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Abstract. Probability measures and stochastic dynamics on matrices and on parti-
tions are related by standard, albeit technical, discrete to continuous scaling limits.
In this paper we provide exact relations, that go in both directions, between the
eigenvalues of the Laguerre process and certain distinguished dynamics on parti-
tions. This is done by generalizing to the multidimensional setting recent results of
Miclo and Patie on linear one-dimensional diffusions and birth and death chains.
As a corollary, we obtain an exact relation between the Laguerre and Meixner en-
sembles. Finally, we explain the deep connections with the Young bouquet and the
z-measures on partitions.

1. Introduction and results

1.1. Informal introduction. There has been a phenomenal amount of activity
around the study of random matrices and random partitions in recent decades,
see for example Borodin et al. (2000), Okounkov (2000, 2001), Johansson (2000,
2001, 2002), Kerov (1993, 1999), Borodin and Olshanski (2000, 2001), Borodin and
Corwin (2014), Forrester (2010), Biane (1998) and the references therein. Although,
from the outset the study of probability measures on matrices and on partitions
might not seem directly related, the mathematical tools behind it are rather sim-
ilar. Most importantly, in certain scaling limits as the ’size’ (we will be precise
about what this means in the next subsections) N of the matrix and partition go
to infinity the same universal structures appear.

However, for fixed finite sizes N the connections are much less clear, other than
through the rather intuitive discrete to continuous scaling limits. This is even
more so, when one introduces a time variable and considers stochastic dynamics, in
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which case even such an intuitive scaling limit can be quite a technical challenge to
establish. In the setting of one-dimensional diffusions and birth and death chains,
Feller’s classic paper Feller (1951) was the first to provide a rigorous instance of
such a ’diffusion approximation’ result.

In this paper we prove a number of exact relations in Theorems 1.4 and 1.8, that
we call gateways (borrowing the terminology from Miclo and Patie, 2019) since
they go in both directions (from continuous to discrete and vice versa) between the
eigenvalues of the Laguerre process (and its stationary analogue) on non-negative
definite Hermitian matrices and certain distinguished dynamics on partitions. As a
corollary, we easily obtain in Proposition 1.12 an identity between the much-studied
Laguerre and Meixner ensembles.

These exact relations are in the form of intertwinings between Markov semi-
groups. Intertwinings have been ubiquitous in the probabilistic literature in many
different contexts. Among the highlights are the seminal work of Rogers and Pit-
man on Markov functions (Rogers and Pitman, 1981), Carmona-Petit-Yor’s study
of the beta-gamma algebra (Carmona et al., 1998) and certainly Diaconis and Fill’s
application of intertwining relations to the study of convergence to equilibrium for
Markov chains (Diaconis and Fill, 1990). In recent years, intertwinings have been
used extensively in the field of integrable probability for a range of different prob-
lems, see for example Borodin and Olshanski (2012b, 2013a), Pal and Shkolnikov
(2013), O’Connell (2003), Assiotis (2018, 2019-+), Assiotis et al. (2019+), Cuenca
(2018), Cerenzia (206), Cerenzia and Kuan (2019-+), Sun (2016) and the references
therein.

Our work builds upon and generalizes to the multidimensional setting the recent
results of Miclo and Patie (2019) on linear one-dimensional diffusions and birth
and death chains (one of these one-dimensional results is also due to Borodin and
Olshanski (2013a) by a different method, see Remark 1.9 and Section 3 for more
details).

Finally, we should mention that our argument relies in a key way on the un-
derlying determinantal structure, in the form of the celebrated Karlin-McGregor
formula. This allows us to lift, modulo some technical work, the one-dimensional
relations to the multidimensional setting in a rather neat way.

The outline of the rest of the paper is as follows. In the rest of the introduction
we give the necessary background and state our results precisely. In Section 2 we
give the proofs. Finally, in Section 3 we explain the deep connections between
this paper and a series of works by Borodin and Olshanski on the Young bouquet
and Markov processes for the z-measures on partitions, see Borodin and Olshanski
(2006a, 2013a,b), Olshanski (2010, 2012).

1.2. Setup and first set of results.

1.2.1. The Laguerre process and its eigenvalues. Let H(N) be the space of N x N
Hermitian matrices and H (V) the subspace of non-negative definite ones.

We now introduce the Laguerre process on non-negative definite Hermitian ma-
trices, depending on a parameter S > 0. The analogous process on real symmetric
matrices was first considered by Bru (1991) under the name of Wishart process.
The Hermitian case that we will be concerned with was then introduced in Konig
and O’Connell (2001) and further studied in Demni (2007).



On a gateway between the Laguerre process and dynamics on partitions 1057

Let (Wy;t > 0) be an N x N complex Brownian matrix. More precisely:
[(Wili; = i (8) + 1735(2)
for {'yij(o)}%zl, {3 (N 'j—1 independent standard real Brownian motions. Then,

the Laguerre process (X¢;¢ > 0) (we suppress dependence on ) is given by the
solution to the matrix stochastic differential equation (SDE):

X, = dWQH V dwﬂ [B+ (N —1)] Idt. (1.1)

Here, H denotes the complex conjugate of a matrix H and I is the identity matrix.
We will be interested in the evolution of the eigenvalues of (Xy;t > 0). We

first define, the Weyl chamber W2V 'y with non-negative (the subscript c stands for

continuous, we will also introduce a discrete version later on) coordinates by:

Wc],v_,_:{:c:(xl,~~,:UN)GRf::U1§:r2§~~§:cN},

where Ry = [0,00). Write evaly : Hy(N) — W2, for the map sending a non-
negative definite matrix H to its ordered eigenvalues x = (z1,--- ,zn) € WCJ’VJF.
Then, (evaly (Xt);t>0) = (z1(t), - ,zn(t);t > 0) follows the stochastic differ-
ential system in WCN i

