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Abstract. We study the asymptotic edge statistics of the Gaussian β-ensemble,
a collection of n particles, as the inverse temperature β tends to zero as n tends
to infinity. In a certain decay regime of β, the associated extreme point process is
proved to converge in distribution to a Poisson point process as n→ +∞. We also
extend a well known result on Poisson limit for Gaussian extremes by showing the
existence of an edge regime that we did not find in the literature.

1. Introduction

The study of spectral statistics in Random Matrix Theory has gathered a conse-
quent volume of the research attention during the last decades. For several reasons,
theses statistics are considered in the asymptotic regime: as the size of the matrix
(and hence the number of eigenvalues) goes to infinity. One can inquiry about
the behaviour of the whole spectrum (such as linear statistics), this is called global
statistics (or regime). The main object to study in this context is the empirical
spectral measure and the goal is to obtain a limiting distribution and give fluctua-
tions around this limit. On the other hand, one can seek for more subtle, precise
informations, like the spacing between two consecutive eigenvalues, or the nature
of the largest eigenvalues; more generally, the joint distribution of eigenvalues in
an interval of length o(1). Such statistics are called local. In this particular regime,
we differentiate between the bulk and the edge statistics. The bulk regime focuses
on intervals inside the support of the limiting spectral measure while the edge
regime concerns about the boundary. In this article, we are mainly interested in
the asymptotic local edge regime, which corresponds to the largest eigenvalues.

Among random matrix models, two matrix ensembles are distinguished: Wigner
matrices and invariant ensembles. The first one indicates matrices with independent
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components while the second gathers matrices whose law is invariant by symmetry
group action. Their intersection is known as the GOE, GUE and GSE. Their origin
trace back to the pioneer Wigner. He wanted to model complex highly correlated
systems with (or lacking) different kind of symmetries (see Mehta, 2004; Forrester,
2010) and considered Hamiltonians as large random matrices. The name stems from
the invariance under certain group actions. The joint density of the eigenvalues can
be derived (see for example Theorem 4.5.35 on page 303 in Anderson et al., 2010,
or in Dumitriu and Edelman, 2002) and is proportional to:

P (dλ1, . . . ,dλn) ∝ exp

(
−1

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi.

The Vandermonde determinant is noted |∆n(λ)|β :=
∏n
i<j |λj − λi|

β
, and β ∈

{1, 2, 4}. Let us mention that when β = 2, the correlation functions, which will
be our prime tool, describe a determinantal process (Gaudin-Mehta formula, see
for example Theorem 3.1.1 on page 91 in Anderson et al., 2010). The idea that
β taking different values gives rise to different models is known as the Dyson’s
Threefold-Way (Dyson, 1962).

We can extend the model in two directions, allowing other values of β and other
potentials, by writing for β > 0:

Pn,β,V (dλ1, . . . ,dλn) :=
1

Zn,β,V
exp

(
−β

n∑

i=1

V (λi)

)
|∆n(λ)|β

n∏

i=1

dλi.

We refer this as the general β-ensemble. If the potential is quadratic V (x) =
x2

4
,

it reduces to the Gaussian β-ensemble which is the object we study in this paper.
In this context, Dumitriu and Edelman (2002) made a major breakthrough by

constructing a matrix model for such β-ensemble with any β > 0, hence extending
the Dyson’s Threefold-Way β ∈ {1, 2, 4}. It states that the Gaussian β-ensemble
(viewed as a density probability function) is exactly the joint law of the spectrum
of a certain simple matrix. The latter is obtained from successive Househölder
transformations and has a symmetric tridiagonal form. This representation of the
Gaussian β-ensemble by a matrix model (Dumitriu and Edelman, 2002) led the way
for many progresses (Edelman and Sutton, 2007; Valkó and Virág, 2009; Ramı́rez
et al., 2011; Virág, 2014) on the understanding of the asymptotic local eigenvalue
statistics for general β > 0. In particular, Edelman and Sutton (2007), leaning
on the tridiagonal structure of the Gaussian β-ensemble matrix model, gave mul-
tiple indications on how renormalized random matrices can be viewed as finite
difference approximations to stochastic differential operators. Notably, the renor-
malization focuses on the top part of the matrix where the chi’s random variables
are large. This conjecture was investigated in Ramı́rez et al. (2011) where the
properly renormalized largest eigenvalues are shown to converge jointly in distribu-
tion to the low-lying eigenvalues of a one-dimensional Schrödinger operator, namely

the stochastic Airy operator SAOβ := − d2

dx2
+ x+

2√
β
b′x, understood as a random

Schwartz distribution. The eigenvalues of this random operator, as for them, can
be interpreted by variational formulation or by the eigenvalue-eigenvector equation
between Schwartz distributions. Their result writes as for k ≥ 1 fixed, denoting

λβ1 ≥ λβ2 ≥ ... ≥ λβk the k largest eigenvalues of the Gaussian β-ensemble matrix and
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Λβ0 ≤ Λβ1 ≤ ... ≤ Λβk−1 the k smallest eigenvalues of the stochastic Airy operator:

n
2
3

(
2− λβi√

n

)

1≤i≤k

law−−−−→
n→∞

(
Λβi

)
0≤i≤k−1

.

Since the minimal eigenvalue Λ0 of SAOβ has distribution minus TWβ , this work
thereby enlarges Tracy-Widom law to all β > 0, that is:

n
2
3

(
λβi√
n
− 2

)
law−−−−→
n→∞

TWβ .

The Tracy-Widom law (with parameter β) is qualified as universal, in the sense that
such local statistics hold for various matrix models (but also for objects outside of
the random matrix field) and arises from highly correlated systems (such as modeled
by some random matrices).

For finite dimension n, one can choose β = 0 in the joint law P of the Gaussian
β-ensemble, which displays a lack of repulsion force as the Vandermonde factor
vanishes, hence the correlation decreases, which means that randomness increases.
In a Gibbs interpretation (which besides makes us refer to Zn,β,V and its counter-
parts as partition functions), it comes down to consider an infinite temperature in
such log-gas (terminology due to Dyson, 1962). Readily, the joint density for β = 0
is the density of n i.i.d. Gaussian random variables whose maximum is known
Resnick (2008) to converge weakly, as n → +∞, when properly renormalized, to
the Gumbel distribution, one of the three universal distributions classes of the clas-
sical Extreme Value Theory. One deduces (see Coles, 2001, Th 7.1) Poisson limit
for the Gaussian (ie: when β = 0) extreme point process as the number n of parti-
cles grows to infinity. This description in terms of Poisson point processes carries
many informations and implies the limiting Gumbel distribution for the maximum
particle.

As the Gumbel law governs the typical fluctuations of the maximum of indepen-
dent Gaussian variables, which corresponds to the case β = 0, and the Tracy-Widom
law stems from complicated (highly dependent) systems such as the largest particles
in the case β > 0 fixed and n → +∞, it is thus natural to ask for an interpola-
tion between these two phases. Allez and Dumaz (2014) answer this question by
proving that the properly renormalized Tracy-Widomβ converges in distribution to
the Gumbel law as β → 0. They use the characterization of the distribution of the
bottom eigenvalues of the stochastic Airy operator in terms of the explosion times
process of its associated Riccati diffusion (see Ramı́rez et al., 2011). Regarding to
our motivation, they could unfortunately not prove Poissonian statistics for the min-

imal eigenvalues
(

Λβi

)
, distributed according to the Tracy-Widomβ law, in the limit

β → 0. This procedure would exactly reverse the order of the limits β → 0, n→ +∞
considered previously. Nonetheless, the authors investigated the weak convergence
of the top eigenvalues in the double limit β := βn −−−−→

n→∞
0 by heuristic and numeric

arguments. They alluded to the idea that one can achieve Poissonian statistics
for β-ensemble using the same techniques as Ramı́rez et al. (2011); Edelman and
Sutton (2007), at high temperature within the regime nβ −−−−→

n→∞
+∞. Concerning

the bulk statistics, such work has been accomplished in the regime β ∼ n−1, that
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is Poisson convergence of the point process

n∑

i=1

δn(λi−E) with E ∈ (−2, 2) an en-

ergy level in the Wigner sea (see Nakano and Trinh, 2018; Shirai and Trinh, 2015).
This was achieved in Benaych-Georges and Péché (2015) by means of correlation
functions, which is also our method.

