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Abstract. We present a Gaussian process that arises from the iteration of p frac-
tional Ornstein–Uhlenbeck processes generated by the same fractional Brownian
motion. When the values of the parameters defining the iteration are pairwise
distinct, this iteration results in a particular linear combination of those processes.
Although for H > 1/2 each term of the iteration is a long memory process, we prove
that when p ≥ 2 the process obtained has short memory. We prove that the local
Hölder index of the process is H, and obtain an explicit formula for the spectral
density. We present a way to estimate the parameters and prove that the estimators
are consistent and the results are asymptotically Gaussian. These processes can be
used to model time series of long or short memory.

1. Introduction

In the field of time series, the AR(p) processes are introduced as the stationary
solutions of the stochastic recurrence equation

Xn = a1Xn−1 + . . .+ apXn−p + εn,

where the ai are constants and εn is a Gaussian white noise. The introduction of
such processes, and a fortiori of their parameters, allows some flexibility in fitting
real data. However, some care must be taken to not have excessively many pa-
rameters with the consequent overfitting. To control the number of parameters,
some theoretical tools must be applied, for example, Akaike’s criterion. In the case
of Gaussian processes in continuous time, a natural choice, generalizing the AR(p)
processes, is the set of processes that are the solutions of a linear stochastic differen-
tial equation of order greater than or equal to two. These processes have a rational
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function as spectral density. An emblematic case is the damped harmonic oscillator
forced with a Gaussian white noise. As with the AR(p), these processes provide
some flexibility in choosing their parameters. Nevertheless, there is a drawback.
Due to the fact that they are the solutions to a stochastic differential equation of
order greater than or equal to two, they have at least a continuous derivative. But
sometimes in practice we need models having continuous but irregular trajectories.

In the present paper we will define Gaussian processes which, like the higher-
order solutions of stochastic differential equations, are defined by a set of parame-
ters. However, we will insist that their trajectories be continuous but irregular.

These processes will be generated by a fractional noise with Hurst parameter
H. An advantage is that in the case H > 1

2 , the generating process exhibits
long range dependence and yet the resulting process has weak dependence. This
property allows considering parameter estimation when the observation interval
grows towards infinity.

In what follows we define these processes, also establishing some of their prop-
erties. We start by recalling the definition of a fractional Brownian motion.

Definition 1.1. A fractional Brownian motion with Hurst parameter H ∈ (0, 1] is
an almost surely continuous centred Gaussian process {BH(t)}t∈R with

E (BH(t)BH(s)) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s ∈ R.

When H = 1/2, fractional Brownian motion becomes a standard Brownian
motion. An Ornstein–Uhlenbeck process is a Gaussian process defined by Xt =

σ
∫ t
−∞ e−λ(t−s)dB1/2(t) for t ∈ R, where σ, λ > 0, are parameters (Uhlenbeck and

Ornstein, 1930). This process is the unique stationary solution of the Langevin
equation (Langevin, 1908), defined by

dXt = −λXtdt+ σdB1/2(t).

If we consider the Langevin equation with a fractional Brownian noise, dXt =

−λXtdt+σdBH(t), thenXt = σ
∫ t
−∞ e−λ(t−s)dBH(t) for t ∈ R is the unique station-

ary solution, see Cheridito et al. (2003). In the present paper, we use the notation
{Xt}t∈R ∼FOU(λ, σ,H) for any process defined by Xt = σ

∫ t
−∞ e−λ(t−s)dBH(t),

where σ, λ > 0, H ∈ (0, 1].
If we change the process {BH(t)}t∈R by an unspecified process {y(t)}t∈R, we can

define the operators Tλ(y)(t) :=
∫ t
−∞ e−λ(t−s)dy(s) and for each h = 0, 1, 2, ...

T
(h)
λ (y)(t) :=

∫ t

−∞
e−λ(t−s) (−λ (t− s))h

h!
dy(s). (1.1)

The process {y(t)}t∈R are assumed to be continuous to ensure the existence of
the integral defined in (1). These transformations are called the OU operator with
parameter λ and the OU operator of degree h and parameter λ respectively (Arratia
et al., 2016).

Observe that T (0)
λ = Tλ. Given {BH(s)}s∈R a fractional Brownian motion with

parameter H, and λ1 6= λ2 real positive numbers, we define the processes X(i)
t :=

Tλi (σBH) (t) = σ
∫ t
−∞ e−λi(t−s)dBH(s) for i = 1, 2. This is

{
X

(i)
t

}
t∈R
∼

FOU(λi, σ,H) for i = 1, 2 generated by the same fractional Brownian motion.
It can be proved that the process defined by Xt := (Tλ1 ◦ Tλ2) (BH) (t) is equal
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to Xt = λ1

λ1−λ2
X

(1)
t + λ2

λ2−λ1
X

(2)
t , which is a particular linear combination of the

processes
{
X

(1)
t

}
t∈R

and
{
X

(2)
t

}
t∈R

.

This implies that (Tλ1
◦ Tλ2

) (BH) = (Tλ2
◦ Tλ1

) (BH).
In general, if we compose the operator Tλ p times, we get the following equality:

T pλ =
∑p−1
j=0

(
p−1
j

)
T

(j)
λ . If we compose the operator Tλ1

p1 times, the operator Tλ2

p2 times,..., and the operator Tλq pq times, for pairwise distinct λi, it is possible to
expand T p1λ1

◦ T p2λ2
◦ ... ◦ T pqλq as a linear combination of the operators T (h)

λ (Arratia
et al., 2016).

It is known that for H > 1/2, every FOU(λ, σ,H) is a long memory process,
Cheridito et al. (2003), this is

∑+∞
n=−∞ |γ (n)| = +∞ where γ (n) = E (X0Xn) . We

will prove, in Section 2, that if we compose at least two operators of the form Tλ
evaluated for a fractional Brownian motion, with Hurst parameter H > 1/2, we
obtain a process {Xt}t∈R that satisfies

∑+∞
n=−∞ |E (X0Xn)| < +∞. Further, this

process has short memory.
The plan of this paper is as follows. In Section 2, we define a FOU(p) (this

is a fractional Ornstein–Uhlenbeck process of order p), and summarize the results
needed to obtain its auto-covariance function. We prove that any FOU(p) has
almost all of its trajectories not differentiable at any point, and the parameter H
is the local Hölder index of the process. We also obtain its spectral density and
deduce that when p ≥ 2, it is a short memory process. In Section 3, we give explicit
formulas to estimate H and σ and prove that they are consistent and the results are
asymptotically Gaussian. The local behaviour of the spectral density at zero allows
a consistent way to estimate the parameters of λ. In Section 4 we give a formula
for the auto-covariance function of a FOU(p) process. Our concluding remarks are
in Section 5. Section 6 contains the proofs of the results presented in Section 2.