2 i .
dx;(t) = v/ 2x;(t)dw; (t) + B+Z zi( dt, 1<i<N, (1.2)

JFi Z )

for some independent standard real Brownian motions {w;(-)}¥ , see Graczyk and
Matecki (2013, 2014), Konig and O’Connell (2001). This system of SDEs has a
unique strong solution with no collisions or explosions even when started from a
point with coinciding coordinates, see Graczyk and Matecki (2014). In particular,
for any initial condition z(0) = (21(0),--- ,zn(0)) € W2,:

21(t) < wo(t) < -+ <an(t), VEt >0, almost surely. (1.3)

It is a remarkable fact, first observed in Konig and O’Connell (2001), that this
system of SDEs is exactly solvable, in a way that we now describe. First, write
qt(’@ )(m,y) for the transition density with respect to Lebesgue measure of the one
dimensional diffusion process in (0,00) with generator (a version of the squared
Bessel process, see Going-Jaeschke and Yor, 2003):

dﬂ—x——+ﬁ— (1.4)

Observe that, this linear diffusion is the special case N =1 of (1.2). We note that
qt(ﬂ )(x, y) has a well-known explicit expression in terms of Bessel functions (see for
example Going-Jaeschke and Yor, 2003), that we shall not need here though.

Then, as proven in Konig a,n(l O’Connell (2001), Demni (2007) the solution of
the system of SDEs (1.2) can be realized as N independent copies of G(#)-diffusions
conditioned to never intersect via a Doob h-transform. The corresponding transi-
tion kernel is then given by the Doob h-transformed Karlin-McGregor determinant
Karlin (1968) defined by,

N

ij=1

An(y)

N,(8)
x,dy) =
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V(t,x,y) € (0,00) x WY, x WX, (1.5)

Here and throughout the paper we write

An(z) = det (zfj%)N = H (xj — )

i1 11
J 1<i<j<N

for the Vandermonde determinant. Also, WCN " denotes the interior of WCN ", namely
when none of the coordinates coincide (the fact that this definition can be contin-
uously extended to the boundary GWCJY ', is part of Proposition 1.3).

Let (in’(ﬁ )>t>0 denote the corresponding semigroup with transition kernel

(1.5), associated to (1.2). Finally, observe that for all « € WCNJr and ¢ > 0, the

measure qtN’(ﬁ)(x, -) is supported on WCN+ (in fact, due to (1.3), this holds for any

x € W({V_‘_)

1.2.2. The discrete dynamics: non-intersecting linear birth and death chains. We
first need some background on partitions. A finite non-increasing sequence of non-
negative integers A = (A; > Ay > -+ > 0) is called a partition. It is well known that
partitions can be identified with Young diagrams, the set of which we denote by
Y. We write |A| = Y. A; (equivalently the number of boxes in the Young diagram
corresponding to A\) and also {(\) for the length of a partition, namely the largest
index k such that \; > 0 (equivalently the number of rows in the corresponding
diagram).

Let Y(V) denote the set of all Young diagrams with at most N rows, equivalently
partitions A such that [(A\) < N (not to be confused with the set of Young diagrams
with exactly NV boxes, usually denoted by Yy ). Moreover, define the discrete non-
negative Weyl chamber:

Wé\,,+:{$:($1)"'axN>€ZﬁZJ]1<{L‘2<...<xN}7

where Z; = {0,1,2,...}. Then, it is well known that we have the following bijection
between Y(N) and Wéﬁ:

)\=(>\1,'~' ,)\N)EY(N)
S y=ANAvo1+ L e+ N =20 + N —1) e W,

Thus, from now on we can and will only consider Wé\f e

We are ready to introduce our discrete dynamics. Consider the following birth
and death chain, namely a Markov chain in continuous time on Z that moves with
jumps of size +£1, with rate when at site n of jumping to the right n + 8 and for
moving to the left n. We write V1 and V_ for the forward and backward discrete
derivatives respectively:

Vig(n) =g(n+1)—g(n), V_g(n) =g(n—1)—g(n).
Then, the generator &) of the birth and death chain we are considering is given
by:
6B = (n4 )V, +nV_. (1.6)
We write q,({g )(x, y) for its transition density.
Now, consider N identical copies of this birth and death chain conditioned to
never intersect. The transition kernel of this Markov process is then given by the
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Doob transformed Karlin-McGregor semigroup (Karlin, 1968, Karlin and McGre-
gor, 1959), see Chapter 6 of Doumerc (2005) where this specific example was first
studied:

N.(8) _ An@) @ ) N
qt (x,y) - AN({E) det (qt (xla yj))i,jzl ) t> O’x’ Yy S Wd,+' (17)

We denote by (in’(ﬂ)) the semigroup on Wév+ with transition kernel qév’(ﬁ) (z,y).
>0 ’

1.2.3. Intertwinings. We now introduce the exact link between the continuous and
discrete dynamics. We first need an abstract definition. Let X and Y be two
measurable spaces. A Markov kernel A from X to Y is a function A(x, A), where the
first argument x ranges over X, while the second argument is a measurable subset
of Y so that:

e For fixed A, A(-,A) is a measurable function on X.
e For x fixed, A(x,-) is a probability measure on VY.