The goal of this paper is to understand the behaviour of the largest particles of
the Gaussian β-ensemble as the inverse temperature βn converges to 0 as n goes
to infinity. To this purpose, we study the limiting process of the extremes of the
Gaussian β-ensemble. Among all possible decay rates for β, we restrict ourselves
to the regime nβ −−−−→

n→∞
0. More precisely, our main result gives the convergence as

n→ +∞ of the extreme process toward a Poisson point process on R. Two regimes
for the extremes appear according to the asymptotic behaviour of a certain auxiliary
scaling sequence (δn). In the situation where the latter converges, the scaling focuses
on the very largest particles and the limiting process is inhomogeneous. Otherwise
when δn � 1, it comes down to consider the top particles which are slightly more
inside the bulk. Also, it gives rise to a homogeneous limiting process. Roughly
speaking, the rescaled extreme eigenvalues approximate a Poisson point process
which means that adjacent top particles are statistically independent. Our work
also applies when β is set to 0 and de facto includes asymptotics (n → +∞) of
extremes of Gaussian variables (β = 0). While the outcomes are identical for
both β cases, we want to stress out that the models are intrinsically distinct. We
investigate this question in the subsequent Remark 1.2. Doing such simultaneous
double scaling limit, we fulfill the corresponding task addressed by Allez and Dumaz
(2014) within another regime mentioned in their work and by other means, namely,
the correlation functions method used by Benaych-Georges and Péché (2015).

For u = un and v = vn two sequences, we adopt the notation u� v ⇐⇒
u
v −−−−→n→∞

0 and state our main result:

Theorem 1.1. Let β = βn be such that 0 ≤ β � 1

n log(n)
. Let (λ1, ..., λn) a family

of random variables with joint law Pn,β:

Pn,β(dλ1, . . . ,dλn) :=
1

Zn,β
exp

(
−1

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi,

with normalization constant Zn,β and Vandermonde determinant |∆n(λ)|β :=
n∏

i<j

|λj − λi|β. Given a positive sequence (δn), consider the extreme point process

ξn :=

n∑

i=1

δan(λi−bn),

with modified Gaussian centering and scaling sequences:

bn :=
√

2 log(n)− 1

2

log log(n) + 2 log(δn) + log(4π)√
2 log(n)

, an := δn
√

2 log(n).

• Assume the perturbation (δn) to be such that δn −−−−→
n→∞

δ > 0. Then the

random point process (ξn) converges in distribution to an inhomogeneous
Poisson point process on R with intensity e−

x
δ dx.
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• Assume δn � 1 such that log(δn)�
√

log(n). Then the process (ξn) con-
verges in distribution to a homogeneous Poisson point process on R with
intensity 1.
• When β = 0, the condition on (δn) can be weakened to log(δn)� log(n) in

the previous statement.

Let us first discuss the assumptions and conclusions of the theorem. We prove
convergence of extreme point processes

Pn :=

n∑

i=1

δan(λi−bn)

toward a Poisson point process on R with intensity dµ as n→ +∞ for suitably cho-
sen scaling sequences (an), (bn) and intensity µ. This convergence occurs regardless
to β > 0 or β = 0 although this gives rise to two different models. The scaling
sequences are exactly the same in both cases and are derived from the classical
Gaussian scaling (see Resnick, 2008), except that we increase the scale an by a
multiplicative term δn and lower down the center bn by an additive term involving
δn. We then observe two regimes: first, when

δn −−−−→
n→∞

δ > 0,

the limiting process is an inhomogeneous Poisson process with intensity e−
x
δ dx

(which is a classical result in the purely Gaussian setting, when β = 0). When
δn � 1, even in the purely Gaussian setting (β = 0), we obtain a result that we
did not find in the literature Coles (2001); Leadbetter et al. (1983); Resnick (2008):
in this case, even though the interval considered (centered at bn and with width of
order an) goes to +∞, the limiting process is a homogeneous Poisson process. An
illustration of these phenomena is given in Figure 1.1 below.

Remark 1.2. As previously mentionned, the Poissonian description of the extreme
process, along with the normalizing constants (an), (bn) which display no depen-
dence on β, is valid for both cases βn = 0 and βn > 0. The question of how
close both models are is then raised. Therefore, we need to measure the impact
of the decay rate of βn upon the model. In this direction, one can compare the
normalization constants Zn,β between different βn regimes. This idea emerges from
equilibrium statistical mechanics where the Zn,β is seen as the partition function in
the Gibbs interpretation and is an important quantity characterizing the system.
The computations show a transition at β ∼ n−2. As soon as β � n−2, the repul-
sion is significant while for β � n−2, the partition function has same order as the
normalizing constant of independent gaussians (case β = 0). We state this result in
the forthcoming Lemma 1.3 whose proof is postponed to Section 2.3. It indicates
that our main theorem gains value when compelling

n−2 � β � (n log(n))
−1
,

which corresponds to the regime where both models β = 0 and n−2 � β � n−1 are
truly distinct. The critical role of n2 in this description is consistent with the fact
that one can write

log |∆n(λ)|β = β

n∑

i<j

log |λj − λi|
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with the sum having n2 (1 + o(1)) terms.

R

√
2 log(n)− bn � 1

√
2 log(n)bn when δn � 1 bn when δn → δ

zoom by δn
√
2 log(n)

n

∞
× × × × × × × ×××××× × ×

x 7→ 1 x 7→ exp
(
−xδ
)

Figure 1.1. The centering at bn for both cases δn → δ > 0 and
δn → ∞ are represented on the main line. We zoom in around

each bn by a factor δn
√

2 log(n) and let n go to ∞. For δn � 1,
the limiting object is a Poisson point process with intensity 1. For
δn −−−−→

n→∞
δ, it leads to a Poisson point process with intensity e−

x
δ .

Lemma 1.3. Let β ≥ 0 and β′ > 0.

• Assume 0 ≤ β � β′ � 1

n2
, then

Zn,β′

Zn,β
−−−−→
n→∞

1.

• Assume 0 ≤ β � β′ � 1

n
and β′ � 1

n2
, then Zn,β′ � Zn,β.

The convergence toward a Poisson process for the extreme process is a much
stronger information than the limiting distribution of the maximum. Indeed, one
can deduce the limiting distribution for the kth largest eigenvalue for fixed 1 ≤ k <
+∞.

Corollary 1.4. Let β = βn be such that 0 ≤ β � 1

n log(n)
. Let (λ1, ..., λn) with

joint law Pn,β. Let (an), (bn) from Theorem 1.1 for δ = 1. Then,

Pn,β (an (λmax − bn) ≤ x) −−−−→
n→∞

exp (− exp (−x)) .

Remark 1.5. This result shows that we recover the Gumbel law as limiting distri-
bution of the largest particle from the Poisson limit, so that we retrieve the result
of Allez and Dumaz (2014) corresponding to our setup. Besides, in view of (2.3) in
the next section, we know that the largest eigenvalue is unbounded when n goes to
infinity since the Gaussian distribution has unbounded support. In addition to this
observation, our main result provides the explicit order and Gumbel fluctuations
for the maximum eigenvalue.

The paper is organized as follows: first, we introduce and comment our model.
To derive Poisson statistics, our method is the study of the correlation functions
associated to the extreme point process. We refer to this as our main tool and
explain how it is exploited. Since the computations involve various estimates and
quantities, we exhibit them as independent claims outside the main proof. The next
section is devoted to the precise proof of our result. We give a tractable expression
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of the correlation functions. Then, we prove the conditions needed to provide
inhomogeneous Poisson limit. Our work transposes to the homogeneous limit with
ease so we merge both cases in our statements. Finally, we give a peculiar proof
of the statement when β = 0. This is done by other means and displays a wider
asymptotic regime for the perturbation (δn), so we present it as an independent
result.