2. Definitions and properties

We start with the definition of a fractional iterated Ornstein–Uhlenbeck process.

Definition 2.1. Suppose that {σBH(s)}s∈R is a fractional Brownian motion with
Hurst parameter H, and scale parameter σ. Suppose further that λ1, λ2, ..., λq are
distinct positive numbers and that p1, p2, ..., pq ∈ N are such that p1+p2+...+pq = p.
We define {Xt}t∈R by

Xt := T p1λ1
◦ T p2λ2

◦ ... ◦ T pqλq (σBH)(t) =

q∑
i=1

Ki (λ)

pi−1∑
j=0

(
pi − 1

j

)
T

(j)
λi

(σBH)(t), (2.1)

where the operators T (j)
λi

were defined in (1.1) and the numbers Ki(λ) are defined
by

Ki (λ) = Ki (λ1, λ2, ..., λq) =
1∏

j 6=i
(1− λj/λi)

. (2.2)

The validity of equality given by (2.1) can be found in Arratia et al. (2016).
Notation. If {Xt}t∈R is given by equation (2.1), then we denote {Xt}t∈R ∼

FOU
(
λ

(p1)
1 , λ

(p2)
2 , ..., λ

(pq)
q , σ,H

)
, or, more simply, {Xt}t∈R ∼FOU(p).
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Observe that the notation FOU
(
λ

(p1)
1 , λ

(p2)
2 , ..., λ

(pq)
q , σ,H

)
implies that the pa-

rameters λi are distinct. Also, the simplified notation FOU(p) means that we have
taken the composition Tλ1

◦ Tλ2
◦ ... ◦ Tλp where the values of λ′s are arbitrary,

where repetitions are allowed (this is the composition p times of operators Tλ).

Remark 2.2. When p1 = p2 = ... = pq = 1 the process is equal to

Xt =
(
Tλ1
◦ Tλ2

◦ ... ◦ Tλq
)

(σBH)(t) =

q∑
i=1

Ki (λ)Tλi(σBH)(t) (2.3)

and we write {Xt}t∈R ∼FOU(λ1, λ2, ..., λq, σ,H) .

Remark 2.3. When q = 1, we obtain a fractional Ornstein–Uhlenbeck process
(FOU(λ, σ,H)).

Remark 2.4. Any FOU
(
λ

(p1)
1 , λ

(p2)
2 , ..., λ

(pq)
q , σ,H

)
, is a Gaussian, centred, and al-

most surely continuous process.

Any FOU(p) has the property that almost all its trajectories are not differentiable
at any point. This fact will be used in Section 3 to obtain estimators of H and σ.

Proposition 2.5. If {Xt}t∈R ∼FOU(p), then, with probability one, its trajectories
are not differentiable at any point.

In Corollary 3.3, we will see that H is the local Hölder index of any FOU(p).
We need to define the following functions in order to obtain the main results of

this paper.

f
(1)
H (x) := e−x

(
Γ (2H)−

∫ x

0

ess2H−1ds

)
, (2.4)

f
(2)
H (x) := ex

(
Γ (2H)−

∫ x

0

e−ss2H−1ds

)
, (2.5)

fH(x) := f
(1)
H (x) + f

(2)
H (x), (2.6)

where Γ(.) is the gamma function defined by Γ(α) =
∫ +∞

0
tα−1e−tdt.

Remark 2.6. If H > 1/2, we write f (1)
H (x) =

Γ(2H)−
∫ x
0
ess2H−1ds

ex and applying
L’Hôpital rule, we obtain f (1)

H (x) → −∞ and analogously f (2)
H (x) → +∞ as x →

+∞.

As H increases, the functions fH increase, as can be seen in Figure 2.1. Then,
when x → +∞, as long as H increases, the functions fH go to zero more slowly.
The following proposition includes the properties of fH that will be used later on.
We write f ∼ g as x→ a, when f(x)/g(x)→ 1 as x→ a.

Proposition 2.7. If H > 1/2, α, β > 0, then

(1) α1−2Hf
(1)
H (αx) + β1−2Hf

(2)
H (βx)→ 0 when x→ +∞.

(2) α1−2Hf
(1)
H (αx) + β1−2Hf

(2)
H (βx) ∼ α+β

αβ (2H − 1)x2H−2 when x→ +∞.
(3) fH(x) ∼ 2(2H − 1)x2H−2 when x→ +∞.
(4) fH(x)− fH(0) = fH(x)− 2Γ (2H) = −x

2H

H + o
(
x2H

)
when x→ 0.

(5) fH(x) = Γ(2H+1) sin(Hπ)
2π

∫ +∞
−∞

eiv|v|1−2H

v2+x2 dv.
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Figure 2.1. The functions fH for H = 0.5, 0.6, 0.7, 0.8 and
0.9. The lowest curve corresponds to H = 0.5 while the highest
curve corresponds to H = 0.9.

Property 1 tells us that when H > 1/2, fH(x)→ 0 as x→ +∞, and this fact will be
used to prove property 3. Property 3 gives the order of decay of the auto-covariance
function. In particular, when H > 1/2, then

∑+∞
n=1 fH(n) = +∞. In Figure 2.1 it

can be seen that fH decreases slowly to zero as H increases. We will prove later,
in (2.8), that the auto-covariance function of any FOU(λ, σ,H) can be expressed
as a multiple of fH(λt). Therefore, any FOU(λ, σ,H) is a long memory process for
H > 1/2. Property 4 will be useful for obtaining consistent estimators of H and σ,
independently of the parameters λ. Property 5 will be used to obtain the spectral
density of any FOU(p).

The following proposition is the key ingredient that will allow us to express the
auto-covariance function of any FOU(λ1, λ2, ..., λp, σ,H) as a linear combination of
fH (λit) . The proof will be based on (4.1).