We then consider the following Markov (as to be shown in Proposition 1.2 below)
kernel Ay from WCN L to Wg 4 defined by (its density with respect to counting

measure), for z € W2, :

20 g (20 v
Ay (z,y) = det | = e Wi, 1.8
N ( y) AN(x) yj| it Y d,+ ( )
It is not hard to see that Ay(z,y) can be continuously extended to z € oW,

since the singularities coming from 1/An(z) at x; = x;, i # j are cancelled out
Yi g N

by det <T/H;' ) which vanishes at those hyperplanes (see also the proof of

il

ij=1

Proposition 1.2). This Markov kernel is moreover intimately related to the Young

bouquet as explained in Section 3.

Remark 1.1. The determinant

SCUJ e Ti

det(z_') ,meWéﬁ,yeWiﬁ,
Yy ij=1

has an interesting probabilistic interpretation in terms of non-intersecting paths of

Poisson processes starting at different times, explained in detail in Remark 3.2 of

Johansson (2002).

We also consider a link in the opposite direction, namely the Markov (as to be
shown below) kernel Ay g from Wé\f 4 to WCN ", defined by for y € Wé\f g

A s (v, d )7AN($)dt a0 g Y g g (1.9)
NS =N ) N T + B) oG '

Observe that, A?v, 5 depends on the parameter §, unlike An. Moreover, note

ij=1

that for all y € W', , the measure A} 4(y,-) is supported on WCN+
Let Cy (WCN +) ,Co (Wév +) denote the spaces of continuous functions vanishing

at infinity on WCN " and Wév . respectively. Then, Ay, Af\ﬂ 5 have the Feller-Markov
property:
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Proposition 1.2. Let 8 > 0 and N > 1. The kernels Ay and A}*\,ﬁ are Feller-
Markov. Namely, for all x € WC]Y_i_ and y € WéYJr,

AN (‘Ta ) and ATV,,B(Z/?)
are probability measures on W£+ and WCJYJF respectively and moreover for all f €
Co (WA,) and f € Co (W, ):
Anfe Co (WY,) and Anf e Co(Wy,).

imilarly, the semigroups ’ an ’ are also Feller:
Similarly, the semi QN _, and QM@ _, e also Fell
t> t>

Proposition 1.3. Let § > 0 and N > 1. The semigroups (Qév’(ﬂ)) and
t>0

(in,(ﬁ))tzo are Feller-Markov: For all f € C (WCNJr) and § € Cy (Wéﬁ):

lim Q"7 = 1, Q7 f e Co (W),
lim 937§ = §, 9" € Co (W) -
We finally arrive at our main result.

Theorem 1.4. Let 8 > 0. For all N > 1,t > 0 we have the following equality
between Feller-Markov kernels:

QNP Ay = Axa) ), (1.10)
N, * * N,
QAL 5 = A Q. (1.11)

In particular, for all f € Cy (W(fv+) and § € Cy (Wéﬁ) :

QN anf = AvM s Al DNy f = M@ S,

Remark 1.5. We should emphasize that we do not give an independent proof of
the Miclo-Patie result (Miclo and Patie, 2019), which is the case N = 1, but rather
(assume it and) use it as a key ingredient in our argument for N > 2 which is the
contribution of the present paper.

Remark 1.6. We can see from Theorem 1.4 that AyAY 5 commutes with in’(’g).
In fact, the following relation is true:

AnAy s = QY. (1.12)
Similarly, we also have:
vl =l ?, (1.13)

Both of these relations can be proven in the same fashion as Theorem 1.4, making
use of the N = 1 cases, Proposition 13 and 14 of Miclo and Patie (2019). The
details are left to the reader.
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1.3. The stationary case.

1.3.1. The stationary dynamics. We will now consider the stationary analogues of
the results above. As before, throughout this subsection the parameter 5 > 0.
Write k:,gﬁ )(x, y) for the transition density with respect to Lebesgue measure of the
one dimensional diffusion process in (0, 00) with generator

L) :xi2+(ﬂ—x)i. (1.14)

dzx? dx
This is the stationary analogue of G?) (see Going-Jacschke and Yor, 2003, Miclo
and Patie, 2019). Tt is reversible (see for example Miclo and Patie, 2019) with
respect to the probability measure (the law of a Gamma random variable) on (0, c0):

1 _
vg(der) = vg(2)1ze(0,00)1dT = —F(B) B exp(—1) 1 ze(0,00)} AT

We can consider the unique strong solution to the following system of non-colliding
and non-exploding SDEs in WCN '\, see Graczyk and Malecki (2014):

da;(t) = /2z;(t)dw; (t) + | B — z:(t) —|—Z x(f)xi% dt, 1<i<N, (1.15)
gt ’

for some independent standard real Brownian motions {w;}¥ ;. As before, the
system of SDEs (1.15) is exactly solvable in terms of a single L(®)-diffusion. More
precisely, the transition kernel of the solution of these SDEs is given by a Doob
h-transformed Karlin-McGregor semigroup:

Nv-1, A (y) B N
]{?N’(ﬁ) dvy) = NN-Dy AN det k.( ) i Yi duyq - - d
t ($7 y) € 2 AN(ZE) € ( t (!L’ ’ y_])) Y1 YN,

4,j=

V(t,2,y) € (0,00) x WY, x WX, (1.16)

Write (KtN’(’B)) N for the Markov semigroup on WY, with kernel kiv’(’g)(x, dy).
t>0 ’

We now introduce the stationary version of the discrete dynamics. Consider the
following birth and death chain, with rate, when at site n, of jumping to the right
o (n+ ) and for jumping to the left (o + 1)n. Here, the parameter o > 0. The
generator £%):7 of this birth and death chain is then given by:

200 — 5(n+ L)V, 4 (0 +1)nV_. (1.17)
Denote by Egﬁ )% its transition density. Moreover, we note that (see for example

Borodin and Olshanski, 2006a, Miclo and Patie, 2019) this chain is reversible with
respect to the negative binomial distribution 7 (-) on Z:

Npo(n) = (1 4+ )" (” A= 1).

n
Now, consider the corresponding Doob h-transformed Karlin-McGregor determi-
nant given by:

N.(B).o _ veen An(y) Bro( .
Et (.I‘,y) =€ AN(.’IJ) det (Et (xzay])>

N

L t>0,x,y6WjY+.
i,5=

(1.18)
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This first appeared in Section 3 of Borodin and Olshanski (2006a), see also Section

6 of that paper for the interpretation as N independent copies of an £(8):7_chain

conditioned to never intersect. Moreover, we denote by (RtN

on VVéY+ with transition kernel E,{V’(ﬁ)(m, Y).

