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Abstract. We present an elementary approach to the order of fluctuations for the
free energy in the Sherrington-Kirkpatrick mean field spin glass model at and near
the critical temperature. It is proved that at the critical temperature the variance
of the free energy is of O((logN)2). In addition, we show that if one approaches
the critical temperature from the low temperature regime at the rate O(N−α) for
some α > 0, then the variance is of O((logN)2 +N1−α).

1. Introduction

The Sherrington-Kirkpatrick (SK) model was initially introduced in Sherrington
and Kirkpatrick (1975) in order to explain some strange magnetic properties of
certain alloys. Over the past decades, it has received a great attention in the physics
and mathematics communities. See Mézard et al. (1987) for physics treatments and
Panchenko (2013); Talagrand (2003, 2011a,b) for recent mathematical progress.

The aim of this short note is to study the order of fluctuations of the free energy
in the SK model at the critical temperature. For any N ≥ 1, the Hamiltonian of
the SK model is defined as

HN (σ) =
1√
N

∑
1≤i,j≤N

gijσiσj

for any σ ∈ ΣN := {−1,+1}N , where (gij)1≤i,j≤N is a family of independent
standard Gaussian random variables. The covariance of HN is described by

EHN (σ1)HN (σ2) = NR(σ1, σ2)2,

where R(σ1, σ2) := N−1
∑N
i=1 σ

1
i σ

2
i is called the overlap between spin configura-

tions σ1, σ2 ∈ ΣN . The free energy and the Gibbs measure at (inverse) temperature
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β > 0 is defined as

FN (β) = log
∑
σ∈ΣN

exp
(
βHN (σ)

)
and

GN (σ) =
exp
(
βHN (σ)

)
ZN (β)

, ∀σ ∈ ΣN ,

where ZN (β) :=
∑
σ∈ΣN

exp
(
βHN (σ)

)
. Denote by σ1, σ2 i.i.d. samplings from GN

and by 〈·〉 the expectation with respect to these random variables.
The SK model is known to exhibit a phase transition at the critical temperature

βc := 1/
√

2. In the high temperature regime β < βc, the limiting free energy is
equal to the anneal free energy, that is,

lim
N→∞

FN (β)

N
= lim
N→∞

logEZN
N

and if we sample two independent σ1, σ2 from the Gibbs measure, then they are
essentially orthogonal to each other in the sense that limN→∞ E〈R(σ1, σ2)2〉 = 0.
In contrast, the model exhibits different behaviors in the lower temperature regime
β > βc, where we see that

lim
N→∞

FN (β)

N
< lim
N→∞

logEZN
N

and the two independent samplings σ1, σ2 have nonzero overlap, that is,

lim
N→∞

E〈R(σ1, σ2)2〉 > 0.

Indeed, it was conjectured that the limiting distribution of R(σ1, σ2) should be
be described by a probability measure whose support is an interval [0, q] for some
q ∈ (0, 1). See Mézard et al. (1987); Talagrand (2003, 2011b) for more details.

Previous rigorous results on the order of fluctuations of the free energy is sum-
marized as follows:

• High temperature: Aizenman, Lebowitz, and Ruelle (Aizenman et al.,
1987) proved that the free energy has Gaussian fluctuations in the high
temperature regime. Their result implies that the limit of Var(FN (β))
exists and is finite.

• Near critical temperature: The problem of understanding the transition
near the critical temperature was intensively studied in Talagrand’s books
Talagrand (2003, Section 2.14) and Talagrand (2011b, Section 11.7), where
he showed that when β = βN approaches the critical temperature from the
high temperature regime in the rate limN→∞N1/3(β2

c − β2
N ) = c, then the

overlap undergoes a phase transition depending on whether c is finite or
infinite. Exactly at the criticality βc, he also proved that the overlap is
controlled by E〈R(σ1, σ2)2〉 ≤ C/

√
N for some universal constant C, from

which it can be derived that Var(FN (βc)) ≤ C
√
N , see Remark 2.2 below.

• Low temperature: Chatterjee (2009) showed that

Var(FN (β)) ≤ C(β)N

logN
,
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where C(β) is a constant independent of N. Incidentally, it was proved by
Chatterjee (2019+, Theorem 2.4) that fluctuations of the free energy are
at least of order 1 at any β.

The order of fluctuations of the free energy is also studied in the physics liter-
ature, for example Aspelmeier (2008); Aspelmeier et al. (2008); Parisi and Rizzo
(2009). At the critical temperature, it is expected that

Var(FN (βc)) =
1

6
logN +O(1).

In the low temperature regime, it is believed that Var(FN (β)) � N2µ for some
µ ≥ 01. However, physicists’ simulations have not reached an agreement: while
some suggested µ = 1/4, it was also proposed that µ = 1/6. See Aspelmeier et al.
(2008, Section 7) for a detailed discussion. Notably, Aspelmeier (2008) argued that
µ ≤ 1/4.