Remark 1.6. We consider two cases: δn = O(1) and δn � 1. For the second

case, the assumption required is (δn) such that log(δn)�
√

log(n). It means that

δn = eεn
√

2 log(n) with
1√

log(n)
� εn � 1. Note that the perturbation by δn corre-

sponds to an increase of the zoom around the Gaussian center from first case minus
a negligible factor. Nonetheless, most of our results remain valid under both regimes
and with a weaker growth restriction. For this reason, in this text, the reader will
encounter a less restrictive hypothesis on (δn), namely log(δn)� log(n). It ensures

that bn is equivalent to
√

2 log(n) for any such (δn) as n goes to infinity.

Remark 1.7. One may inquire about the extra factor log(n) in our growth condition
nβ log(n)� 1 in comparaison with the original regime nβ � 1. Indeed, we also ex-

pect the result to hold when
1

n log(n)
� β � 1

n
. The reasons will become apparent

along the paper. We will specially mention each time such restriction occurs. We
also add that it seems rather difficult to overstep this technical limitation with our
method.

2. General model of the Gaussian β-ensemble for β � 1 and α > 0

2.1. Background and preliminaries. For any α > 0, β ≥ 0, and n ≥ 1, we define:

Zn,α,β :=

∫

Rn
exp

(
−α

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi (2.1)

with the Vandermonde determinant factor:

|∆n(λ)|β :=

n∏

i<j

|λi − λj |β ,

and consider an exchangeable family (λ1, ..., λn) of random variables with joint law

Pn,α,β(dλ1, ..., dλn) :=
1

Zn,α,β
exp

(
−α

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi. (2.2)

When α = 1, we adopt the following notation:

Zn,β :=

∫

Rn
exp

(
−1

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi

Pn,β(dλ1, ..., dλn) :=
1

Zn,β
exp

(
−1

2

n∑

i=1

λ2
i

)
|∆n(λ)|β

n∏

i=1

dλi.

In the sequel, the parameter α is always assumed to be 1 except in some specific
cases which will be mentionned. The reason of this choice shall be clear after
incoming explanations.
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Remark 2.1. For β = 0, we retrieve the density of n i.i.d. Gaussian random vari-
ables, which form a system of uncorrelated particles. The partition function in this

case is just Zn,β=0 = (2π)
n
2 . Allowing β > 0, the Vandermonde factor vanishes

when λi = λj and acts as a (long range) repulsion force between the particles,
which thereby constitutes a correlated system. The smaller β is, the weaker repul-
sion operates.

From the crucial matrix model of Dumitriu and Edelman (2002), we endow the
Gaussian β-ensemble with a matrix structure. Recall that χ(k) is defined for any

k > 0 by its density
x
k
2−1e−

x2

2

2
k
2−1Γ(k2 )

on (0,+∞). We state the corresponding result for

our setup:

Theorem 2.2 (Dumitriu and Edelman, 2002). Let H := Hn,α,β the tridiagonal
symmetric random matrix defined as:

1√
α




g1
1√
2
Xn−1

1√
2
Xn−1 g2

1√
2
Xn−2

1√
2
Xn−2 g3

1√
2
Xn−3

. . .
. . .

. . .

. . .
. . . 1√

2
X1

1√
2
X1 gn




,

with (gi)1≤i≤n ∼ N (0, 1) i.i.d. sequence, (Xi)1≤i≤n−1 an independent sequence
such that Xi ∼ χ(iβ) and independent overall entries up to symmetry.

For any α > 0, β ≥ 0, the joint law of the eigenvalues (λ1, ..., λn) of H is Pn,α,β.

It makes the connection between the particles of law Pn,α,β and the spectrum of

H. By trace invariance, we can easily access further information: when α ∼ 1 +
nβ

2
,

the empirical spectral distribution Ln :=
1

n

n∑

i=1

δ{λi} of Hn,α,β has asymptotic first

moment 0 and second moment 1. This convergence motivates the choice α ∼ 1

when β � 1

n
.

In Benaych-Georges and Péché (2015), with the choice α ∼ 1 +
nβ

2
, the authors

proved under the assumption of simultaneous limit nβn −→ 2γ as n → +∞, a con-
tinuous asymptotic interpolation for the empirical spectral measure between the
Wigner semicircle law (γ → +∞) and the Gaussian distribution (γ = 0). The

latter case is of our interest and particularly to the setting β � 1

n
, they proved

that:

1

n

n∑

i=1

f(λi)
P−−−−→

n→∞

∫

R

1√
2π
f(x)e−

x2

2 dx, ∀f ∈ Cb(R). (2.3)

This convergence also justifies the choice α = 1 in our model for β � 1

n
.
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Such transition from Gaussian to Wigner distribution is furthermore investigated
in Allez et al. (2012); Nakano and Trinh (2018). The limiting empirical eigenvalue
density in the double limit nβn −→ 2γ ≥ 0 is derived as a family of densities with
parameter γ ≥ 0. Each of the papers Allez et al. (2012); Benaych-Georges and
Péché (2015); Nakano and Trinh (2018) although provides different computations,
hence giving rise to new identities which seem difficult to prove directly.

2.2. Correlation functions and Poisson convergence. The theorem we intend to
prove will stem from the following result, which thereby makes it the cornerstone of
our demonstration. It ensures that under pointwise convergence of the correlation
functions and some uniform bound on it, the initial point process converges to a
Poisson process.

Proposition 2.3 (Benaych-Georges and Péché, 2015). Let X be a locally compact
Polish space and µ a Radon measure on X. Let (λ1, ..., λn) be an exchangeable
random vector taking values in X with density ρn with respect to µ⊗n. For 1 ≤ k ≤
n, we define the k-th correlation function on Xk:

Rnk (x1, ..., xk) :=
n!

(n− k)!

∫

(xk+1,...,xn)∈Xn−k
ρn(x1, ..., xn)dµ⊗(n−k)(xk+1, ..., xn).

(2.4)

Suppose there exists θ ≥ 0 independent of n such that:

• For 1 ≤ k < +∞ fixed integer, on Xk, we have the pointwise convergence:

Rnk (x1, ..., xn) −−−−→
n→∞

θk.

• For each compact K ⊂ X, there exists θK > 0 such that for any integer
n ≥ 1 large enough, any integer k ≥ 1, on Kk, we have:

1{k≤n}R
n
k (x1, ..., xk) ≤ θkK .

Then, the point process Pn :=

n∑

i=1

δλi converges in distribution to a Poisson

point process with intensity θdµ as n→ +∞.

Remark 2.4. The proof can be found in Benaych-Georges and Péché (2015, Prop.5.6)
where the scheme is successfuly applied to the bulk regime when nβ −−−−→

n→∞
2γ ≥ 0.

In this paper, we inspect the edge regime by using Proposition 2.3 for the rescaled
β-ensemble (an (λi − bn))1≤i≤n in two ways as we chose the real measure µ to be

e−
x
δ dx or just the Lebesgue measure λ. The two induced densities ρn differ only

by a δ-dependent term. By integral linearity, the same goes for the correlation
functions. We derive the mandatory conditions in both cases, leading to two types
of Poisson limit, but proofs are similar.

2.3. Partition functions. In this section, we list some identities, bounds and asymp-
totics involving partition fonctions. They will be used from time to time in the
sequel of the text.

First, we give the main formula for the partition functions. From this, we will
be able to compute several asymptotics of partition functions ratio.
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Lemma 2.5. For any α, β > 0 and n ≥ 1, the following identity holds:

Zn,α,β = (2π)
n
2 (n!)α−β

n(n−1)
4 −n2

n−1∏

i=0

Γ
(

(i+ 1) β2

)

Γ
(
β
2

) . (2.5)

If β ≥ 0, one has also:

Zn,α,β = (2π)
n
2 α−β

n(n−1)
4 −n2

n∏

i=1

Γ
(

1 + iβ
2

)

Γ
(

1 + β
2

) . (2.6)

Proof : Let β > 0. By the Selberg integral theorem in Anderson et al. (2010), we
have:

∫

Rn
|∆n(x)|β e− 1

2

∑n
i=1 x

2
i dx1 · · · dxn = (n!)(2π)

n
2

n−1∏

i=0

Γ
(

(i+ 1) β2

)

Γ
(
β
2

) .