(8 )) the semigroup
t>0

Finally, we introduce the following Markov kernel Ay , from WCN | to Wé\f 4 de-
fined by, for x € WCN ', (as before it can be continuously extended to x € 8W(fy V)

vy A (y) det ((oxi)yﬂ’e—”’“)N
An(z) y;!

Ano (,y) = An(oz,y) = 0~ Yy E W,

i,j=1

(1.19)

Observe that, Ay is the special case Ay with ¢ = 1. For the connection to the
Young bouquet, see Section 3.

As before, we have the Feller property.
Proposition 1.7. Let 0 > 0, § > 0 and N > 1. The kernel Ay, and the

semigroups (KtN’(ﬁ)) and (ﬁiv’(ﬁ)’g> are Feller-Markov.

t>0 t>0

Finally, we have the following stationary analogue of Theorem 1.4.

Theorem 1.8. Let 0 > 0 and B > 0. For all N > 1,t > 0 we have the following
equality between Feller-Markov kernels:

KNPy 5 = Ay 8007 (1.20)

Remark 1.9. The case N =1 is proven in Miclo and Patie (2019). In fact, a proof
by different methods first appeared in Section 6 of Borodin and Olshanski (2013a)
as part of a more general scheme. Again, we do not give an independent proof of
this case but rather use it as a key ingredient.

1.3.2. The stationary measures: a relation between the Laguerre and Meizner en-
sembles. For B > 0, consider the Laguerre ensemble (or complex Wishart probabil-
ity measure), see Wishart (1928), Forrester (2010), on N x N Hermitian matrices,
supported on Hy(N):

M(ﬁ)’N(dH) = const@N det (H)'B_l BiTrH]_{HeHJr(N)}dH

where dH denotes Lebesgue measure on H(N):

N
dH=[]dH;; [ dRH;1dSH;,.
j=1 1<j<k<N

Then, by Weyl’s integration formula the induced probability measure on eigenvalues
on WCN ", is given by:

N
Vév(dl') = (evaly), MPN(de) = consty g Ay (x)? H vg(dx;). (1.21)
i=1

Finally, we define the Meixner ensemble to be the following probability measure on
Wé\)ﬁr, where the parameters o, 5 > 0:

N
18 5 (A) = consty g o An(A)? [[ a0 (M), A€ W, (1.22)
i=1
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This appears in problems of last passage percolation, see Johansson (2000, 2001,
2002, 2010) and is also a special case of the distinguished z-measures on partitions,
see Section 3.2 and also the original papers Borodin and Olshanski (2000, 2006b).

The following proposition is well-known but we also give a proof for completeness.

Proposition 1.10. Let o > 0, 8 > 0 and N > 1. Then, Vév is invariant for
the semigroup (KtN’(ﬂ))

()

Moreover, ngg is the unique invariant measure of
>0 '

>0

Remark 1.11. In fact, Vév is the unique invariant measure of KtN B but we shall
not need this here.

We finally, obtain the following exact relation between the Laguerre and Meixner
ensembles.

Proposition 1.12. Let 0 > 0 and 8 > 0. For all \ € Wé\g_ we have:
[VE Ano] (N) = nf 5 (N). (1.23)
Proof: Apply l/év to both sides of (1.20):
VYK P Ay = v An o8P, v > 0.
By invariance of l/év for KtN’(ﬂ):
VY An e = VY An o 87, v > 0,

By uniqueness of the invariant measure of Riv {87 we obtain the statement of the
proposition. O

2. Proofs
We first prove Theorem 1.4 assuming Propositions 1.2 and 1.3.

Proof of Theorem 1./: We first prove relation (1.10). As already mentioned in the
introduction, the key ingredient is the N = 1 case of the theorem, proven as The-
orem 1 in Miclo and Patie (2019), that we recall in our notation as follows, for
t>0,reRy,yeZy:

e 2Ye™* 2. e
| a0 s = 3 e ) (21)

w=0

Let N > 1 be arbitrary. We calculate for ¢ > 0 and = € WCN ", where we use the
fact that in’(ﬁ)(x, dz) is supported in WC],\CF, the Andreif identity and (2.1):

in’(B)AN (z,y) = / An(z) det (qt(ﬂ)(zi; Z]))

ZGWCIY_'_ AN (37)
Yj ,—z; N
AN(y) det <z’L e' > dzl...dzN
An(z) Ys: i,j=1
Ay

(v) / (8) N
= det Tiy 2
An(x) W, (qt ( j))m‘:l

N

ij=1

X
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yj —z N
zle Fi
><det<" ) dz---dzy
. i

ys! ij=
AN (y) |:/oo (B) 2Yie* :| N
= det q; " (x;, 2) dz
An(z) o yj! ij=1
Anly) o [ e :
_ An(y re” " ()
= det q; (w,y;)
Ay () LZ:O ! ! -