Proposition 2.8. Let
{
X

(1)
t

}
t∈R
∼FOU(λ1, σ,H) and

{
X

(2)
t

}
t∈R
∼FOU(λ2, σ,H)

be generated by the same fractional Brownian motion {σBH(t)}t∈R . Then, for all
t and H > 1/2,

E
(
X

(1)
0 X

(2)
t

)
=

σ2H

λ1 + λ2

(
λ1−2H

1 f
(1)
H (λ1 |t|) + λ1−2H

2 f
(2)
H (λ2 |t|)

)
. (2.7)

In particular, when t = 0,

E
(
X

(1)
0 X

(2)
0

)
=
σ2HΓ (2H)

λ1 + λ2

(
λ1−2H

2 + λ1−2H
1

)
=
σ2Γ (2H + 1)

2 (λ1 + λ2)

(
λ1−2H

1 + λ1−2H
2

)
.

If we set λ1 = λ2 = λ in (2.7), we obtain the auto-covariance function of any
FOU(λ, σ,H) :



1110 J. Kalemkerian and J. R. León

Corollary 2.9. For any {Xt}t∈R ∼FOU(λ, σ,H) where H > 1/2,

E (X0Xt) =
σ2HfH (λ|t|)

2λ2H
. (2.8)

Observe that property 3 of Proposition 2.7 and (2.8), show that any FOU(λ, σ,H)
is a long memory process.

Remark 2.10. Observe that fH(0) = 2Γ (2H) . Moreover, putting t = 0, the well
known expression for the variance of any FOU(λ, σ,H) appears:

V (Xt) =
σ2Γ (2H + 1)

2λ2H
.

In Section 6 we shall prove the following proposition, which shows us that the
auto-covariance function of any FOU(p), where the λ1, λ2, ..., λp are distinct, is a
linear combination of the functions fH (λit) .

Proposition 2.11. If {Xt}t∈R ∼FOU(λ1, λ2, ..., λp, σ,H) and p ≥ 2, then

E (X0Xt) =
σ2H

2

p∑
i=1

λ2p−2H−2
i∏

j 6=i

(
λ2
i − λ2

j

)fH(λi|t|). (2.9)

Remark 2.12. If p = 1, then (2.9) is equal to (2.8).

Remark 2.13. It is possible to show that if p ≥ 2, then
∑p
i=1

λ2p−4
i∏

j 6=i
(λ2
i−λ2

j)
= 0, which

allows us to see (with a little more work) that whenH > 1/2, then
∑+∞
n=1 |E(X0Xn)|

< +∞ although
∑+∞
n=1 fH(n) = +∞. This fact will be also inferred from the next

theorem, about the formula for the spectral density.

Observe that when p = 2, then (2.9) says that

E (X0Xt) =
σ2H

2 (λ2
1 − λ2

2)

(
λ2−2H

1 fH(λ1|t|)− λ2−2H
2 fH(λ2|t|)

)
. (2.10)

Using (2.9), and property 5 of the function fH (in Proposition 2.7) and a little
more work, we obtain Theorem 2.14. The theorem gives a formula for the spectral
density of the process. This result shows that if p ≥ 2, any FOU(p) is a short
memory process.

Theorem 2.14. If X = {Xt}t∈R ∼FOU
(
λ

(p1)
1 , λ

(p2)
2 , ..., λ

(pq)
q , σ,H

)
where p1 +

p2 + ...+ pq = p, then the spectral density of the process is

f (X)(x) =
σ2Γ (2H + 1) sin (Hπ) |x|2p−1−2H

2π
q∏
i=1

(λ2
i + x2)

pi
. (2.11)

In particular, if {Xt}t∈R ∼FOU(λ1, λ2, ..., λp, σ,H), then

f (X)(x) =
σ2Γ (2H + 1) sin (Hπ) |x|2p−1−2H

2π
p∏
i=1

(λ2
i + x2)

. (2.12)
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Remark 2.15. For H ∈ (1/2, 1) and p = 1, zero is a point where the spectral
density of the process is singular, and we have a long memory process (because is
a FOU(λ, σ,H)). If p ≥ 2, the spectral density is no longer singular at zero which
suggest that the short memory property holds for such a process. This result will
be formalized in the next corollary.

Remark 2.16. Observe that f (X) (0) = 0 (for p ≥ 2), from which it follows that
the FOU(p) process can be used to model anti-persistent time series. For example,
our processes could be used for modeling postural control during a quiet stance by
assessing the displacement of the center-of-pressure (COP) in the body. In fact,
in Delignières et al. (2011), the position and the velocity of several individuals
are recorded. Then, empirical evidence of the change of the correlation pattern in
the velocity record of each individual is provided. In the short term, a persistent
behaviour is detected and in the long term an anti-persistent behaviour is detected.
One can model such a pattern by thinking of the velocity register as a fractional
OU-process passing through a filter of the type T p1λ1

◦T p2λ2
◦...◦T pqλq in such a way that

the output will be a FOU(p). Nevertheless, we do not consider this matter in the
present paper, it will be left to future research. Other interesting applications for
anti-persistent time series can be found for instance in Ai et al. (2010) and Maxim
et al. (2005).

Remark 2.17. To model non anti-persistent time series, one can develop the fol-
lowing idea. If X = {Xt}t∈R ∼ FOU(p) and Y = {Yt}t∈R is a Gaussian stationary
short memory process, centred, differentiable, and independent of X, such that
f (Y ) (0) 6= 0, then Z = X + αY is a centred Gaussian short memory process
such that f (Z) (0) = α2f (Y ) (0) . In this way, we have a stationary, centred Gauss-
ian, short memory process that also has the peculiarity that f (Z) (0) can take any
value, and the Hölder index is equal to the Hölder index of X. The value of α can
be estimated from the periodogram.

Let’s write (2.11) as f (X) (x) = cH |x|2p−1−2H

q∏
i=1

(λ2
i+x

2)
pi
, where cH = σ2Γ(2H+1) sin(Hπ)

2π and

consider p ≥ 2. We have
∣∣∣∂f(X)(x)

∂xk

∣∣∣ ≤ cte
x2 for x large enough.

