to infinity so that E(U,(x, [0,T])) is constant,
the Volkonskii Rozanov theorem (see Volkonskil and Rozanov, 1959) implies that
the limit is actually Poisson. Taking into account the fact that the limit as T goes
to 0 should be ®(u), we are conducted to use the approximation

= T (u)
P{My > u} = B(u) + B(u) (1 - ex (— ) 2.5
(> ) = 00) + o) (1 - exp (- 520 (25)
Theoretically, a Taylor expansion shows that the bound from the Rice method
and the Poisson approximation are equivalent when v — 4o00. A discussion con-

cerning it’s numerical validity and performance is given in Section 4.

2.4. Euler characteristic method. The Euler Characteristic method is defined in its
full generality for random fields defined on stratified manifold of R¢ having constant
variance (say equal to one). However, the formula is cumbersome and no numerical
application exists. For simplicity we limit our attention to a particular case.

Let x be a Gaussian centered differentiable isotropic random field on the rec-
tangle [0, T3] x [0, T3]. Denote p(||t — s||) = Cov(X(s), X (¢)) and suppose that x is
centered, reduced and with unit speed (this can always be obtained by a scaling)
then the Euler characteristic approximation is given by

]P){.Z\4Tl”]’2 > U} ~ (ID(u) + (Tl + TQ)QZ\S/(% + TlTQU%::),
see Adler and Taylor (2007) or Azals and Delmas (2002) for more details. In
particular, the Fuler Characteristic method is the natural generalization of the
Rice method to dimension 2.

2.5. Other method. For completeness we must cite the work of Li and Xu (2018)
which is dedicated to a method of importance sampling for rare events simulations
applied to high values of random fields. Their method is very accurate for very high
levels, typically P{M7 > u} ~ 107¢ or 107!, Since events we consider here have
probability 0.5, 0.05 or 0.01, we will not focus on thier method in the following.

3. Numerical methods and programs

In this section we present the juges of the numerical comparison of Section 4.

3.1. Existing programs. The simplest cases are the few situations cases where the
exact result is known by a closed formula and when this formula is simple enough so
that a numerical program is available (the second condition being more restrictive
than the first one).
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3.1.1. Ezxact results. Among the few classical cases where an explicit formula exists,
see Azais and Lozada-Chang (2013), some are rather easy to compute and have
been incorporated to the Maxgbbox toolbox More precisely, the following cases
are covered:

e The Brownian motion or Wiener process : functions pbm, gbm, pnbm and
gnbm.

The Brownian bridge: pbb, qbb, pnbb, qnbb.

The sine-cosine process: psc, gsc, pnsc and gnsc.

The Ornstein-Uhlenbeck process: pou, qou, pnou, gnou.

The Bessel process: pbp, gqbp, pnbp, gnbp.

The prefix p is for the cumulative distribution, q is for the inverse distribution
function or fractile function and n is for the norm or the absolute value.

3.1.2. A first approach for Gaussian vector. The first program QSIMVN written
by Genz (1992) deals with integration of Gaussian densities over hyper-rectangles.
It uses Quasi Monte-Carlo integration. In particular, considering an hyper rectangle
in R™ which is the product n times of (—oo, u), it allows us to compute numerically
the distribution of the maximum of a Gaussian vector.

A complementary version named QSIMVNEF computes the expectation of a
function with respect to the Gaussian density.

3.1.3. Record method and Quasi Montecarlo integration for Gaussian processes.
The method relies on the record method (see Mercadier, 2006 and Azais and Wsche-
bor, 2009) which is a refinement of the Rice method.

Theorem 3.1. Suppose that the process x is Gaussian with C' paths and satisfies:

e V(s,t) €10,T)%, s < t, the distribution of (X(s), X(t)) does not degenerate,
o Vt € (0,7, the distribution of (X(t),X'(t)) does not degenerate,
then

T
P(Mr > u) = P(X(0) > u) +/0 E (X/(t)+IlX(s)§uVs<t

X(t) = u) pxp (w)dt.
(3.1)

The formula (3.1) is in fact an implicit formula which has its own theoreti-
cal interest but is not directly usable for a numerical purpose. The condition
X(s) <uVs <t has to be discretized using a grid on the set [0, 7] giving now the
following upper-bound:

T
P(X(0) > u) +/0 E (X'() 1 x(s)<uvs<ten, ()| X (t) = ) px ) (u)dt,  (3.2)

where D, (T) := {to =0,t1 =T/n,...,t, = T} is, for example, the regular grid of
[0,7]. To complete this study, a lower bound is obtained simply by discretization
of time and using the routine QSIMVN of Section 3.1.2.