On the other hand:

wEWi\fJr » W=l
An(y) (I ‘e I) ) N
= det | det Wy,
An(z) ﬂgv:N wil )i ( ( yf)) =1
.+
An(y) 4, [5 are )
N (Y e ™ (8)
= det - w, Y;

Thus, we obtain that both sides are equal for t > 0 and x € W "+ Using the Feller
property of all the Markov kernels involved we extend this to:

QYO Ny (2,) = AvQN Pz, ), vt > 0,vz € WD, (2.2)

We now turn to relation (1.11). The N =1 case, again proven as Theorem 1 in

Miclo and Patie (2019), which is as follows in our notation, for ¢t > 0,y € Z,,x €
R,:

pwtBb-lo—= o Ly+p-1

Again, we calculate for ¢t > 0 using (2.3):

N
N
,(8) y, dx Z (qgﬁ)(yh w]))
we WN L=t
N
Bu(z) o (w7 e
X det i dry---dzx
An(y) T +6) ), 0 "
Ay (z) N
det iy W
An(y) wgv:N ( (y ]))i,jzl
wa+5 1 e~ Ti N
x det | ——— dri---dry
( P(w; +8) )ij_l
w+B 1 —IJ N
(x)

dl‘l-'-dl'N

Z qt yz> ( + ﬂ)

1,j=1
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An(z) { / T ) }N
= det _ z,x;)dz dry---dxy.
An(y) o T+ /9’) (25) T

While on the other hand we have, since A} P (y,-) is supported on W(fv i

N
~(z) ZitP e
d -~
N<y>/zeww et( M9 ),

4,5=1

l>

A 5@ (y,da) =

l>

x det (q ﬁ) (i, 2; ) 1d21---dszac1---de
i,j=
yi+B—1 N
An(w) det [/ et (ﬁ)(z,xj)dz] dxy---dxy.
( ) 0 (yl + ﬂ) i,j=1
Thus, we obtain the equality of Feller-Markov kernels:
QNS 5 (1) = A Q) D (), V= 0,9y € WYY, (2.4)

O

Proof of Proposition 1.2: The claim that the kernels Ay and A} ~,p are positive is
due to the fact that, for € W2, and y € W' b

1=

det (xzy’)jvj: > 0.

This a consequence, after a change of variables, of the well-known fact that the
kernel

K(z,w) =e*"

is strictly totally positive, see Karlin (1968).
We now prove that they are normalized to 1. For x € WCN ', (we extend this to
general = below) we can calculate using the Cauchy-Binet or Andreif identity:

N z¥e i N
UG%/:N AN(xay) =7, N Z det( i 1)i7j=1 det ( yJ' )
i+

det (:z:Z ) yew, i,5=1
i,j=1

1 = ple Y
= N det [ E L I y]_1‘| .
det (xj_l) . v et
i,j=

B

On the other hand, it is a classical fact that the moments of the Poisson distribution
are given in terms of the Touchard polynomials (Touchard, 1939) T.(-):

0 1—1
e F _ e p—1
3 Yl =Ti() € :{Z . }zk (2.5)
k

|
y=0 v =0

Here,
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is the Stirling number of the second kind. Note that, these polynomials are monic

since {Z} = 1. In particular, we have

) e—Ti . N N 1 N

bt R b — , , - j—

det Z m Yy = det (T;-1(x;)); ;- = det (331 >i,j=1
y=0 irj=1

which gives the correct normalization.

The claim that, for any y € Wg+

vt o, \
d.’l?l s 'd.Z'N

1 T
Ny, dx) = / An(z)det | —r——-—
L;wg+ ol )= K00 L, AV TE T 8)

=1

ij=1

follows by first using the Andreif identity and then the fact that

s} z+p—1 T(k
el =—r——=02+0+k—-1)---(2+
= Tevg CTPrEmD D)

is a monic polynomial of degree k in z.
We now extend Ay (z,y) to z € GWCJY " by elaborating briefly on the argument

from the introduction. We first write it as

N XN N o1 det (xy’)N
j— —x; z i,j=1
AnGy) =det (7)) Jle [[oq———oa—
WIS 2 det <$§_1>

Now, it suffices to observe that the function

det (z22)"

ij=1

ij=1

5y(7) = ———— T —
det (x?il)
- Jig=1
is actually a polynomial (essentially a Schur polynomial) in the variables (x1,-- -,
2y) and thus can be extended continuously to 2 € IW., .
Moving on, assume we are given f € Cy (WCN+) and f € Cy (WQL). The claim

that the function [Anf] () is continuous in WCN " is a consequence of the dominated
convergence theorem. Observe that, in the case of A}k\/, s there is nothing to prove.

Finally, we need to prove that [Axf] (-) and [A}‘V 5 f] (1) vanish at infinity. Let

€ > 0 be fixed. We will use the notation < to mean < up to a constant independent
of € which might change from line to line.
Pick R = R(e) such that

[f(y)l < e Yy ¢ Wi n[0,R(e)]"
[f(@)] <& Vo g WX n[0,R(e)]" .