This note is focused on the order of fluctuation of FN at the critical temperature.
Our main result below contains two parts. First, at the critical temperature, we
obtain an upper bound of order (logN)2 for the variance of the free energy. Second,
we show that if one approaches the critical temperature from the low temperature
regime in the rate βN =

√
β2
c +N−α for α ∈ (0, 1), then a polynomial bound N1−α

is obtained. This improves Chatterjee’s bound N/ logN in the near critical case.

Theorem 1.1. The following statements hold:
(1) There exists a constant C > 0 such that

Var
(
FN
(
βc
))
≤ C

(
(logN)2 + 1

)
, ∀N ≥ 1.

(2) For any fixed α > 0 and d > 0, there exists a constant C depending only on
α and d such that

Var
(
FN

(√
β2
c + dN−α

))
≤ C

(
(logN)2 +N1−α), ∀N ≥ 1.

Our approach is motivated by a work of Guerra and Toninelli (Guerra and
Toninelli, 2002), where they derived the limit of the SK free energy and provided a
rate of convergence. Their idea was to consider a coupled free energy with Hamil-
tonian of the form

√
s(HN (σ1) +HN (σ2)) + λNR(σ1, σ2)2, where

√
s is a varying

temperature and λ is an auxiliary parameter. From this, they derived an ordinary
differential inequality for this coupled free energy in the variable s ≥ 0 and by solv-
ing this inequality, they obtained the rate of convergence of the free energy. Our
argument adopts a different route by considering a coupled Hamiltonian that is re-
lated to the problem of chaos in disorder in the SK model considered in Chatterjee
(2009, 2014).

2. Proof of Theorem 1.1

Let H ′N , H
′′
N be two independent copies of HN . For 0 ≤ t ≤ 1 and σ, ρ ∈ ΣN , set

H1
N,t(σ) =

√
tHN (σ) +

√
1− tH ′N (σ),

H2
N,t(ρ) =

√
tHN (ρ) +

√
1− tH ′′N (ρ).

Note that
EH1

N,t(σ)H2
N,t(ρ) = tNR(σ, ρ)2.

1aN � bN means that there exist c, C > 0 independent of N such that cbN ≤ aN ≤ CbN .
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For any t ∈ [0, 1] and λ ∈ R, define

φN (t, λ) =
1

N
E log

∑
σ,ρ∈ΣN

exp
(
β(H1

N,t(σ) +H2
N,t(ρ)) + λβ2NR(σ, ρ)2

)
.

Denote by 〈·〉t,λ the Gibbs expectation associated to this free energy. That is, the
expectation with respect to the measure∑

σ,ρ I((σ, ρ) ∈ ·) exp
(
β(H1

N,t(σ) +H2
N,t(ρ)) + λβ2NR(σ, ρ)2

)∑
σ,ρ exp

(
β(H1

N,t(σ) +H2
N,t(ρ)) + λβ2NR(σ, ρ)2

) .

Lemma 2.1. For any β > 0 and t ∈ [0, 1] satisfying 2β2t < 1, we have that for
any N ≥ 1,

E〈R(σ, ρ)2〉t,0 ≤
2

N(1− 2β2t)
log

2

1− 2β2t
.

Proof : Note that for t ∈ (0, 1) and any σ, σ′, ρ, ρ′ ∈ ΣN ,

E
(HN (σ)√

t
− H ′N (σ)√

1− t

)
H1
N,t(σ

′) = 0,

E
(HN (ρ)√

t
− H ′′N (ρ)√

1− t

)
H2
N,t(ρ

′) = 0,

E
(HN (σ)√

t
− H ′N (σ)√

1− t

)
H2
N,t(ρ

′) = NR(σ, ρ′)2,

E
(HN (ρ)√

t
− H ′N (ρ)√

1− t

)
H1
N,t(σ

′) = NR(σ′, ρ)2.

Using Gaussian integration by parts gives

∂tφN (t, λ) =
1

2N
βE
〈(HN (σ)√

t
− H ′N (σ)√

1− t

)
+
(HN (ρ)√

t
− H ′′N (ρ)√

1− t

)〉
t,λ

=
β2

2

(
2E〈R(σ, ρ)2〉t,λ − E〈R(σ1, ρ2)2〉t,λ − E〈R(σ2, ρ1)2〉t,λ

)
= β2

(
E〈R(σ, ρ)2〉t,λ − E〈R(σ1, ρ2)2〉t,λ

)
,

where the pairs (σ, ρ), (σ1, ρ1), and (σ2, ρ2) are i.i.d. copies from the Gibbs measure
〈·〉t,λ and the second equality used symmetry between the distributions correspond-
ing to the pairs (σ1, ρ2) and (σ2, ρ1). Set

ΦN (t, λ) = φN (t, λ− t).

Then from the above equation,

∂tΦN (t, λ) = ∂tφN (t, λ− t)− ∂λφN (t, λ− t)
= β2

(
E〈R(σ, ρ)2〉t,λ−t − E〈R(σ1, ρ2)2〉t,λ−t

)
− β2E〈R(σ, ρ)2〉t,λ−t

= −β2E〈R(σ1, ρ2)2〉t,λ−t.
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Note that ∂tΦN (s, λ+ t) = −β2E〈R(σ1, ρ2)2〉s,λ+t−s. It follows that

φN (t, λ) = ΦN (t, λ+ t)

=

∫ t

0

∂tΦN (s, λ+ t)ds+ ΦN (0, λ+ t)

≤ ΦN (0, λ+ t)

= φN (0, λ+ t).