By the change of variable xi = yi
√
α, we get the fundamental identity on partition

functions

Zn,α,β = (2π)
n
2 (n!)α−β

n(n−1)
4 −n2

n−1∏

i=0

Γ
(

(i+ 1) β2

)

Γ
(
β
2

)

= (2π)
n
2 α−β

n(n−1)
4 −n2

n∏

i=1

Γ
(

1 + iβ
2

)

Γ
(

1 + β
2

) .

The case β = 0 is easily treated. �

We are now ready to prove several results needed later.

Lemma 2.6. Fix an integer 1 ≤ k < +∞ and a real number 0 < α < +∞. Let β ≥
0 such that nβ � 1. Let any (δn) positive real sequence such that log(δn)� log(n).
Then,

Zn−k,α,β
Zn,α,β

= (1 + o(1)) (2π)
− k2 α

k
2 (2.7)

Zn−k,α− kβ

4b2n
,β

Zn−k,α,β
= 1 + o(1). (2.8)

Proof : For u� 1, recall the equivalence of the Gamma function near the origin:

Γ(u) =
1

u
(1 + o(1))� 1.

Using equation (2.5) of Lemma 2.5, we compute the ratio (2.7) for β > 0:

Zn−k,α,β
Zn,α,β

= (2π)
− k2 (n− k)!

n!
α
k
2 + β

4 (2nk−k(k+1))
n−1∏

i=n−k

Γ
(
β
2

)

Γ
(

(i+ 1) β2

)

= (1 + o(1)) (2π)
− k2 α

k
2 .

If β = 0, the identity claimed is readily computed from equation (2.6).
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Let us show the asymptotic (2.8). For α > 0, using (2.5), we have:

Zn−k,α− kβ

4b2n
,β = (2π)

n−k
2 (n− k!)α−β

(n−k)(n−k−1)
4 −n−k2

×
(

1− kβ

4αb2n

)−β (n−k)(n−k−1)
4 −n−k2

n−k−1∏

i=0

Γ
(

(i+ 1) β2

)

Γ
(
β
2

) .

Thus by a Taylor expansion of x 7→ log(1− x) around 0:

Zn−k,α− kβ

4b2n
,β

Zn−k,α,β

= exp
((
− β (n− k)(n− k − 1)

4
− n− k

2

)(
− kβ

4αb2n
+O

(
− kβ

4αb2n

)2))
.

The last term converges to 1 under our hypothesis. The case β = 0 is easily
treated. �

Lemma 2.7. Assume nβ � 1. Let any (δn) positive real sequence such that
log(δn)� log(n). Fix a positive real number 0 < α < +∞. There exists a se-
quence (cn) converging to 1, such that for n large enough,

Zn−1,αb2n−
β
4 ,β

Zn,α,β
≤ cn

√
α

2π
(bn)

−β (n−1)(n−2)
2 −n+1

. (2.9)

Proof : Note that our assumptions imply that the partition function Zn−1,αb2n−
β
4 ,β

is well defined since αb2n −
β

4
> 0. From the identity (2.6), we have:

Zn−1,αb2n−
β
4 ,β

= (2π)
n−1
2

(
αb2n −

β

4

)−β (n−1)(n−2)
4 −n−1

2
n−1∏

i=1

Γ
(

1 + iβ
2

)

Γ
(

1 + β
2

)

and we can compute the ratio:

Zn−1,αb2n−
β
4 ,β

Zn,α,β
= (bn)

−β (n−1)(n−2)
2 −n+1

α
(n−1)β

2 + 1
2

(
1− β

4αb2n

)−β (n−1)(n−2)
4 −n−1

2

×
Γ
(

1 + β
2

)

√
2πΓ

(
1 + nβ

2

) .

We apply the following inequality:

1

1− x ≤ 4x, x ∈ [0,
1

2
], (2.10)

with x =
β

4αb2n
≤ 1

2
⇐⇒ β

2
≤ αb2n. This inequality is true when n is large enough.

Thus,

Zn−1,b2n−
β
4 ,β

Zn,β
≤ cn

Γ
(

1 + β
2

)

√
2πΓ

(
1 + nβ

2

) (bn)
−β (n−1)(n−2)

2 −n+1√
α,
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where we have set:

cn := exp

((
β2(n− 1)(n− 2)

16αb2n
+
β(n− 1)

8αb2n

)
log 4 +

(n− 1)β

2
logα

)
.

It is clear that the latter sequence converges to 1 from our hypothesis on β.
Besides, the Gamma function has local minimum at ∼ 0.8 with value ≈ 1.44, it

follows that for β � 1,

Γ
(

1 + β
2

)

√
2πΓ

(
1 + nβ

2

) ≤
Γ
(

1 + β
2

)

√
2π

≤ Γ (2)√
2π

=
1√
2π
.

�

The next result states uniform bounds over k ≤ n for ratios of partition functions
in connection with second condition of Proposition 2.3.

Lemma 2.8. Let β ≥ 0 and (δn) positive real sequence such that log(δn)� log(n).

Assume β � 1

n
. Let k an integer such that 1 ≤ k ≤ n. Then for n large enough,

Zn−k,1− kβ

4b2n
,β

Zn−k,β
≤ 4k (2.11)

Zn−k,β
Zn,β

≤
(√

2

π

)k
. (2.12)

Proof : Since the case β = 0 can be easily treated, we only consider β > 0. From
our hypothesis, kβ is less than 1 when n is large enough and:

kβ

4b2n
≤ 1

2
⇐⇒ kβ ≤ 2b2n which is true.

β

4b2n

(
β

(n− k)(n− k − 1)

4
+
n− k

2

)
≤ (nβ)

2

16b2n
+
nβ

8b2n
≤ 1.

Using (2.6) to compute the ratio and applying inequality (2.10), we have:

Zn−k,1− kβ

4b2n
,β

Zn−k,β
=

(
1− kβ

4b2n

)−β (n−k)(n−k−1)
4 −n−k2

≤ exp

(
kβ

4b2n

(
β

(n− k)(n− k − 1)

4
+
n− k

2

)
log (4)

)
≤ 4k.

We prove the second statement. From the identity (2.6) with α = 1, we get:

Zn−k,β
Zn,β

= (2π)
− k2

n∏

i=n−k+1

Γ(1 + β
2 )

Γ(1 + iβ
2 )
.

The Gamma function has local minimum at ≈ 1.46 with value ≈ 0.8, it follows that
for any i ≤ n, since β � 1,

1

2
≤ Γ

(
1 +

iβ

2

)
≤ Γ

(
1 +

β

2

)
≤ 1.
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Hence,

n∏

i=n−k+1

Γ(1 + β
2 )

Γ(1 + iβ
2 )
≤ 2k.

�

At last, we prove the previously stated lemma which compares the partition
functions between different regime of β:

Proof of Lemma 1.3: Denoting γ the Euler constant, recall that for x� 1:

log Γ (1 + x) = −γx+
π2

12
x2 + o(x3).

Remark that for any k ≥ 1, one has:

nkβk−1 � nk+1βk.

We compute the ratios:

Zn,β
Zn,0

=

n∏

i=1

Γ
(

1 + iβ
2

)

Γ
(

1 + β
2

) = exp

(
−n log Γ

(
1 +

β

2

)
+

n∑

i=1

log Γ

(
1 +

iβ

2

))

and,

Zn,β
Zn,β′

= exp


−

n∑

i=1

log Γ

(
1 +

iβ′

2

)
+

n∑

i=1

log Γ

(
1 +

iβ

2

)
+ n log

Γ
(

1 + β′

2

)

Γ
(

1 + β
2

)


 .

Since the quantity iβ converges to 0 uniformly in i ≤ n, we deduce that:

n∑

i=1

log Γ

(
1 +

iβ

2

)
= −γβ

2

n∑

i=1

i+
π2

48
β2

n∑

i=1

i2 + nO
(
n3β3

)

= −γβ
8

(n2 + n) +
π2

48
β2

(
n3

3
+
n2

2
+
n

6

)
+O

(
n4β3

)

= −γ
8
n2β (1 + o(1)) .