Then, we can bound:
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AN N
< Hefzi Z det <ylﬂ,*1). . H —5y(x) +e€

N
i=1 yeW Y n[0,R(e)]Y J=1
—TN R(5)2
S const(R(e))e” " Na ' +e
Clearly, taking zy large enough we obtain
2
const(R(e))e VxRl < ¢,

from which the conclusion for Ay follows.
On the other hand:

1 N
| (A% f] )] < . / det (1)
’ j— N o i,5=1
det (yf l)m‘: [ Ty + 8) Wl !
N
x det (x;‘/ﬁﬂ”) \f(z)|da
ij=1
1 . \N
< ~ / det (mgfl)
i N weWN OV ij=1
det (yzj' l)m: [T2 Ty, + B) 7=eWes N0 RO ’
N
x det (xi—’ﬁﬂfl) dr+€
ij=1
1
S const(R(e)) — R(e)Nn+5=1) 4 ¢
det (yf_l)ijzl [2: Ty +5)
Note that, for any fixed M:
MyN YN — 00 0
I(yn + B) 7
from which the conclusion follows. d

Proof of Proposition 1.5: The result that the transition kernel q; B on W oy de-
fined by, for t > 0,2,y € W, :
NAB) () — DNW) 4 (a6 )N
- t s
qt (SC, y) AN(:E) € qt (I“ y]) .

ij=1

gives rise to a Feller semigroup on Cj (Wév +> is rather standard. It is an immediate
consequence of the following well-known facts (namely the Feller property for N =
1, see Miclo and Patie, 2019):

TN CZ) — —
}E;%qt (ZC,Z) - 5($ - Z),VQ?,Z € Z+a

lim qgﬁ)(x,z) =0,Vz € Z;.
Tr—ro0
It is important to observe that for all x € Wéﬁ_ we have Ay (z) > 1. The reader is
referred to Section 5 of Borodin and Olshanski (2012b) for a detailed exposition of
an entirely analogous example.
To show that qiv’(ﬁ)(x,y)dy defined for (¢,z,y) € (0,00) x WL, x WY, by

N

N,(B) ~ An(y) B) (e o
a7 (x,dy) = An(2) det (qt (i, y])) dyy - - dyn

ij=1
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is Feller the situation is a bit more subtle than in the discrete setting. The contin-

uous extension to the boundary aWCJY ", however is not too hard to establish using

the following argument: the singularities coming from 1/Apy(x) are cancelled out
by the roots of the function

N

(21, on) = det g (21,9,

1,7=1
and then one concludes by using the continuity of the partial derivatives z —
82(]9 )(z, z'"), which can be obtained from the explicit expression for qt(’g )(z, Z') in-
volving Bessel functions (see for example Going-Jaeschke and Yor, 2003). However,
we shall take a different approach which gives the Feller property (including the
continuous extension to BWCJ’V ,) in a unified way and avoids the use of explicit
formulae.

We will use the connection to the (matrix) Laguerre process which, unlike the
system of SDEs (1.2), has no singularities and we can appeal to known results.
Recall that, the matrix SDE, for g > 0:

X? X7
dX; = dWi\| =5 1| 5-dWi+ 8+ (N = 1)] 1dt, (2.6)

has a unique weak solution for any initial condition Xg € Hy(N), where we recall
that H, () is the space of non-negative definite Hermitian matrices (with possibly
coinciding or zero eigenvalues), see for example Demni (2007) or Section 3 of Bru
(1991) (there the case of symmetric positive definite matrices is considered but the
same arguments apply to the Hermitian setting), in particular pages 739-741 for the
argument for coinciding eigenvalues. Let (WN ’(ﬂ)(t);t > 0) be the corresponding
Markov semigroup.

By Demni (2007), see also Section 3 of Bru (1991), or for general affine processes
(the Laguerre/Wishart is a special case) by Section 3 of Cuchiero et al. (2011)
(again this is for real symmetric matrices but the same arguments give the result
in the Hermitian case) this semigroup is actually Feller.

Note that, the map f — f oevaly maps Co (W)Y,) to Co (H4(N)). Now, from
the fact that the eigenvalue evolution of (X;¢ > 0) is autonomous we obtain that
Vi WC]YJF — R we have:

WNB)(t) (f o evaly) (H) only depends on H through evaly (H).

Namely, evaly(X;) only depends on H through evaly(Xo = H). Thus, if z =
evaly (H) we have:

QO] (@) = WP f o evaly | (H) = (WX (1) 0 evaly | (UaU)
YU € U(N),

where U(N) is the group of N x N unitary matrices. Then, the Feller property of

in B g essentially an immediate consequence of the one of WN-(8)(¢).
For example, since z,, - co = U*z, U — oo and [WN’(ﬁ)(t)foevalN} €

Co (H+(N)) for f € Cy (Wéﬁ)7 we get:

[in’(ﬁ)f} () = 0 as z, — oo,

and we can argue likewise for the other conditions. O
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Proof of Proposition 1.7: The proof is completely analogous to the ones of Propo-
sition 1.2 and Proposition 1.3. One now uses the connection to the stationary
Laguerre process (Y ;¢ > 0), solution of the matrix SDE:

2 2
dYt_thq/Y \/YdWT ([B+ (N =1 I-Y,)dt,

with Feller semigroup (Wﬁa’t(ﬁ)(t);t > 0), see Demni (2007), Bru (1991), Cuchiero
et al. (2011). As before, we have:

[KtN’(ﬂ) f] (z) = [WstNafB)(t) foevaIN] (U*2U) ,¥U € U(N)
and we can argue similarly. O

Proof of Proposition 1.10: The key to proving invariance is reversibility of the one
dimensional processes. We calculate, using the fact that z/év (+) is supported on WCN i

and reversibility of kiﬂ)(-, -) with respect to vg(-), for t > 0:

N(N-1) N
[VéVsz(ﬂ)} (dy) = COnstN7B X e 2 tAN(y)dy/ ) det (kt(ﬁ)(xl,yj)) )
zeWl, 4,J=1
N
X Apn(x) H vg(z;)dx;
=1

N(N-1)

=constypg X e 2 tAN(y)dyHVB(yi)

B)
XLEW det (k (yz,x1)> . 1 Hdml

N
c,+

N(N-1)

=constypg xe 2 'An(y) Hz/g(yi)e’ N(4]§_1)tAN(y)dy

= vj (dy).