In the other hand, observe that ∂f
(X)(0)
∂xk

= 0 for k = 1, 2, ..., 2p−3, and ∂f(X)(x)
∂x2p−2 ∼

cte
x2H−1 when x→ 0, therefore

∫ +∞
0

∣∣∣∂f(X)(x)
∂x2p−2

∣∣∣ dx < +∞. Then, integrating by parts
2p− 2 times, we obtain that

ρ (t) = E (X0Xt) =

∫ +∞

0

cos (tx) f (X) (x) dx =
−1

t2p−2

∫ +∞

0

cos (tx)
∂f (X) (x)

∂x2p−2
dx.

Then, we obtain the following corollary.

Corollary 2.18. If X = {Xt}t∈R ∼FOU
(
λ

(p1)
1 , λ

(p2)
2 , ..., λ

(pq)
q , σ,H

)
where p1 +

p2 + ...+ pq = p, for p ≥ 2, then |ρ (t)| ≤ c
t2p−2 where c =

∫ +∞
0

∣∣∣∂f(X)(x)
∂x2p−2

∣∣∣ dx for all

t. Thus
∫ +∞

0
|ρ (t)| dt < +∞ and the process exhibits short range dependence.

Remark 2.19. Continuing the argument that gives meaning the Corollary 2.18, ob-
serve that ∂f

(X)(x)
∂x2p−1 ∼ cte

x2H when x→ 0, thus ifH > 1/2, we obtain
∫ +∞

0

∣∣∣∂f(X)(x)
∂x2p−1

∣∣∣ dx
= +∞ and the results of Corollary 2.18 suggest that α = 2p − 2 is the maximum
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order of a bound in the form c
tα for |ρ (t)| . Also, observe that as p grows, the

asymptotic decrease of the auto-covariance function of any FOU(p) grows.

3. Parameter estimation

In this section we give a consistent way to estimate the parameters of any
FOU(p) . Firstly, we can estimate σ and H independently of the values of the λi. In
addition, we will prove the consistency and asymptotic normality of the estimators.
Secondly, taking advantage of the explicit formula of the spectral density, we can
estimate λ using Whittle estimators.

3.1. Estimation of H and σ. If {Xt}t∈R is a FOU(p) process, we define v(t) :=
1
2E (Xt+s −Xs)

2 the associated variogram. In Ibragimov and Rozanov (1978) it
can be seen that if there is an s ∈ (0, 2) and C > 0, such that

v(2D)(t) = v(2D)(0) + C(−1)D |t|s + o (|t|s)

where D is the greatest integer such that v is 2D times differentiable and o (|t|s)
means that o(|t|s)

|t|s → 0 when t → 0, then h = D + s/2 is the local Hölder index of
the processes. For these processes, Istas and Lang (1997) present a procedure to
estimate C and s. In addition, they provide conditions that ensure the consistency
and asymptotic normality of the estimators.

Any FOU(p) has almost all its trajectories everywhere non-differentiable (Propo-
sition 2.5), therefore D = 0. Then, the first step will be to show that v(t) =
σ2

2 |t|
2H

+ o
(
|t|2H

)
, and the second step will be to look for formulas to estimate σ

and H and to prove that they yield consistency and asymptotic normality.

Lemma 3.1. If λi 6= λj, and we define X(i)
t := Tλi (σBH) (t) for each t, then

E
(
X

(i)
t+s −X(i)

s

)(
X

(j)
t+s −X(j)

s

)
= σ2 |t|2H + o

(
|t|2H

)
for all t, s.

Theorem 3.2. If {Xt}t∈R ∼FOU(p), and v(t) is the associated variogram, then

v(t) =
σ2

2
|t|2H + o

(
|t|2H

)
.

The following corollary follows immediately from Theorem 3.2, and shows that
H can be interpreted as a parameter that governs the regularity of trajectories of
any FOU(p).

Corollary 3.3. If {Xt}t∈R ∼FOU(p) then H is the local Hölder index of the pro-
cess.

To obtain the estimators of σ and H, we proceed as follows. First, we will call
a = (a0, a1, ..., ak) a filter of length k+1 and order L ≥ 1 if and only if the following
conditions hold:

•
∑k
i=0 aii

l = 0 para todo 0 ≤ l ≤ L− 1.

•
∑k
i=0 aii

L 6= 0.
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Observe that given a a filter of order L and length k + 1, the new filter a2 =
(a0, 0, a1, 0, a2, 0, ...0, ak) has order L and length 2k + 1. Now, we define the qua-
dratic variation of a sample associated to a filter a as follows.

Definition 3.4. Given a filter a of length k + 1 and a sample X1, X2, ..., Xn, we
define

Vn,a :=
1

n

n−k∑
i=0

 k∑
j=0

ajXi+j

2

.

Theorem 3.5. If X∆, X2∆, ...., Xi∆, ..., Xn∆ = XT is an equispaced sample of the
process {Xt}t∈R ∼FOU(p) and the filter a is of order L ≥ 2 and length k+ 1, then,
if ∆n = n−α for some α such that 0 < α < 1

2(2H−1) and T = n∆n → +∞ as
n→ +∞, define

Ĥ =
1

2
log2

(
Vn,a2

Vn,a

)
, (3.1)

σ̂ =

 −2Vn,a

∆2Ĥ
n

∑k
i=0

∑k
j=0 aiaj |i− j|

2Ĥ

1/2

. (3.2)

Then
(1) (

Ĥ, σ̂
)
a.s.→ (H,σ) .

(2)
√
n
(
Ĥ −H

)
w→ N (0,Γ1 (H,σ, a))

(3) √
n

log n
(σ̂ − σ)

w→ N (0,Γ2 (H,σ, a))

3.2. Estimation of the parameters λ. Once the parameters H and σ have been
estimated, taking advantage of the explicit knowledge of the spectral density, we can
proceed as in Leonenko and Sakhno (2006) to estimate the rest of the parameters
by using a modified Whittle contrast. Recall the spectral density of our model.
If X = {Xt}t∈R ∼ FOU(λ

(p1)
1 , . . . , λ

(pq)
q , σ,H) where

∑q
i=1 pi = p, the spectral

density is

f (X)(x) =
σ2Γ(2H + 1) sin(Hπ)|x|2p−1−2H

2π
∏q
i=1(λ2

i + x2)pi
.