Besides, the log-Gamma expansion and hypothesis nβ ∨ nβ′ � 1 imply that:

n log Γ

(
1 +

β′

2

)
− n log Γ

(
1 +

β

2

)
−−−−−→
n→+∞

0.

We deduce that:

Zn,β
Zn,0

= exp
(
−γ

8
n2β (1 + o(1))

)
,

Zn,β
Zn,β′

= exp
(γ

8
n2 (β′ − β) (1 + o(1))

)
.

The claims readily follow. �
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2.4. Estimates: bulk and largest eigenvalues. In the section, we establish some es-
timates on the eigenvalues (λi)1≤i≤n of Hn,α,β , which are Pn,α,β-distributed. Since
the particles are exchangeable, every estimate will concern λ1.

We give exponential type bound on the probability of a scaled eigenvalue to be
larger than any arbitrary value. Same-wise, an exponential estimate for the prob-
ability of λ1 to be as close as we want to any value is given.

These estimates will be crucial for the analysis of the integral term R̃nk , which
presents itself as the expectation of some functional of (λi). The link is made
through to the identity

E |X| =
∫ +∞

0

P (|X| ≥ t) dt.

We begin with a technical but fundamental lemma.

Lemma 2.9. For any a, b ∈ R and β > 0, one has:

|a+ b|β ≤ 2βeβ
a2+b2

8 . (2.13)

Proof : First recall two inequalities:

|x| ≤ 2e
x2

16 , (x+ y)2 ≤ 2x2 + 2y2.

Applying the first inequality with x = a+ b, then using the second one give:

|a+ b|β ≤
(

2e
(a+b)2

16

)β
≤
(

2e
a2+b2

8

)β
.

�

This inequality is of interest because it roughly allows to gain quadratic sum
bound a2 + b2 from a quantity of type log |a+ b|. It provides an useful algebraic

mean to upper-bound the integral term R̃nk with a ratio of partition functions.
Next, we show an estimate on the scaled top eigenvalue. This result is also estab-

lished in Benaych-Georges and Péché (2015) but in another form, more appropriate
to the bulk regime. For the sake of completeness, we give its proof since our version
is slightly different.

Lemma 2.10. Let M > 0 such that α∨nβ ≤M . There exists a constant CM > 0
such that for any β, t > 0, u ∈ R and any n ≥ 1 large enough,

Pn,α,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ t
)
≤ CMbβ(n−1)−2

n

exp

(
−α2

(
b2n − nβ

4α

)2 (
t+

b2nu

b2n−
nβ
4α

)2
)

α
(
t+

b2nu

b2n−
nβ
4α

) .

(2.14)

Proof : Let u ∈ R. Let (λ1, ..., λn) an exchangeable family of random variables
distributed according to Pn,α,β . By a change of variable in (2.2), the family(
λi
bn
− u
)

1≤i≤n
has law:

b
n+β

n(n−1)
2

n

Zn,α,β
|∆n(z)|β e−α2 b2n

∑n
i=1(zi+u)2dz1 · · · dzn.
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Now for t > 0, the quantity Λn,t,u := Pn,α,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ t
)

equals to:

b
n+β

n(n−1)
2

n

Zn,α,β

∫

|z1|≥t

∫

Rn−1

n∏

j=2

|z1 − zj |β e−
αb2n
2 (z1+u)2 |∆n−1(z2, ..., zn)|β e−α2 b2n

∑n
i=2(zi+u)2dz1 · · · dzn.

The product term in the first integral involves every variables. We split this over-
lapping term thanks to the fundamental inequality (2.13) of Lemma 2.9. It leads
to:

Λn,t,u ≤
b
n+β

n(n−1)
2

n 2nβ

Zn,α,β

∫

|z1|≥t
exp

(
nβ

8
z2

1 − α
b2n
2

(z1 + u)2

)
dz1×

×
∫

(z2,...,zn)∈Rn−1

|∆n−1(z2, ..., zn)|β exp

(
β

8

n∑

i=2

z2
i − α

b2n
2

n∑

i=2

(zi + u)2

)
dz2...dzn.

The first integral term will be linked to a Gaussian tail and the second to a partition
function. For this, we need to complete the square.

Using the two following algebraic identities:

β

8

n∑

i=2

z2
i − α

b2n
2

n∑

i=2

(zi + u)2 = −α
2

(
b2n −

β

4α

) n∑

i=2

(
zi +

b2nu

b2n − β
4α

)2

+ α
b4nu

2

2
(
b2n − β

4α

) (n− 1)− αb
2
nu

2

2
(n− 1)

nβ

8
z2

1−α
b2n
2

(z1+u)2 = −α
2

(
b2n −

nβ

4α

)(
z1 +

b2nu

b2n − nβ
4α

)2

+α
b4nu

2

2
(
b2n − nβ

4α

)−αb
2
nu

2

2
,

we can write:

Λn,t,u ≤
b
n+β

n(n−1)
2

n 2nβ

Zn,α,β
e
α

b4nu
2

2(b2n−nβ4α )
−α b

2
nu

2

2

G(t)Z. (2.15)

where

G(t) :=

∫

|z1|≥t
exp


−α

2

(
b2n −

nβ

4α

)(
z1 +

b2nu

b2n − nβ
4α

)2

dz1

Z := e
α
b4nu

2(n−1)

2(b2n− β
4α )
−α b

2
nu

2(n−1)

2

×
∫

Rn−1

|∆n−1(λ)|β exp


−α

2

(
b2n −

β

4α

) n∑

i=2

(
λi +

b2nu

b2n − β
4α

)2

 dλ2...dλn−1

which is just:

Z = e
α

b4nu
2

2(b2n− β
4α )

(n−1)−α b
2
nu

2

2 (n−1)

Zn−1,αb2n−
β
4 ,β
.
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We treat the Gaussian integral term G(t) in (2.15) with two successive change of
variable and symmetry,

G(t) =
2

√
α
√
b2n − nβ

4α

∫

z≥α(b2n−
nβ
4α )

(
t+

b2nu

b2n−
nβ
4α

) exp

(
−z

2

2

)
dz

≤ 2

α
√
α

e
−α2 (b2n−

nβ
4α )

2
(
t+

b2nu

b2n−
nβ
4α

)2

(
b2n − nβ

4α

) 3
2
(
t+

b2nu

b2n−
nβ
4α

) .

The following classical Gaussian bound is used in the last line:

∫ +∞

y

e−
z2

2 dz ≤ e−
y2

2

y
, y > 0.

Finally, (2.15) becomes:

Λn,t,u ≤ bn+β
n(n−1)

2
n 2nβ+1e

α
b4nu

2

2(b2n− β
4α )

(n−1)+α
b4nu

2

2(b2n−nβ4α )
−αn b

2
nu

2

2

×
Zn−1,αb2n−

β
4 ,β

Zn,α,β

e
−α2 (b2n−

nβ
4α )

2
(
t+

b2nu

b2n−
nβ
4α

)2

α
3
2

(
b2n − nβ

4α

) 3
2
(
t+

b2nu

b2n−
nβ
4α

) .

We deal with the ratio of partition functions by (2.9) of Lemma 2.7, so that the
last line becomes:

Λn,t,u ≤ cn
b
β(n−1)+1
n 2nβ+1

√
2π
(
b2n − nβ

4α

) 3
2

e
α

b4nu
2

2(b2n− β
4α )

(n−1)+α
b4nu

2

2(b2n−nβ4α )
−αn b

2
nu

2

2

× e
−α2 (b2n−

nβ
4α )

2
(
t+

b2nu

b2n−
nβ
4α

)2

α
(
t+

b2nu

b2n−
nβ
4α

) .

According to Lemma 2.7, the sequence (cn) converges to 1 hence is bounded.
Lastly, with the assumption nβ � 1 and by Taylor expansion, one can show

that:

α
b4nu

2

2
(
b2n − β

4α

) (n− 1) + α
b4nu

2

2
(
b2n − nβ

4α

) − αnb
2
nu

2

2
−−−−→
n→∞

0.