The third equality above is due to the fact that KtN B i Markovian, in particular
KtN’(B)l = 1. The case of ﬁtN’(B)’U and 77;13\],0 is completely analogous; just replace in-
tegrals by sums. Finally, uniqueness of invariant measures holds for any irreducible
Markov chain on a countable state space, see Theorem 1.6 of Anderson (1991). O

Proof of Theorem 1.8: The proof is entirely analogous to the one of Theorem 1.4;
one uses the N =1 case, proven as Proposition 22 in Miclo and Patie (2019):

o] Yy,—0z > w,—0ox
| T e = S ), 1> 00 e Ry e 2,
0 ’ w=0 :

(2.7)

and the Andreif identity. O
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3. Connection to the Young bouquet and the z-measures on partitions

This section is independent of the rest of the paper. The aim is to explain
how this paper, and in particular Theorem 1.8, is related to a series of works by
Borodin and Olshanski, see Borodin and Olshanski (2006a,b, 2013a,b), Olshanski
(2010, 2012, 2016a,b). We assume that the reader is somewhat familiar with the
basics of graded graphs and projective systems, see for example Section 2 of Borodin
and Olshanski (2013b), that we partially follow, for a nice exposition.

3.1. The Young bouquet and its boundary.

3.1.1. The Young graph. We first introduce the Young graph Y, a distinguished
graded graph that is associated to the branching of irreducible representations of
the chain of symmetric groups S(1) C S(2) C --- C S(N) C S(N+1) C -, see
for example Borodin and Olshanski (2017).

Definition 3.1. The vertices of the Young graph are given by partitions or equiva-
lently Young diagrams Y (we use the same notation as for the graph). The n'" level
of the graph is given by Y, the set of Young diagrams with n boxes (we also write
Yo = 0, the empty diagram, for the root of the graph). Two vertices (diagrams) on
consecutive levels are joined by an edge iff they differ by a box.

Let dim(A) denote the number of paths in the Young graph (from the root)
ending at vertex A (equivalently the number of standard Young tableaux of shape
A, see Borodin and Olshanski, 2013b, 2017). Then, we can define the following
Markov kernel YA%'H from Y, 41 to Y,

_dim())
~ dim(v)
Here, A C v means that the diagram A is included in v, in this particular case v is
obtained from A\ by adding a box. More generally, for n > m we define:

A, = AL A A

FATT (1, A)

1(ACv), A€ Y,V € Yoy

We say that a sequence of probability measures {p,}52; on {Y,}32, is coherent
if:
frm1 AT = i, Ym> 1L

Then, the boundary of the Young graph, namely the set of extremal coherent
sequences of probability measures on Y, is in bijection with the Thoma simplex 2
defined as follows (see Section 3 of Borodin and Olshanski, 2013b for more about
this remarkable result):

Definition 3.2. The Thoma simplex €2 is the subspace of RS x R$® formed by the
couple of sequences a = («;), 8 = (B;) such that :

o0 o0
M Zay> 20,8 =P > >0, a+» Bi<l
i=1 i=1

Moreover, there exist explicit (see Section 3 of Borodin and Olshanski, 2013b)
Markov kernels YA from Q to Y,, satisfying:

YA, YA = YA i > 1,
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3.1.2. The Young bouquet.

Definition 3.3. The Young bouquet is the poset (YB, <) defined as follows: YB
is obtained from the direct product Y x Ry by glueing together all points (v, 0) to
a single point ((},0). An element (v,7) € YB is smaller than (v/,7') € YB if r < ¢/
and v C /. We write |(v,r)| = r and call this the level of (v, r).

Let YB, be the subset of elements with level » and consider the stratification
YB = lS'oYBT (observe also that we can identify each YB, with Y). Now, for any

pair 7’ > r > 0 consider the following Markov kernel YBA;/ from YB, to YB,:
VB « A\ I=IAL ,e\(A [v|! ¥4 vl
A = (1 D) Y )
=05 @) e e
These Markov kernels satisfy the compatibility relations, see Section 3 of Borodin
and Olshanski (2013b):

" ’ 7 "
VEAT YEAT —YBATT 7 Sl > >0,

T )
and thus the Young bouquet forms a projective system. Its boundary, see Section
3 of Borodin and Olshanski (2013b), is in bijection with the Thoma cone 2 defined
as follows:

Definition 3.4. The Thoma cone (2 is the subspace of RS x R x Ry, formed by
triples w = (o, 8, 9) so that a = («;) and 8 = (5;) satisfy:

aZay> o >0,60> B> >0,) ait+ Yy Bi <4
i=1 i=1

Clearly, we can identify the Thoma simplex  with the subset of the Thoma
cone consisting of w € Q with §(w) = 1.

Moreover, there exist explicit Markov kernels YBA? from Q to YB, = Y satisfying
the compatibility relations (see Section 3 of Borodin and Olshanski, 2013b):

VBASOVBAT _ VENCO 1/ s (), (3.1)

We require a final definition:
Definition 3.5. For z € W[, we define w, = (a(ws),0,d(w,)) € Q as follows:

alwy) = (en > N1 > - > 20 > 21),

ap(wg) =0forl > N, B;(w,) =0 and §(w,) = vazl Z;.

With all these preliminaries in place, the following proposition explains the con-
nection of the Markov kernel Ay, from W2, to WdIY 4 defined in (1.19) with the
Young bouquet.

Proposition 3.6. We have that, for x € WCI?Q_ :

YEA® (w,, ) is supported on Y(NN).