After the pioneering work of Mercadier (2006) with the toolbox MAGP, this
method has been fully detailed in the program M GP written by Genz and described
in Azals and Genz (2013). Note that MGP gives an upper bound (which is always
displayed in red in the figures) and a lower bound (diplayed in blue). These bounds
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account for numerical errors, so in the examples displayed on Figures 1.2, 4.3, 4.4,
4.9, 4.10, it is possible to know in which interval the true probability lies.

In addition, in some cases, we have performed computer intensive studies im-
proving the different parameters of MGP: number of points of the grid, number
of QMC points. In such a case, in general, the upper bound and the lower bound
converge to the same value which is the true value. Moreover, from these exper-
iments we know that, in general, the upper-bound (in red) is more accurate than
the lower bound (in blue).

3.2. New programs.

3.2.1. Record method for non stationary processes. We present here a generalization
of MGP called MAXNSGP. At cost of being rather slower, it is adapted to non-
centered non-stationary differentiable Gaussian processes.

This program provides an upper bound and a lower bound for the cumulative
distribution function of the maximum. The lower bound is based on a time dis-
cretisation similar to the one of MGP. As for the upper bound, we consider the
equation (3.2) and

e Use a trapezoidal rule to compute the integral using the same grid D,,(T")
so that we limit our attention to the computation of integrands at points
t;=1i/n,i <n.

e For each t; € D,(T), set Y = (X'(t;), X (to),..., X(t;)) = (Y1,...,Yit2)
and note that

E (X' (t:) "L x(s)y<uvs<tien, (1)) | X (t:) = w) px (1) (w)
—+oo

=/ y1/} ]‘pY(yla”wyiJrlaU)dyl~~~dyi+17
0 —oo,ul*

where py denotes the density of the Gaussian vector Y and let X; be its
variance-covariance matrix.

e Use the change of variable Y = E; /27 where E} /% is the square root of ¥;
obtained via the Cholesky decomposition. Note that Z ~ N (0, I;12).

e Use the change of variable U; = ®(Z;) where the U; are independant and
follow a uniform distribution for all choice of j.

e Reduce the problem to the hypercube [0, 1]%.

e Finally use MCQMC (Monte-Carlo Quasi Monte-Carlo) integration method
on [0, 1]*. By this last method we mean that in general Quasi Monte-Carlo
are very precise but do not give a reliable estimation of their error. To get
this estimation we add an extra Monte-Carlo layer. See Genz (1992) and
Azals and Genz (2013) for more details.

Contrary to MGP, the non stationarity of x do not allow to construt recur-
sively the numerous variance-covariance matrices Y; as ¢ varies. By consequence,
MAXNSGP is slower but more general. An exemple of application of
MAXNSGP, available at Mourareau (2015), is given in Appendix A.

3.2.2. Record method in dimension 2. In dimension two, the record method is
adapted to a Gaussian field defined on compact, convex subsets having a.s. a piece-
wise C! parametrization of the boundary. Here we limit our presentation to the case
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where the parameter set is the rectangle [0, 7] x [0,T5]. We use the lexicographic
order defined by
s = (51,32) < (t1,t2) =1 <= {82 < tz} or {32 =19; 51 < tl}

and define the record set similarly to the one dimensional case with the relation
< instead of <. Our aim is to apply a Kac-Rice formula on the rectangle, which
imply the application of Kac-Rice formula in dimension higher than 1. To do so,
set X| = 2% and define the following mild hypotheses for y:

at
(A1) The sample paths of the random field Z = (X, X]) are a.s. C*.
(A2) The distribution of Z(t) does not degenerate.
(A3) For every a € R?, P(3s € [0,T1] x [0,T]; Z(s) = a, det(Z'(s)) =0) = 0.
Sufficient conditions for (A1) — (A3) are generic. They are almost always satisfied

in the case of a process x which is stationary. In that context, Mercadier (2006)
proved the following theorem.

Theorem 3.2. With assumption above, for every u € R,

]P’(]\IT1 Ty > u) = ]P(X(O) > U)

+Z / (X (0) Loy 0y ot | X (8) = ) Doy (w)do () (3.3)
Tl T2
B (XSO <o (X XD = (1.0)) 0 (00
(3.4)
where

o Bl = [(0,0),(T1,0)], B2 = [(0,0),(0,T2)], B3 = [(TMO),(TMTQH are the
three relevant boundaries of the rectangle: the fourth one does not contribute
because of the conditions.

e o is the surfacic measure (here the length) on the boundary.

o X!I(t) = gf, X = %t); and X denote the derivative of X along B;
fori=1,23.