We conclude that, for M such that nβ ∨ α ≤ M , there exists a constant CM ∈
(0,+∞) such that,

Λn,t,u ≤ CMbβ(n−1)−2
n

exp

(
−α2

(
b2n − nβ

4α

)2 (
t+

b2nu

b2n−
nβ
4α

)2
)

α
(
t+

b2nu

b2n−
nβ
4α

) .

�

The same method brings also an estimate for bulk eigenvalues. We state the
result as in Benaych-Georges and Péché (2015) where a proof can be found.
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Lemma 2.11. Let M > 0 such that α∨nβ ≤M . There exists a constant CM > 0
such that for any β > 0, a ∈ R, y ∈ (0, 1) and any n ≥ 1 large enough,

Pn,α,β (|λ1 − a| ≤ y) ≤ CMy exp

(
nαβ

2(4α− β)
a2

)
. (2.16)

Proof : We proceed in the same spirit as the previous estimate. We apply again
Lemma 2.9 and complete the square with:

−α
2
z2
i +

β(zi − u)2

8
= −4α− β

8

(
zi +

βu

4α− β

)
+

αβu2

2 (4α− β)
.

It yields an upperbound on Pn,α,β (|λ1 − u| ≤ y) involving the simpler Gaussian
integral: ∫

|z1−u|≤y
exp

(
−α

2
z2

1

)
dz1 ≤ 2y exp

(
−α

2
(y − u)2

)
≤ 2y,

and another ratio of partitions function treated by adapting the proof of (2.9) in
Lemma 2.7:

Zn−1,α− β4 ,β

Zn,α,β
≤ cn

√
α

2π
, cn −−−−→

n→∞
1, 0 < α < +∞.

�

3. Poisson limit for nβ � 1 and α = 1

This section is devoted to the proof of Theorem 1.1 when β > 0. Namely, we

consider the extreme point process Pn =

n∑

i=1

δan(λi−bn) with (λi)i≤n ∼ Pn,β , tem-

perature regime β := βn �
1

n log(n)
and α = 1. Our framework is the application

of Proposition 2.3:

• When δn −−−−→
n→∞

δ > 0, we consider µ = e−
x
δ dx and (λ1, . . . , λn) with law:

ρndµ⊗n (λ1, . . . , λn) = e−
α
2

∑n
i=1 λ

2
i |∆n(λ)|β e 1

δ

∑n
i=1 λi

n∏

i=1

dλi.

• When δn � 1, the density ρn equals to Pn,α,β and µ is the Lesbegue measure
λ on R.

The plan, according to Proposition 2.3, is to first reformulate the correlation func-
tions in a tractable expression, and then establish their pointwise convergence to
1. The last step is to give an uniform upper bound which will end the proof of the
theorem.

The case β = 0 is much simpler. Following the same steps, it does not however
involve the machinery of partition functions and tail bounds. So we keep it in the
last subsection.

3.1. Formulation of the correlation functions. The first step is to give a satisfying
expression of the correlation function Rnk . From its definition, we transpose it as

product of multiple terms including an integral term R̃nk . Unlike the others, this
quantity is more complicated and needs careful analysis. We express the result in
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the case δn −−−−→
n→∞

δ > 0 and give in a subsequent remark the analog formula for

the case δn � 1.

Lemma 3.1. Fix δ > 0. Let α > 0, β ≥ 0 and (λ1, ..., λn) distributed according to
Pn,α,β.
For 1 ≤ k ≤ n, the k-th correlation function Rnk (x1, ..., xk) of the point process
n∑

i=1

δan(λi−bn) is:

n!

(n− k)!
a
−k− β2 k(k−1)
n |∆k(x)|β Zn−k,α,β

Zn,α,β

× e−α2
∑k
i=1(

xi
an

+bn)
2
+ 1
δ

∑k
i=1 xi+kβ(n−k) log(bn)R̃nk

(3.1)

with the quantity R̃nk := R̃nk (x1, ..., xk) defined as:

∫

Rn−k
exp


β

k∑

i=1

n−k∑

j=1

log

∣∣∣∣1 +
xi
anbn

− zj
bn

∣∣∣∣


 dPn−k,α,β(z1, ..., zn−k). (3.2)

Proof : Let µ = e−
x
δ dx, ie: dµ⊗n(x1, ..., xn) = e−

1
δ

∑n
i=1 xidx1...dxn. Let (λ1, ..., λn)

distributed according to Pn,α,β . By a change of variable in (2.2), the random vector
(an (λi − bn))i≤n has joint density:

a
−n(n−1)

2 β−n
n

Zn,α,β
|∆n(λ)|β e−

α
2

∑n
i=1

(
λi
an

+bn
)2

dλ1 · · · dλn,

which we express with respect to the measure µ:

a
−n(n−1)

2 β−n
n

Zn,α,β
|∆n(λ)|β e−

α
2

∑n
i=1

(
λi
an

+bn
)2

e
1
δ

∑n
i=1 λidµ⊗n (λ1, . . . , λn) .

Hence, using the definition (2.4), we deduce the k-th correlation function:

Rnk (x1, ..., xk) =
n!

(n− k)!

a
−n−β n(n−1)

2
n

Zn,α,β
e−

α
2

∑k
i=1(

xi
an

+bn)
2
+ 1
δ

∑k
i=1 xi×

×
∫

Rn−k
e−

α
2

∑n
i=k+1(

xi
an

+bn)
2

|∆n(x)|β e 1
δ

∑k
i=k+1 xidµ⊗(n−k)(xk+1, ..., xn).

The goal is to extricate the (x1, ..., xk) from the (xk+1, ..., xn), and extract all
leading order terms.

To this end, we begin with splitting the Vandermonde term:

n∏

i<j

|xi − xj |β

=

( ∏

1≤i<j≤k

|xi − xj |β
)( ∏

k+1≤i<j≤n

|xi − xj |β
)(

k∏

i=1

n∏

j=k+1

|xi − xj |β
)
.

Note that in the RHS, the first term has k(k−1)
2 elements, the 2nd term has

(n−k)(n−k−1)
2 elements and the last term has k(n− k) elements.
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Therefore,

Rnk (x1, ..., xk)

=
n!

(n− k)!
|∆k(x)|β a

−n−β n(n−1)
2

n

Zn,α,β
exp

(
−α

2

k∑

i=1

(
xi
an

+ bn

)2

+
1

δ

k∑

i=1

xi

)
Λ.

where:

Λ :=

∫

Rn−k
eβ
∑k
i=1

∑n
j=k+1 log|xi−yj |e−

α
2

∑n−k
i=1 ( yian+bn)

2

|∆n−k(y)|β e 1
δ

∑n−k
i=1 yidµ⊗(n−k)(y1, ..., yn−k).

We introduce the law Pn,α,β in the latter quantity. The change of variable y =
an(z − bn) and little computation give:

Λ = a
n−k+β

(n−k−1)(n−k)
2

n

∫

Rn−k
eβ
∑k
i=1

∑n−k
j=1 log|xi−an(zj−bn)|e−

α
2

∑n−k
i=1 z2j

∏

1≤i<j≤n−k

|zi − zj |β
n−k∏

i=1

dzi

= a
n−k+β

(n−k−1)(n−k)
2 +kβ(n−k)

n Zn−k,α,βe
kβ(n−k) log(bn)×

×
∫

Rn−k
eβ
∑k
i=1

∑n−k
j=1 log|1+

xi
anbn

−
zj
bn
|dPn−k,α,β(z1, ., zn−k).

Thus the claim follows. �

Lemma 3.2. Assume δn � 1 and µ to be the Lebesgue measure λ on R. In this
case, the k-th correlation function is given by:

Rnk =
n!

(n− k)!
a
−k− β2 k(k−1)
n |∆k(x)|β Zn−k,α,β

Zn,α,β
e−

α
2

∑k
i=1(

xi
an

+bn)
2
+kβ(n−k) log(bn)R̃nk

(3.3)

with R̃nk defined in (3.2).

Proof : The proof goes along the same lines as the demonstration of Lemma 3.1
except that all the δ-dependent terms vanish. �

3.2. Pointwise convergence of the correlation functions. The goal of this section is
to establish the pointwise convergence Rnk (x1, ..., xk) −−−−→

n→∞
1 for any fixed 0 < δ <

+∞, 1 ≤ k < +∞ and (x1, ..., xk) ∈ Rk under the following hypothesis:

β � 1

n log(n)
, α = 1, δn = δ + o(1) or δn � 1.