Now using the convexity of φN in λ gives

β2λE〈R(σ, ρ)2〉t,0 = λ∂λφN (t, 0)

≤ φN (t, λ)− φN (t, 0)

≤ φN (0, λ+ t)− φN (t, 0)

= φN (0, λ+ t)− φN (0, 0),

(2.1)

where the last equation used that φN (t, 0) = φN (0, 0). Note that under the mea-
sure E〈·〉0,0, σ and ρ are independent uniform random variables on ΣN and hence,
NR(σ, ρ) is equal to the sum of N i.i.d. Rademacher random variables X1, . . . , XN

in distribution. It is well-known (see, e.g., Talagrand, 2011b, Eq. (A.19)) that

E exp
[
x
(X1 + · · ·+XN√

N

)2]
≤ 1√

1− 2x
, ∀x ∈ [0, 1/2).

Consequently, using (2.1) and Jensen’s inequality, we have

β2λE〈R(σ, ρ)2〉t,0 ≤ φN (0, λ+ t)− φN (0, 0)

=
1

N
E log

〈
exp
(
β2(λ+ t)NR(σ, ρ)2

)〉
0,0

≤ 1

N
logE

〈
exp
(
β2(λ+ t)NR(σ, ρ)2

)〉
0,0

≤ 1

N
log

1√
1− 2β2(λ+ t)

whenever 2β2(λ+ t) < 1. In particular, plugging

λ =
1

2

( 1

2β2
− t
)

into the above inequality completes our proof. �

Proof of Theorem 1.1: Recall from Chatterjee (2009) that the variance of the free
energy can be expressed as

Var(FN (β)) = β2N

∫ 1

0

E〈R(σ, ρ)2〉t,0dt. (2.2)
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For any 0 < δ < 1/(2β2) ≤ 1,∫ 1
2β2
−δ

0

E〈R(σ, ρ)2〉t,0dt ≤
1

N

∫ 1
2β2
−δ

0

2

1− 2β2t
log

2

1− 2β2t
dt

=
1

2Nβ2

(
log

1− 2β2t

2

)2∣∣∣ 1
2β2
−δ

0

=
1

2Nβ2

((
log(β2δ)

)2 − (log 2
)2)

≤ 1

2Nβ2

(
log(β2δ)

)2
≤ 1

Nβ2

(
(log δ)2 + 4(log β)2

)
,

where we have used the inequality (log(ab))2 ≤ 2(log a)2 +2(log b)2 for any a, b > 0.
On the other hand, noting that |R(σ, ρ)| ≤ 1 implies∫ 1

1
2β2
−δ

E〈R(σ, ρ)2〉t,0dt ≤ 1− 1

2β2
+ δ.

From this,

Var(FN (β)) ≤ β2
( 1

β2

(
(log δ)2 + 4(log β)2

)
+
(

1− 1

2β2
+ δ
)
N
)
.

If β = βc, we take δ = 1/N so that

Var(FN (β)) ≤
(
(logN)2 + 4(log 2)2

)
+

1

2

and this gives the first assertion. If β2 = β2
c + dN−α for d > 0, we take δ = dN−α

and note that

1− 1

2β2
+ δ =

2dN−α

1 + 2dN−α
+ dN−α ≤ 3dN−α,

which implies that as long as N is large enough,

Var(FN (β)) ≤ β2
( 1

β2

(
(−α logN + log d)2 + 4(log β)2

)
+ 3dN1−α

)
= (−α logN + log d)2 + 4(log β)2 + 3dβ2N1−α

and the second assertion follows. �

Remark 2.2. Consider the SK model at the critical temperature βc. Recall from
Talagrand (2011b, Chapter 11) that there exists a constant C > 0 such that
E〈R(σ1, σ2)2〉 ≤ C/

√
N for all N ≥ 1. Also, it is known (see Chatterjee, 2009)

that t ∈ [0, 1] 7→ E〈R(σ, ρ)2〉t,0 is a nondecreasing function with E〈R(σ, ρ)2〉1,0 =

E〈R(σ1, σ2)2〉. These imply that E〈R(σ, ρ)2〉t,0 ≤ C/
√
N for all t ∈ [0, 1]. Conse-

quently, from (2.2), Var(FN (βc)) ≤ Cβ2
c

√
N.

Remark 2.3. Another interesting example to consider is the pure p-spin model with
p ≥ 3, i.e., EHN (σ1)HN (σ2) = NR(σ1, σ2)p. In this case, the determination of
the critical temperature βp,c for the corresponding free energy was studied in Chen
(2019+) and it was established there that Var(FN (β)) � N1−p/2 for all β < βp,c.
The current approach however does not seem to work at the criticality.
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