From formula (3.4), we can derive a numerical routine to bound P(Mp, 1, >
u) for non-stationary non-centered differentiable Gaussian fields. This program
uses the same tricks than MAXNSGP, the only main difference is that we don’t
consider the same grids to compute the two dimensional integral over [0, T3] x [0, T%]
and to discretize the condition 1y (s)<x(s), vs<t- As a matter of fact, this last
discretization is time consuming and can be faster performed on a coarser grid
without impacting the precision.

More precisely, let

Gy (T2, T) = {(tl,t?) tl = nilTl, 2= nisz, 0<i<n, 0<j< nQ}
be the grid for the trapezoidal rule and let m; dividing ni and mso dividing na,
then the subgrid of G, n, (T4, T2) defined for the discretization of the condition

X(s) < X(t), Vst
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is

k
Dm17m2(T17T2) = {(Sllcvslz); Sllc =

l
7T17 512:7T23 nggmla Oglng}
my ma2
In particular, for each point ¢ of Gy, n,(T1,T2), we define the past of ¢ (with respect

to the order <) as the set
P, ={s; s <4t} N Dy m, (11, T2)
in order to construct our numerical routine MAXNSGP2 similarly to
MAXNSGP. To do so, we consider the one dimensional algorithm of Section 3.2.1
on the vectors
o (X1(t50),X (Plig)) X (1,0)) for By,

0<i<ng

. (Xg (o,t;) X (P(O’t;-)) X (o,t;))0<j<n2 for By,

x4 (Tit) X (P ) - X (T1.8h)) for B
¢ ( 2 \Intz) (T2:t3) ) L b 0<j<ns or P
while the computation of the interior is based on a trapezoidal rule on the grid

Gy oy (Th,T) combined with the previous algorithm on the vector
1l 42 142 ) 1,2
(Xl (tz ) tj) 7X2 (tz ) tj) 7X11 (tz ) t]) 7X (P(t},tf)> 7X (tz 3 tj))OSiSnl,OSjgnz .

An exemple of application of MAXNSGP2, available at Mourareau (2015), is
given in Appendix B. Finally, note that MAGP by Mercadier (2005, 2006) is an-
other version that uses the WAFO toolbox and that does not give an estimation
of the error. As far as we can tell, MAGP was until recently the only program
that concerns two-dimensional stationary Gaussian fields.

3.2.3. A program for the Poisson method. Finally, the Poisson approximation is
illustrated by functions pPOISSON and qPOISSON, that can be found at Mourareau
(2015). An example of utilization is given by

p = gPoisson(0.05,10,1)

where a = 0.05 is the level fixed by the user, T' = 10 is the length of the interval
and p”(0) = —1.

4. Applications to Statistics

In this section we want to consider the three classical approximations (with their
variants) given in introduction and the Poisson approximation of Section 2.3. Our
aim is to compare these tools in various scenarios.

4.1. Simulation procedure. Our computation scheme is the following. For a given
size of interval (or rectangle), we use the relevant approximation of Section 2 to
compute a « approximate threshold u, and then we use the relevant numerical
program to compute the corresponding actual level &. The approximation is said
satisfactory if there is a small discrepancy between « and a.

Such a kind of study has been performed in the numerical study of the domain
of validity of the classical x? test. Indeed, the well-known condition "the expected
size of each cell must be greater than 5" corresponds to conditions that ensures
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that the actual level @ differs from the nominal level « by less than 20 % in relative
variation (see Greenwood and Nikulin, 1996). In other words, for a nominal level «
of 5% (resp 1%) we demand the actual level to be in (4%, 6%) (resp. (0.8%,1.2%)).

In the interpretation of our numerical experiments we will generally consider a
more restrictive rule of relative variation of 5% instead of 20%. In ther words we
will demand, for a nominal level of 5 %, (resp. 1%) the true level to belong to
[4.75%, 5.25%] (resp.[0.95%, 1.05%)] .

4.2. The processes.

[J For the Pickands approximation,
e the stationary Gaussian process with covariance p(t) = exp(—t2/2) for
which the result is known from the MGP program,
e the stationary Gaussian process with covariance p(t) = exp(—t!9%) for
which the result is approximatively known from the lower bound of the
MGP program.
e the Ornstein-Uhlenbeck process with covariance p(t) = exp(—|[¢|) for
which the result is exactly known from the pou function.
These are the few case where we are able to perform a numerical study for
3 processes.