We have already shown the ratio of partition functions converges to (2π)
− k2 in (2.7)

of Lemma 2.6. The other terms are easily handable, so we begin by proving that
the term R̃nk converges to 1. To this end, we proceed by double inequality.
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Lemma 3.3. Let any (δn) positive real sequence such that log(δn)� log(n). As-

sume β � 1

n log(n)
. Fix an integer 1 ≤ k < +∞ and (x1, ..., xk) ∈ Rk, let

R̃nk := R̃nk (x1, ..., xk) = EPn−k,β


exp


β

k∑

i=1

n−k∑

j=1

log

∣∣∣∣1 +
xi
anbn

− λj
bn

∣∣∣∣




 .

Then the following pointwise convergence holds:

Rnk (x1, ..., xk) −−−−→
n→∞

1.

Proof : We begin by showing that lim sup
n∞

R̃nk (x1, ..., xk) ≤ 1. Applying the bound

(2.13) of Lemma 2.9, and with little computation, we get:

R̃nk ≤ 2knβ exp

(
nβ

8

k∑

i=1

∣∣∣∣1 +
xi
anbn

∣∣∣∣
2
) Zn−k,1− kβ

4b2n
,β

Zn−k,β
.

With the assumption nβ � 1 and k < +∞, it is enough to show this ratio of
partition functions converges to 1, which is provided by (2.8) of Lemma 2.6.

Hence, our task is now to show that

lim inf
n∞

R̃nk (x1, ..., xk) ≥ 1.

Since exp is convex, by Jensen inequality, and exchangeability, it is enough to
show that for any x ∈ R fixed,

β(n− k)EPn−k,β

∣∣∣∣log

∣∣∣∣1 +
x

anbn
− λ1

bn

∣∣∣∣
∣∣∣∣ −−−−→n→∞

0.

Since 1 ≤ k < +∞ is also fixed, it is enough to show that for x ∈ R fixed,

nβ EPn,β

∣∣∣∣log

∣∣∣∣1 +
x

anbn
− λ1

bn

∣∣∣∣
∣∣∣∣ −−−−→n→∞

0.

�

The following result will complete our proof:

Lemma 3.4. Let any (δn) positive real sequence such that log(δn)� log(n). As-

sume β � 1

n log(n)
. Fix x ∈ R, then:

nβ EPn,β

∣∣∣∣log

∣∣∣∣1 +
x

anbn
− λ1

bn

∣∣∣∣
∣∣∣∣ −−−−→n→∞

0.

Proof of Lemma 3.4: From the identity

E |X| =
∫ +∞

0

P (|X| ≥ t) dt,

setting u := 1 +
x

anbn
, removing the absolute value, and by a change of variable,

we have:

EPn,β

∣∣∣∣log

∣∣∣∣1 +
x

anbn
− λ1

bn

∣∣∣∣
∣∣∣∣ =

∫ +∞

0

Pn,β

(∣∣∣∣log

∣∣∣∣u−
λ1

bn

∣∣∣∣
∣∣∣∣ ≥ t

)
dt

=

∫ +∞

1

1

y
Pn,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ y
)

dy +

∫ 1

0

1

y
Pn,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≤ y
)

dy.
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Next, we show that both integrals converge to 0. We set:

Λ1 :=

∫ +∞

1

1

y
Pn,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≥ y
)

dy, Λ2 :=

∫ 1

0

1

y
Pn,β

(∣∣∣∣u−
λ1

bn

∣∣∣∣ ≤ y
)

dy.

Let’s treat the term Λ2.

Since α = 1 and nβ � 1, we can find M > 0 satisfying the assumption α∨nβ ≤M
of Lemma 2.11. Hence, with α = 1, a = bn +

xi
an

= bnu and 0 < y ≤ 1 in the bulk

estimate (2.16), there exists a constant C > 0 independent of n, k, y such that:

Pn,β

(∣∣∣∣u−
λj
bn

∣∣∣∣ ≤ y
)
≤ Cbny exp


 nβ

8
(

1− β
4

)b2nu2


 .

It follows that:

0 ≤ (n− k)βΛ2 ≤ Cnβbn exp


 nβ

8
(

1− β
4

)b2nu2


 .

The latter term goes to 0 if and only if β � 1

n log(n)
. This is an explicit circum-

stance where we need to strengthen the restriction on β � 1

n
alluded in Remark 1.7.

Regarding the term Λ1, we use the top eigenvalue estimate (2.14) of Lemma 2.10
with α = 1:

Λ1 ≤ CMbβ(n−1)−2
n

∫ +∞

1

e
− 1

2 (b2n−
nβ
4 )

2
(
t+

b2nu

b2n−
nβ
4

)2

t
(
t+

b2nu

b2n−
nβ
4

) dt

The Lebesgue’s dominated convergence theorem implies that integral term con-
verges to 0 which leads to nβΛ1 � 1. �

We are ready to achieve the goal of this section:

Proposition 3.5. Assume α = 1 and β � 1

n log(n)
. Let (δn) a positive sequence

and the modified Gaussian scaling:

bn :=
√

2 log(n)− log log(n) + 2 log(δn) + log(4π)

2
√

2 log(n)
, an := δn

√
2 log(n).

Fix an integer 1 ≤ k < +∞ and (x1, ..., xk) ∈ Rk. In the two cases:

a) δn −−−−→
n→∞

δ > 0 and µ = e−
x
δ dx

b) δn � 1 with log(δn)�
√

log(n) and µ = λ,

the following pointwise convergence holds:

Rnk (x1, ..., xk) −−−−→
n→∞

1.

Proof : Since both cases share a lot in common, we proceed to the proof assuming
case a) and then only mention the deviations for the second case. When α = 1, the
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formula (3.1) of Lemma 3.1 gives:

Rnk =
n!

(n− k)!
a
−k− β2 k(k−1)
n |∆k(x)|β

× Zn−k,β
Zn,β

e−
1
2

∑k
i=1(

xi
an

+bn)
2
+ 1
δ

∑k
i=1 xi+kβ(n−k) log(bn)R̃nk

(3.4)

with

tildeRnk : = R̃nk (x1, ..., xk)

=

∫

Rn−k
exp


β

k∑

i=1

n−k∑

j=1

log

∣∣∣∣1 +
xi
anbn

− zj
bn

∣∣∣∣


 dPn−k,β(z1, ..., zn−k).

We already proved that R̃nk (x1, ..., xk) −−−−→
n→∞

1 in Lemma 3.3. Hence, we are re-

duced to show that:

n!

(n− k)!
a
−k− β2 k(k−1)
n |∆k(x)|β Zn−k,β

Zn,β
e−

1
2

∑k
i=1(

xi
an

+bn)
2
+ 1
δ

∑k
i=1 xiekβ(n−k) log(bn)

converges to one as n → ∞. For each term of the latter, we have the following
asymptotics as k < +∞ is fixed:

n!

(n− k)!
= (1 + o(1))nk, a

−β k(k−1)
2 −k

n = exp (−k log an) (1 + o(1))

Zn−k,β
Zn,β

= (2π)
− k2 + o(1), exp (kβ(n− k) log bn) = exp

(
k

2
nβ log log(n)

)
(1 + o(1))

∆k(x1, ..., xk)β =

k∏

i<j

|xi − xj |β = exp


β

k∑

i<j

log |xi − xj |


 = 1 + o(1).

Moreover, expanding the square and since
bn
an

=
1

δ
+ o(1),

exp

(
−1

2

k∑

i=1

(
xi
an

+ bn

)2
)

= exp

(
−kb

2
n

2
− 1

δ

k∑

i=1

xi + o(1)

)
. (3.5)

So putting everything together,

Rnk (x1, ..., xk) = exp
(
k
(

log(n)− log(an)− 1

2
b2n + nβ log(bn)− 1

2
log 2π

))(
1 + o(1)

)

:= ekΛn
(
1 + o(1)

)
.