The asymptotic behaviour of this function as |x| → ∞ is O(|x|−1−2H). Furthermore,
if p ≥ 2, this spectral density is continuous and does not have any singularity.
Indeed,

E(X0Xt) =
σ2H

2

p∑
i=1

λ2p−2H−2
i∏

i 6=j(λ
2
i − λ2

j )
fH(λjt).

We have already shown that this covariance is integrable. Having in hand these
results we can obtain in the next theorem an estimator of the parameters λ that is
consistent and asymptotically normal.
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Theorem 3.6. Suppose given {Xt}t∈R ∼ FOU
(
λ

(p1)
1 , λ

(p2)
2 , ..., λ

(pq)
q , σ,H

)
where

σ and H are known. Suppose further that λ0 =
(
λ0

1, λ
0
2, ..., λ

0
q

)
∈ Λ ⊂ Rq is the

true value of the parameter, with λ0 ∈int(Λ) where Λ is compact and the process is
observed in [0, T ] for some T > 0. Define the following contrast process:

UT (λ) =
1

4π

∫ +∞

−∞

(
log f (X) (x, λ) +

IT (x)

f (X) (x, λ)

)
w (x) dx (3.3)

where f (X) (x, λ) is the spectral density of the process given in (2.11), IT (x) is the
periodogram of the second order

IT (x) =
1

2πT

∣∣∣∣∣
∫ T

0

Xte
−itxdt

∣∣∣∣∣
2

and w(x) = |x|
1+|x|b where b > 2. Then λ̂T = arg minλ∈Λ UT (λ) satisfies

• λ̂T
P→ λ0 when T → +∞ and

•
√
T
(
λ̂T − λ0

)
w→ Nq

(
0,W−1

1

(
λ0
)
W2

(
λ0
)
W−1

1

(
λ0
))

when T → +∞

where Nq(., .) denotes the q−dimensional Gaussian law and the matrices W1

(
λ0
)

and W2

(
λ0
)
are defined by

W1 (λ) =
(
w

(1)
ij (λ)

)
i,j=1,...,q

and W2 (λ) =
(
w

(2)
ij (λ)

)
i,j=1,...,q

where

w
(1)
ij (λ) =

1

4π

∫ +∞

−∞
w(x)

∂

∂λi
log f (X) (x, λ)

∂

∂λj
log f (X) (x, λ) dx

w
(2)
ij (λ) =

1

4π

∫ +∞

−∞
w2(x)

∂

∂λi
log f (X) (x, λ)

∂

∂λj
log f (X) (x, λ) dx.

Remark 3.7. It would be very interesting to prove that the following discretization

U∆ =
T

2π

n∑
i=1

(
log f(xi, λ) +

I∆(xi)

f(xi, λ)

)
w(xi)(xi − xi−1),

where xi = i∆, I∆(j∆) = T
2πn

∣∣∣∑n
j=1 e

ij∆Xj∆

∣∣∣2 and T = n∆→∞, would give the
same results as in Leonenko and Sakhno (2006). We plan to tackle this interesting
problem in future work.

Remark 3.8. Let us clarify the type of convergence that we deal in the following
remark. Given that the spectral density converges, then the covariances converge
too. This and the fact that we consider only Gaussian processes imply the finite
dimensional weak convergence. It remains to obtain that the sequence is tight. But
in C(K) for K ⊂ R by the Kolmogorov criterium a sequence of processes {Xn} is
tight if

E[|Xn(t)−Xn(s)|α] ≤ C|t− s|β+1, for α, β > 0.

But if the processes Xn are Gaussian and stationary then we get

E[|Xn(t)−Xn(s)|α] ≤ (2(1− rn(t− s)))α2 E[Nα] ≤ C(2(1− r(t− s)))α2 E[Nα],

where in the last inequality we have used the convergence of the covariance, then
the continuity of the limit process give the tightness by taking α > 2.
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Remark 3.9. If we take λ1 = λ and make λ2 → 0 in (2.10) we obtain (2.8). This
implies that FOU(λ1, λ2, σ,H)

L→ FOU(λ, σ,H) where L denotes the weak con-
vergence of processes of the remark 3.8. We can sketch an ideal semiparametric
test of hypothesis: long range dependence versus short range dependence. The H0

hypothesis is that our FOU(λ1, λ2, σ,H) process has λ2 = 0, this is it has long
range dependence. By using the spectral estimator that has already studied in the
present work a rejection region can be defined. Moreover, the asymptotic power of
the test can be obtained under the sequence of contiguous alternatives λ2,n → 0.

4. Computing the auto-covariance function

Now, we compute the auto-covariance function of any FOU(p) process. For this
we need the following formula, whose proof can be found in Pipiras and Taqqu
(2000): if H ∈ (1/2, 1) and

f, g ∈
{
f : R→ R:

∫ ∫
R2

|f(u)f(v)| |u− v|2H−2
dudv < +∞

}
,

then

E
(∫ +∞

−∞
f(u)dBH(u)

∫ +∞

−∞
g(v)dBH(v)

)
(4.1)

= H(2H − 1)

∫ +∞

−∞
f(u)du

∫ +∞

−∞
g(v) |u− v|2H−2

dv.

We start with

γ(t) = E (XtX0)

= E
q∑

h=1

Kh(λ)

ph−1∑
j=0

(
ph − 1

j

)
T

(j)
λh

(σBH)(t)

q∑
h′=1

Kh′(λ)

ph′−1∑
j′=0

(
ph′ − 1

j′

)
T

(j′)
λh′

(σBH)(0)

=

q∑
i=1

q∑
i′=1

pi−1∑
j=0

pi′−1∑
j′=0

Ki(λ)

(
pi − 1

j

)
Ki′(λ)

(
pi′ − 1

j′

)
ET (j)

λi
(σBH)(t)T

(j′)
λi′

(σBH)(0).

Define γ(j,j′)
λ,λ′ (t) := ET (j)

λ (σBH)(t)T
(j′)
λ′ (σBH)(0), then

γ(t) =

q∑
i,i′=1

Ki (λ)Ki′ (λ)

pi−1∑
j=0

pi′−1∑
j′=0

(
pi − 1

j

)(
pi′ − 1

j′

)
γ

(j,j′)
λi,λi′

(t). (4.2)

Now, we compute γ(j,j′)
λ,λ′ (t).