Moreover, under the bijection between WéYJr and Y(N), we have the following equal-
ity of probability measures:

Y]BA;EO (wm7 ) = AN,’I“ (1‘, ')7 WS WCJYJF (32)
Proof: This is a direct consequence of the explicit formula for YA (w,,-) from

Section 3 of Borodin and Olshanski (2013b) along with the explicit formula for
dim(A) from Section 1 of Borodin and Olshanski (2006a). O
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3.2. The z-measures and the Meizner ensemble. We now define, the celebrated z-
measures on partitions, see Borodin and Olshanski (2000, 2006b, 2013b). They are
a distinguished special case of Okounkov’s Schur measures Okounkov (2001).
Let (2), be the generalized Pochhammer symbol:
ey
(2), = H(z—i—kl)/\i, zeC, e,
i=1
where forn €N, (2), =2(z+1)---(z+n—-1), ()0 =1.
Consider the following conditions on a pair of parameters (z,z’). We call any
pair (z, 2’) satisfying one of the three conditions below admissible.
e (Principal series) The numbers z and 2’ are not real and moreover complex
conjugate to each other.
e (Complementary series) Both z and 2’ are real and contained in an interval
(m,m + 1) for some m € Z.
o (Degenerate series) One of z, 2’ is a non-zero integer, say z = N, while 2’
has the same sign and |2/| > |z| - 1= N — 1.

Definition 3.7. The z-measure on partitions M ,, with admissible parameters
(z,7') and additional parameter r > 0 is defined as follows:

ML= 1 (1) RERTN (df‘jl(,”) \eY.  (33)

A key fact about the z-measures is that they are consistent on YB, see Borodin
and Olshanski (2013b):

MILYEAT = M;“Z LV > >0
and thus (see Borodin and Olshanski, 2013b) give rise to a unique probability
measure M2, on 2 so that:
VB
MZ, AT = ML, Y > 0.

The z-measure with parameters in the degenerate series z = N,z = N+ —1 and
r > 0 coincides (under the bijection between WjY, and Y(N)) with the Meixner
ensemble 77lé\fr(~)7 see for example Borodin and Olshanski (2006b). We then have
the following result:

Proposition 3.8. The boundary z-measure My . 5 1 on the Thoma cone Q

coincides with the Laguerre ensemble Vév. More precisely, if we consider w, =

a(wy),0,0(w,)) € Q as in Definition 5.5 with x € W, picked according to VY,
et B
then w, has law M]‘i,‘fNJr,B_l.

Proof: This is a consequence of Proposition 1.12 and Proposition 3.6 along with
the discussion above. O

3.3. Markov processes for z-measures. A construction of a Markov process on €2,
possessing the Feller property with additional desirable features including a de-
terminantal structure, that preserves the non-degenerate z-measures was obtained
in Borodin and Olshanski (2013a), see also Borodin and Olshanski (2006a, 2009),
Olshanski (2010) for previous studies. The strategy follows the method of inter-
twiners of Borodin and Olshanski introduced in Borodin and Olshanski (2012h),
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for constructing Feller processes on boundaries of projective systems, see Borodin
and Olshanski (2012b), Cuenca (2018), Assiotis (2019+) for applications of this
method.

The statement of the result in Borodin and Olshanski (2013a) goes as follows: For
non-degenerate parameters (z,z’) there exists a unique Feller-Markov semigroup
(T2, (1)) 10 O1 Q, with M 29, as its unique invariant measure, satisfying (and in

fact characterized through) the intertwining relation:

T2 () PAR = YPAXT! (1), Vt > 0,7 >0, (3.4)

where (TZT,Z, (t))t> o 18 the semigroup of a certain Markov jump process on Y (see
Borodin and Olshanski, 2013a for its definition), which has M ., as its unique
invariant probability measure.

Then, the authors go on to identify the generator ®

[e'S)
2,2

of the abstract semigroup

(T;‘;/(lf))t>O by its action on a certain algebra of functions on €2, see Borodin and

Olshanski (2013a), and in a subsequent paper Olshanski (2016a) it is shown that
(T;”OZ,(t))t> 0 gives rise to a Markov process with continuous sample paths. In all
these works, heavy use is made of symmetric function theory. The key role is
played by the Laguerre and Meixner symmetric functions introduced and studied
by Olshanski (2012).

In fact, due to Propositions 3.6 and 3.8 above we can interpret Theorem 1.8 in
this paper as the analogue of (3.4) for the degenerate series of parameters (z, 2’),
thus completing the picture for the whole range of admissible parameter values.

Finally, we should mention that an intertwining relation between a diffusion
generator and that of a Markov jump process is proven in Section 9 of Olshanski
(2016Db). The motivation behind this study is the analogous problem of constructing
dynamics for the zw-measures on the Gelfand-Tsetlin graph (Borodin and Olshan-
ski, 2012a,b). Again, heavy use is made of symmetric functions and a key role is
played by the Jacobi and Hahn orthogonal polynomials.

We finish with a number of remarks.

Remark 3.9. It would be interesting to understand whether the intertwining (1.11),
going in the opposite direction, has any meaning as well in this framework of con-
sistent dynamics on projective systems.

Remark 3.10. It would also be interesting to see whether it is possible to obtain
the results for the non-degenerate case from the ones for the degenerate one, by
some kind of analytic continuation, as was done in Borodin and Olshanski (2006a),
Olshanski (2012).

Remark 3.11. Theorem 1.8 can also be used to obtain relations between the mul-
tivariate Meixner and Laguerre polynomials as in Borodin and Olshanski (2013a),
Olshanski (2012). Observe that, this is going in the opposite direction of the ar-
guments in Borodin and Olshanski (2013a) which go from information on the sym-
metric functions to obtain results for the Markov semigroups.
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