[0 For the Rice and the Poisson approximation, we consider three stationary
processes with covariance
o p(t) = exp(—t*/2) ,
e p(t) =1/cosh(t) ,
e p(t) = sinc(v/3t) = Sm\([%
O For the Euler characteristic, we consider isotropic and stationary Gaussian
fields with covariances
o p(t) = exp(—||t]?/2),
o p(t) = (1+]/t|)) exp(—]|t||) which is a Matern covariance with parameter
3/2.
To give a precise meaning to the interpretation, we will always normalize our pro-
cesses with p(0) = 1 and "unit speed transformation" —p”(0) = 1.

4.3. General presentation of the figures. In a first part we consider the problem of
determination of a threshold for test of level & = 0.01 and o = 0.05. In the second
part we consider the problem of the determination of the median o = 0.5.

Let us consider the example of Figure 4.3, the others being very similar. As a
function of the length T' of the set, in abscissa, a threshold u has been computed
using the Rice bound given by (2.4) for @ = 0.05. This bound is only approximative.
So the true level is not really o and is measured using a numerical tool here MGP.
Recall that the upper bound is in general closer to the reality. From left to right,
the three processes of Section 4.2 are considered.

4.4. Results and comments. We give a list of the main points

e Figures 4.3 and 4.4 show that the Rice method is, in general, satisfactory
for statistical application: the upper-bound in red which is the more precise
is very close to the nominal value.
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e Figures 4.5, 4.6 and 4.7 show that the form (2.2) or (2.3) of the Pickands
methods perform well for large time intervals but neither is preferable to
the other in the general case. Moreover, for small intervals, both give
too low levels. If the heruristic correction for small intervals is performed,
the method performs well in every conditions. Note that there is some
instability for very small intervals which is studied Figure 4.8: a "zoom"
of Figure 4.5. It shows that the local increase around 7" = 0 of the actual
level is not that important.

e Both Rice (Figure 4.9) and Pickands (not displayed) methods are not rele-
vant to compute the median as soon as 7' is not very small.

e In case of smooth processes, the Poisson method performs well in every
situation.

e The problem of computing the median of My for 8 processes 8 # 2 remains
open.

e The Euler characteristic method performs rather well, except for « = 0.5
and very small rectangles. In our interpretation this is due to the fact that
in almost every considered case the level u is high.

4.4.1. 1% and 5% critical values.

002

s

0049

00

0047

00

FIGURE 4.3. Exact level of a test constructed for a nominal level of o = 5% using
the Rice method (see Section 2). An upper bound (red line) and a lower bound
(blue line) of the level are computed by the program MGP (see Section 3.1.1). From
left to right, the processes considered have covariance function p(t) = exp(—t?/2),
p(t) = 1/ cosh(t) and p(t) = sinc(v/3t).
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F1cURE 4.4. Same as Figure 4.3 except that a = 0.01.
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F1GURE 4.5. Exact level of a test constructed for the Ornstein-Ulhenbeck process
and a nominal level of & = 1% (left) or « = 5% (right) using the Pickands method
and the program pou. The level corresponding to equation (2.2) is given in brown,
the one of equation (2.3) is given in green while the modified versions including ®(u)
are given in dashed.
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FIGURE 4.6. The process considered here has covariance p(t) = exp(—t'°%); Exact
level of a test constructed for a nominal level of « = 1% (left) or « = 5% (right) using
the Pickands method. Our numerical computation uses the lower bound of MGP,
thus it provides an under estimation. The meaning of the colours and dashed lin is
the same as in Figure 4.5.
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FIGURE 4.7. Same as Figure 4.6 except that (a) the covariance is now p(t) =
exp(—t%/2), (b) the computation uses the upper-bound of MGP which is known to

be precise.
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FIGURE 4.8. Zoom of Figure 4.5 for the dotted lines and small values of T.
4.4.2. Computing the median of M.
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FiGURE 4.9. Exact level of a test constructed for a nominal level of a = 50% using
the Rice method (see Section 2). An upper bound (red line) and a lower bound
(blue line) of the level are computed by the program MGP (see Section 3.1.1). From
left to right, the processes considered have covariance function p(t) = exp(—t?/2),
p(t) = 1/ cosh(t) and p(t) = sinc(+/3t).