γ
(j,j′)
λ,λ′ (t) = ET (j)

λ (σBH)(t)T
(j′)
λ′ (σBH)(0)

= σ2E
∫ t

−∞
e−λ(t−u) (−λ (t− u))

j

j!
dBH(u)

∫ 0

−∞
eλ
′v λ
′j′vj

′

j′!
dBH(v). (4.3)

Using (4.1), we obtain that (4.3) is equal to

σ2H(2H − 1)

∫ t

−∞
e−λ(t−u) (−λ (t− u))

j

j!
du

∫ 0

−∞
eλ
′v λ
′j′vj

′

j′!
|u− v|2H−2

dv
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=
σ2H(2H − 1)λjλ′j

′

j!j′!

∫ t

−∞
e−λ(t−u) (u− t)j du

∫ 0

−∞
eλ
′vvj

′
|u− v|2H−2

dv

w=u−t
=

σ2H(2H − 1)λjλ′j
′

j!j′!

∫ 0

−∞
eλwwjdw

∫ 0

−∞
eλ
′vvj

′
|w + t− v|2H−2

dv

=
σ2H(2H − 1)λjλ′j

′
(−1)

j+j′

j!j′!

∫ +∞

0

e−λwwjdw

∫ +∞

0

e−λ
′vvj

′
|v + t− w|2H−2

dv.

(4.4)

Remark 4.1. In the very interesting paper of Kaarakka and Salminen (2011) it is
introduced a certain stationary mean zero Gaussian process Ŷ (1)(t), defined for
t ∈ R, that exhibes long range dependence and certain autosimilarity property.
They use Ŷ (1)(t) as a bilateral noise. Then the following SDE is studied

dU (D,γ)(t) = −γU (D,γ)(t)dt+ dŶ (1)(t),

proving that a Gaussian stationary solution exists. This process is called a fractional
Ornstein-Uhlenbeck (OU) of the second kind. The authors show afterwards that
its covariance behaves

E(U (D,γ)(t)U (D,γ)(0)) = O(e−min(γ,
(1−H)
H )t) as t→∞.

Hence, a short range dependence of exponential type holds. A comparison can be
made with our FOU(p) processes. First at all our processes exhibit a short range
dependence also but of polynomial type. Another interesting difference is that the
FOU(p) processes allow fitting several parameters, instead of two as is the case of
fractional OU of the second kind. We can pushforward our commentaries by con-
sidering other stationary mean zero Gaussian X processes, those whose covariance
function is given by rX(t) = e−γ|t|

H

for 0 < H < 2. These processes although do
not have a SDE representation, are short range dependent of exponential type too.
Besides, the three processes cited here have the same type of local smoothness.

5. Conclusions

In this paper we have presented a family of Gaussian processes that arise from
the iteration of p fractional Ornstein–Uhlenbeck processes generated by the same
fractional Brownian motion. When the λi are distinct, this iteration results in
a particular linear combination of fractional Ornstein-Uhlenbeck processes. We
proved that when H > 1/2 and the λi are distinct, the auto-covariance function of
the process can be expressed as a linear combination of the auto-covariance func-
tions of each FOU(λi, σ,H). We have obtained an explicit formula for the spectral
density of the process, which allows us to deduce that although every fractional
Ornstein–Uhlenbeck process with H > 1/2 is a long memory process, for p ≥ 2, the
iteration results in a short memory process. As p grows the decreasing of the auto-
covariance function of any FOU(p) grows. We have proposed consistent estimators
for all the parameters. Modelling short memory continuous time series using the
FOU(p) processes will yield some advantages, because of the possibility to choose
several of the parameters λ and moreover by using H to measure the regularity of
the trajectories. Lastly, the FOU(p) process (when choosing an appropriate value
of p) can be used to model time series of long or short memory.
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6. Proofs

Proof of Proposition 2.5: We start showing that
∑q
j=1Kj (λ) = 1.

Define p(x) =
∑q
j=1Kj (λ)

∏
i 6=j (1 + λix) . Observe that p is a polynomial of de-

gree at most q − 1 and p (0) =
∑q
j=1Kj (λ) . Also observe that p(x) =∑q

j=1

∏
i 6=j

1+λix
1−λi/λj and p

(
−1
λh

)
= 1 for all h = 1, 2, ..., q. Then p necessary is

constant and it follows that
∑q
j=1Kj (λ) = 1.

For any j = 1, 2, 3, .., we integrate by parts and obtain that

T
(j)
λ (BH)(t) =

(−λ)
j+1

j!

∫ t

−∞
BH(s)e−λ(t−s) (t− s)j−1

(t− s− j) ds.

If j = 0, Tλ(BH)(t) = BH(t)− λ
∫ t
−∞BH(s)e−λ(t−s)ds. Then T (j)

λ (BH) is differen-
tiable for j = 1, 2, 3, ... and is not differentiable for j = 0 at any point.

q∑
i=1

Ki (λ)

pi−1∑
j=0

(
j

pi − 1

)
T

(j)
λi

(BH)(t)

=

q∑
i=1

Ki (λ)

Tλi(BH)(t) +

pi−1∑
j=1

(
j

pi − 1

)
T

(j)
λi

(BH)(t)


=

q∑
i=1

Ki (λ)Tλi(BH)(t) +

q∑
i=1

Ki (λ)

ph−1∑
j=1

(
j

pi − 1

)
T

(j)
λi

(BH)(t).

Using that
∑q
h=1Kh (λ) = 1, we deduce that

q∑
i=1

Ki (λ)Tλi(BH)(t) =

q∑
i=1

Ki (λ)

(
BH(t)− λi

∫ t

−∞
BH(s)e−λi(t−s)ds

)

= BH(t)−
q∑
i=1

Ki (λ)λi

∫ t

−∞
BH(s)e−λi(t−s)ds

and so, with probability one, the trajectories of X are not differentiable at any
point. This concludes the proof. �

Proof of Proposition 2.7: (1) It is enough to prove that

−α1−2H
∫ αx

0
ess2H−1ds+ β1−2He(α+β)x

∫ +∞
βx

e−ss2H−1ds

eαx
→ 0.