Thanks to the following asymptotics:

log(an) =
1

2
log(2) +

1

2
log log(n) + log(δ) + o(1)

b2n = 2 log(n)− log log(n)− 2 log(δ)− log(4π) + o(1), nβ log(bn)� 1 (3.6)

the computation of Λn shows that only negligible terms remain, the others canceling
each other out. In relation with Remark 1.7, let us point out that nβ log(bn)� 1
in (3.6) occurs when nβlog log(n)� 1 which is naturally covered by our hypothesis
nβ log(n)� 1.

Let (x1, ..., xk) ∈ Rk and consider case b). The quantity Rnk (x1, ..., xk) is given
by formula (3.3). Meanwhile, the cross term from the square expansion in the LHS
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of (3.5) vanishes as δn � 1 implies an � bn. Thus its corresponding term in the
RHS of (3.5) also disappeares. By the asymptotics used previously, when n→ +∞,
the quantity Rnk (x1, ..., xk) is equivalent to the same exp (kΛn) as found previously.
Now, the difference with (3.6) lies in a cross term in the expansion:

b2n = 2 log(n) +
log2(δn)

2 log(n)
− log log(n)− 2 log(δn)− log(4π) + o(1).

Finally, after some cancelations in the computation,

Λn = − log2(δn)

2 log(n)
+ o(1).

The latter quantity converges to 0 under the growth hypothesis on (δn).
�

3.3. Uniform upper-bound on the correlation functions. The goal of this section is
to provide an uniform upper bound for the correlation functions. It constitutes the
second hypothesis in the main tool required to show Poisson convergence. We state
the result regardless of the measure µ chosen in Proposition 2.3. Indeed, the cor-
relation functions differs slightly and the proof is not impacted. For these reasons,
we will only show the result in the case a) of Proposition 3.5.

Lemma 3.6. Assume α = 1, δn −−−−→
n→∞

δ > 0 and µ = e
x
δ dx. Let K ⊂ R compact.

There exists a constant ΘK > 0 such that for any n ≥ 1 large enough, any integer
1 ≤ k ≤ n and any (x1, ..., xk) ∈ Kk,

Rnk (x1, ..., xk) ≤ Θk
K .

Proof : Assume α = 1. Let K ⊂ R compact. We can always find M := MK > 1
such that ∀x ∈ K, |x| ≤M . Let k ≤ n and x1, ..., xk ∈ K. Note that (δn) converges
to δ > 0 hence is bounded.

Our goal is to bound in terms of the quantity M the formula (3.1) of the corre-
lation functions Rnk (x1, ..., xk) given by Lemma 3.1.

First, we bound by elementary means the simple terms. The leading order terms
will cancel each other in the computation. Then, we tackle the integral term R̃nk
by comparing it to some ratio of partition functions.

We begin to notice that, according to (2.12) of Lemma 2.8, the ratio of partition

functions in (3.1) is bounded by

(
2

π

) k
2

. The Vandermonde determinant is easily

treated. Since
β(k − 1)

2
≤ 1 for any 1 ≤ k ≤ n, one has:

|∆k(x)|β =

k∏

i<j

|xi − xj |β ≤Mβ
k(k−1)

2 =
(
M

β(k−1)
2

)k
≤Mk.

Also,

a
−k− β2 k(k−1)
n ≤ a−kn = exp

(
−k
(

log(δn) +
1

2
log log(n) +

1

2
log(2)

))
.
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Since ∀x ∈ R, 1 + x ≤ ex, we treat the combinaison term as follows, for 1 ≤ k ≤ n:

n!

nk(n− k)!
=

k−1∏

i=0

(
1− i

n

)
≤
k−1∏

i=0

exp

(
− i
n

)
= exp

(
− (k − 1)k

2n

)
≤ 1.

Let’s now study the exponential terms:

exp

(
−1

2

k∑

i=1

(
xi
an

+ bn

)2
)
≤ exp

(
−k

2
b2n −

bn
an

k∑

i=1

xi

)
≤ exp

(
−k

2
b2n + kcδM

)
.

(3.7)

We used the fact that, since (δn) is bounded, there exists cδ > 0 such that for any
n ≥ 1:

bn
an
≤ 1

δn
≤ cδ.

For 1 ≤ k ≤ n, since bn ≤
√

2 log(n) and nβ � 1,

kβ(n− k) log(bn) ≤ k

2
nβ log log(n) + k.

Hence, using the definition of bn in (3.7), the leading order terms in (3.1) cancel:

Rnk (x1, ..., xk) ≤Mk exp (k + 3k log(2) + kcδM) R̃nk (x1, ..., xk).

It remains to bound the term R̃nk .

Applying the bound (2.13) of Lemma 2.9 on the formula (3.2), we get:

R̃nk (x1, ..., xk) ≤ 2knβe
nβ
8

∑k
i=1|1+

xi
anbn
|2
Zn−k,1− kβ

4b2n
,β

Zn−k,β
. (3.8)

By inequality (2.11) of Lemma 2.8, the ratio of partition functions is bounded by
4k.

Moreover,

exp

(
nβ

8

k∑

i=1

∣∣∣∣1 +
xi
anbn

∣∣∣∣
2
)
≤ exp

(
1

8

k∑

i=1

(
1 +

x2
i

a2
nb

2
n

+
2xi
anbn

))

≤ exp

(
k

8
+
k

8
M2 +

k

4
M

)
.

Thus, (3.8) becomes:

R̃nk (x1, ..., xk) ≤ 23k exp

(
k

8
+
k

8
M2 +

k

4
M

)
.

The claim follows with:

ΘK = exp

(
9

8
+ 6 log(2) + cδM +

1

8

(
M2 + 2M

)
+ log (M)

)
> 0.

�
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3.4. The Gaussian case: β = 0. In this last subsection, we derive our result on
homogeneous limiting Poisson process in the purely Gaussian case β = 0. Although
the correlation functions method also applies (as we did for the inhomogeneous case
when β = 0), it turns out that the classical method from EVT provides a better
regime for the perturbation (δn). We formulate the result and prove it.

Proposition 3.7. Let (λi)i≤n an i.i.d. sequence of N (0, 1). Let δn � 1 such that
log(δn)� log(n), and:

an = δn
√

2 log(n)

bn =
√

2 log(n)− 1

2

log log(n) + 2 log(δn) + log(4π)√
2 log(n)

.

Then, the point process

n∑

i=1

δan(λi−bn) converges to a Poisson point process on R

with intensity 1.

Proof : We set φn(x) =
x

an
+ bn. Since we consider a collection of n i.i.d. random

variables and a homogeneous limiting Poisson process, that is with intensity pro-
portional to dλ where λ is the Lesbegue measure on R, it is enough (Coles, 2001,
Th 7.1) to show that for any x < y,

Λ := n (P (λ1 ≥ φn(x))− P (λ1 ≥ φn(y))) −−−−→
n→∞

y − x.
By Mill’s ratio, we know that for any u� 1,

P (λ1 ≥ u) =
exp

(
−u2

2

)

u
√

2π
(1 + o(1)) .

Under the hypothesis log(δn)� log(n), one has bn ∼
√

2 log(n), hence φn(x) ∼√
2 log(n). We get:

Λ =
n√
2π

(
e−

φn(x)2

2

φn(x)
− e−

φn(y)2

2

φn(y)

)
(1 + o(1))

=
ne−

φn(x)2

2√
2 log(n)

√
2π

(
1− eφn(x)2−φn(y)2

2

)
(1 + o(1)) .

A little computation gives:

φn(x)2 − φn(y)2

2

=
x2 − y2

4δ2
n log(n)

+
x− y
δn
− (x− y) log log(n)

2δn log(n)
− (x− y) log(δn)

δn log(n)
− (x− y) log(4π)

2δn log(n)
.

The highest order term is
x− y
δn

. Indeed,

log(δn)

δn log(n)
� 1

δn
⇐⇒ log(δn)� log(n) which is true.

We deduce that:

Λ =
ne−

φn(x)2

2√
2 log(n)

√
2π

(
y − x
δn

)
(1 + o(1)) .
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To conclude, we compute:

ne−
φn(x)2

2√
2 log(n)

√
2π

= δn (1 + o(1)) .

�
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