FIGURE 4.10. Exact probability of Mr to be above the approximate median com-
puted with the Poisson method (see Section 2). An upper bound (red line)
and a lower bound (blue line) of the probability are computed by MGP (see Sec-
tion 3.1.1). From left to right, the processes considered have covariance function
p(t) = exp(—t%/2), p(t) = 1/ cosh(t) and p(t) = sinc(v/3t).
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4.4.3. Two dimensional case.
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FIGURE 4.11. Exact level of a test constructed for a nominal level of & = 5% using
the Euler characteristic method (see Section 2) on subsets of [0,50]>. The upper
bound presented here is computed by the program MAXNSGP2 (see Section 3.1.1)
and the processes considered have covariance function p(t) = exp(—t*/2) (left) and
p(t) = (14 [|t]]) exp(—||t]]) (right).
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FIGURE 4.12. Same as Figure 4.11 except that : The covariance is always p(t) =
exp(—t?/2) and a = 0.01 (left) and o = 0.5 (right)
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Ficure 4.13. Exact level of a test constructed for a nominal level of, from left
to right, @« = 1%, a = 5% and a = 50%, using the Euler characteristic method
(see Section 2) on subsets of the diagonal of [0,50]>. The upper bound presented
here is computed by the program MAXNSGP2 (see Section 3.1.1) and the process
considered has covariance function p(t) = exp(—t*/2).
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5. Conclusion

The present paper has shown that the classical bounds are efficient for statistical
application as soon as the good version of Pickands method is used. However, they
are not efficient for computing the median of the maximum. In that case, the
proposed Poisson method performs well and is equivalent to the Rice method in
the previous situations. In addition, Figure 5.14 show that it performs well for the
computation of others fractiles. Finally, the Euler characteristic method is efficient
in almost every cases.

0.4 0.7

03 06

FIGURE 5.14. Exact probability of Mz to be above the approximate 1 — 0.40 (left
top); 1 — 0.70 (right top) 1 — 0.30 (left bottom) 1 — 0.60 (right bottom) fractile
computed with the Poisson method (see Section 2) on subsets of [0,50]. An upper
bound (red line) and a lower bound (blue line) of the level are computed by the
program MGP (see Section 3.1.1). The process considered has covariance function

p(t) = exp(—t*/2).

Appendix A. MAXNSGP

The syntax of MGP and MAXNSGP are very similar. For instance, to com-
pute the probability that the maximum of the Gaussian process satisfying m(t) = 4

and r(s,t) = el o1 exceed the level ©w = 1 on the set [1, 3], it reads as

B Ves?—1y/et® -1

r = 0(t,s) (exp(s.*t) - 1)./sqrt(exp(s.~2)-1)./sqrt(exp(t.~2)-1)

[p_low,p_upp,e_low,e_upp] =
MAXNSGP(12,10,5000,1,0(t) sqrt(t), @(t,s) r(t,s),1,3)

where
e 12 is the typical value for the number of Monte-Carlo (MC) replications in
the MCQMC integration;
10 is the number of discretization point of the interval [1, 3];
5000 is the number of points used for the QMC routine;
1 is the level of comparison;
@(t) sqrt(t) is the mean function of the process;
Q(t,s) r(t,s) is the covariance function of the process;
1 is the beginning of the interval;
3 is the end of the interval.
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Note that this kind of processes appear in the asymptotic theory of Likelihood
Ratio Test in the case of a mixture, see Delmas (2003) for more details. In case of
discrepancy, the upper-bound is, in general, more precise. Finally, the upper-bound
is very efficient even for small values of n.

Appendix B. MAXNSGP2

Again, the syntax is very similar to the one of MGP and MAXNSGP. For
instance, to compute the probability that the maximum of the Gaussian field satis-
fying m(t) = 0 and V(s,t) € (R?)?, r(s,t) = exp(—||t — 5/|3) exceed the level u = 2
on [0,5] x [0,10], it reads as

r = @(a,b,c,d) exp(-(a-c).~2/2 - (b-d)."~2/2)

[p_low,p_upp,e_low,e_uppl =
MAXNSGP2(12,20,40,2,4,1000,2,0(t,s) 0,r,5,10)

where

e 12 is the typical value for the number of Monte-Carlo (MC) replications in
the MCQMUC integration;

20 is the number of discretization points for trapezoidal rule on the x-axis;
40 is the number of discretization points for trapezoidal rule on the y-axis;
2 is the number of points used for the record set on the x-axis;

4 is the number of points used for the record set on the y-axis;

1000 is the number of points used for the QMC routine;

2 is the level of comparison;

@(t,s) 0 is the mean function of the process;

r is the covariance function of the process;

5 and 10 denote the length of each side of the rectangle, here [0, 5] x [0, 10];

Note again that in case of discrepancy, the upper-bound is, in general, more precise.

Appendix C. Maxgpbox

Maxgpbox is a collection of matlab programs available at the webpage
https://www.math.univ-toulouse.fr /~azais /softwares.php that performs exact cal-
culations for the few cases for which an exact formula is known. It includes in
particular the pou function devoted to the Ornstein-Uhlenbeck process.
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