We apply L’Hôpital’s rule twice to obtain

lim
x→+∞

α+ β

α

−e−βxx2H−1 + β1−2H
∫ +∞
βx

e−ss2H−1ds

e−βx
=

lim
x→+∞

α+ β

αβ
(2H − 1)x2H−2 → 0.
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(2) Since α1−2Hf
(1)
H (αx) + β1−2Hf

(2)
H (βx) → 0 and e−x/x2−2H → 0 as x →

+∞, we can apply L’Hôpital’s rule and get

lim
x→+∞

α1−2Hf
(1)
H (αx) + β1−2Hf

(2)
H (βx)

x2H−2

= lim
x→+∞

β1−2He(α+β)x
∫ +∞
βx

e−ss2H−1ds− α1−2H
∫ αx

0
ess2H−1ds

eαxx2H−2

= lim
x→+∞

α+ β

α

−x2H−1 + β1−2Heβx
∫ +∞
βx

e−ss2H−1ds

x2H−2
=
α+ β

αβ
(2H − 1)

where in the last equality was from applying L’Hôpital’s rule again.
(3) In property 2, put α = β = λ. Then we get that

fH(λx) = f
(1)
H (λx) + f

(2)
H (λx) ∼ 2 (2H − 1) (λx)

2H−2

where x→ +∞.
(4) Furthermore,

fH(x)− fH(0) = fH(x)− 2Γ (2H)

= Γ (2H)
(
ex + e−x − 2

)
− e−x

∫ x

0

ess2H−1ds− ex
∫ x

0

e−ss2H−1ds

= o
(
x2H

)
− ex

+∞∑
n=0

xn+2H

n!(n+ 2H)
− e−x

+∞∑
n=0

(−1)
n
xn+2H

n!(n+ 2H)
= o

(
x2H

)
− x2H

H
.

(5) Cheridito et al. (2003) have shown that if Xt ∼FOU(λ, σ,H) , then

ρ (t) = E (X0Xt) =
σ2Γ (2H + 1) sin (Hπ)

2π

∫ +∞

−∞

eitx |x|1−2H

λ2 + x2
dx.

But, due to (2.8), ρ (t) = σ2HfH(λt)
2λ2H , and then we deduce that

fH (λt) =
2Γ (2H) sin (Hπ)λ2H

Hπ

∫ +∞

−∞

eitx |x|1−2H

λ2 + x2
dx.

Finally, if we make the change of variable x = λv, we obtain the result.
This concludes the proof.

�

Observe that in the proof of property 5, we use (2.8) that is a corollary of
Proposition 2.8, but the proof of Proposition 2.8 is independent of any property
of fH .

Proof of Proposition 2.8:

E
(
X

(1)
t X(2)

s

)
= σ2E

(∫ t

−∞
e−λ1(t−u)dBH(u)

∫ s

−∞
e−λ2(s−v)dBH(v)

)
.

As H > 1/2, we can apply (4.1), and so

E
(
X

(1)
t X(2)

s

)
= σ2H(2H − 1)

∫ t

−∞
e−λ1(t−u)du

∫ s

−∞
e−λ2(s−v) |u− v|2H−2

dv.
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Now we make the change of variable w = t− u, z = s− v and get that

E
(
X

(1)
t X(2)

s

)
= σ2H(2H − 1)

∫ +∞

0

e−λ1wdw

∫ +∞

0

e−λ2z |t− w + z − s|2H−2
dz.

Then, E
(
X

(1)
t X

(2)
s

)
only depends on t − s, so we only need to find a formula for

E
(
X

(1)
0 X

(2)
t

)
.

E
(
X

(1)
0 X

(2)
t

)
= σ2H(2H − 1)

∫ +∞

0

dw

∫ +∞

0

e−λ1w−λ2z |z − w − t|2H−2
dz

then, after doing the change of variable h = λ1w + λ2z in the integral in z, this is
equal to

σ2H(2H − 1)

λ2

∫ +∞

0

dw

∫ +∞

λ1w

e−h
∣∣∣∣h− λ1w

λ2
− w − t

∣∣∣∣2H−2

dh =

σ2H(2H − 1)

λ2H−1
2

∫ +∞

0

dw

∫ +∞

λ1w

e−h |h− (λ1 + λ2)w − λ2t|2H−2
dh =

σ2H(2H − 1)

λ2H−1
2

∫ +∞

0

e−hdh

∫ h/λ1

0

|h− (λ1 + λ2)w − λ2t|2H−2
dw. (6.1)

Now, we continue the calculation in the case t ≥ 0, distinguishing three regions
according to the absolute value that apears in the last integral. Then, we get that
(6.1) is equal to

σ2H(2H − 1)

λ2H−1
2

∫ λ2t

0

e−hdh

∫ h/λ1

0

((λ1 + λ2)w + λ2t− h)
2H−2

dw+

σ2H(2H − 1)

λ2H−1
2

∫ +∞

λ2t

e−hdh

∫ h−λ2t
λ1+λ2

0

(h− (λ1 + λ2)w − λ2t)
2H−2

dw+

σ2H(2H − 1)

λ2H−1
2

∫ +∞

λ2t

e−hdh

∫ h/λ1

h−λ2t
λ1+λ2

((λ1 + λ2)w + λ2t− h)
2H−2

dw.

Now we make s = λ2t− h in the first summand and s = h+ λ1t in second, and we
get

σ2H

λ1 + λ2

(
e−λ2tΓ (2H)λ1−2H

2 − λ1−2H
2

∫ λ2t

0

e−h (λ2t− h)
2H−1

dh

)
+

σ2H

λ1 + λ2
λ1−2H

1

∫ +∞

0

e−h (h+ λ1t)
2H−1

dh

=
σ2H

λ1 + λ2

(
e−λ2tΓ (2H)λ1−2H

2 − λ1−2H
2 e−λ2t

∫ λ2t

0

ess2H−1ds

)
+

σ2H

λ1 + λ2
λ1−2H

1 eλ1t

∫ +∞

λ1t

e−ss2H−1ds

=
σ2H

λ1 + λ2

(
λ1−2H

2 f
(2)
H (λ2t) + λ1−2H

1

[
eλ1tΓ (2H)− eλ1t

∫ λ1t

0

e−ss2H−1ds

])

=
σ2H

λ1 + λ2

(
λ1−2H

2 f
(2)
H (λ2t) + λ1−2H

1 f
(1)
H (λ1t)

)
.
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The case t ≤ 0, is treated similarly. This concludes the proof. �

To prove Proposition 2.11, we need the following lemma.

Lemma 6.1. If λ1, λ2, ..., λp are distinct positive reals numbers, then

Ki + 2λi
∑
j 6=i

Kj

λi + λj
=

λp−1
i∏

j 6=i
(λi + λj)

for i = 1, 2, 3, ..., p

where Ki = Ki(λ) for i = 1, 2, ..., p are defined in (2.2).

Proof :

To obtain the result, it is enough to show that

K1 + 2λ1

p∑
j=2

Kj

λi + λj
=

λp−1
1

p∏
j=2

(λ1 + λj)

. (6.2)

Because, Ki =
λp−1
i

p∏
j 6=i

(λi−λj)
, then (6.2) is equal to

λp−1
1

p∏
j=2

(λ1 − λj)
+ 2λ1

p∑
j=2

Kj

λ1 + λj
=

λp−1
1

p∏
j=2

(λ1 + λj)

which is equivalent to proving that (if we write x = λ1)

xp−2

p∏
j=2

(x− λj)
− xp−2

p∏
j=2

(x+ λj)

= −2

p∑
j=2

Kj

x+ λj
. (6.3)

In fact, we can develop the quotient in simple fractions, and obtain that (6.3) is
equal to

xp−2

p∏
j=2

(x− λj)
− xp−2

p∏
j=2

(x+ λj)

=

=

p∑
i=2

 λp−2
i∏

j 6=i
(λi − λj)

1

x− λi
− (−λi)p−2∏

j 6=i
(λj − λi)

1

x+ λi



=

p∑
i=2

 λp−2
i 2λi∏

j 6=i
(λi − λj)

1

(x− λi) (x+ λi)


= −2

p∑
i=2

λp−1
i

(λi − x)
∏
j 6=i

(λi − λj)
1

(x+ λi)
= −2

p∑
j=2

Kj

x+ λj
.

This concludes the proof. �
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Proof of Proposition 2.11: We start with (4.2) in the case p1 = p2 = ...... = pq = 1,

γ(t) = E (XtX0) =

q∑
i,j=1

KiKjγ
(0,0)
λi,λj

(t)

and using (2.7)

γ(t) = σ2H

q∑
i,j=1

KiKj

(
λ1−2H
i f

(1)
H (λit) + λ1−2H

j f
(2)
H (λjt)

)
λi + λj

= σ2H

 p∑
i,j=1

K2
i

2λi
λ1−2H
i fH(λit) +

p∑
i=1

Kiλ
1−2H
i f

(1)
H (λit)

∑
j 6=i

Kj

λi + λj

+

σ2H

p∑
i=1

Kiλ
1−2H
i f

(2)
H (λit)

∑
j 6=i

Kj

λi + λj

= σ2H

p∑
i=1

Kiλ
−2H
i fH(λit)

Ki

2
+ λi

∑
j 6=i

Kj

λi + λj


Now, using Lemma 6.1, the last expression is equal to

σ2H

2

p∑
i=1

Kiλ
−2H
i fH(λit)

λp−1
i∏

j 6=i
(λi + λj)

=
σ2H

2

p∑
i=1

λp−1
i∏

j 6=i
(λi − λj)

λ−2H
i fH(λit)

λp−1
i∏

j 6=i
(λi + λj)

=
σ2H

2

p∑
i=1

λ2p−2H−2
i∏

j 6=i

(
λ2
i − λ2

j

)fH(λit).

This concludes the proof. �

The expression for the spectral density is a consequence of the equalities estab-
lished in the following two lemmas.

Lemma 6.2. If λ1, λ2, ..., λp, p ≥ 2, are distinct positive real numbers, and x 6= λi
for all i = 1, 2, ..., p then

x2p−2

p∏
i=1

(
x2 − λ2

j

) =

p∑
i=1

λ2p−2
i∏

j 6=i

(
λ2
i − λ2

j

) 1

x2 − λ2
i

.

Proof : A decomposition into simple fractions yields

x2p−2

p∏
i=1

(
x2 − λ2

j

) =
x2p−2

p∏
i=1

(x− λj) (x+ λj)

=

p∑
i=1

(
λ2p−2
i

2λi
∏
j 6=i
(
λ2
i − λ2

j

) 1

x− λi
− λ2p−2

i

2λi
∏
j 6=i
(
λ2
i − λ2

j

) 1

x+ λi

)
=
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p∑
i=1

λ2p−2
i

2λi
∏
j 6=i
(
λ2
i − λ2

j

) ( 1

x− λi
− 1

x+ λi

)
=

p∑
i=1

λ2p−2
i∏

j 6=i
(
λ2
i − λ2

j

) ( 1

x2 − λ2
i

)
.

This concludes the proof. �

Lemma 6.3. If λ1, λ2, ..., λp (p ≥ 1) are distinct positive reals numbers, then

x2p−2

p∏
i=1

(λ2
i + x2)

=

p∑
i=1

λ2p−2
i∏

j 6=i

(
λ2
i − λ2

j

) 1

λ2
i + x2

.

Proof : We will proceed by induction in p. For p = 1, the equality is evident. Supose
that the equality holds for p. Then, calculate

x2p

p+1∏
i=1

(λ2
i + x2)

=
x2p−2

p∏
i=1

(λ2
i + x2)

x2

λ2
p+1 + x2

(6.4)

and by applying the hypothesis of induction, we deduce that (6.4) is equal to
p∑
i=1

λ2p−2
i∏

j 6=i

(
λ2
i − λ2

j

) 1

λ2
i + x2

x2

λ2
p+1 + x2

=

p∑
i=1

λ2p−2
i(

λ2
i − λ2

p+1

) p∏
j 6=i

(
λ2
i − λ2

j

)
(

λ2
i

λ2
i + x2

−
λ2
p+1

λ2
p+1 + x2

)
=

p∑
i=1

λ2p−2
i(

λ2
i − λ2

p+1

) p∏
j 6=i

(
λ2
i − λ2

j

)
(

λ2
i

λ2
i + x2

−
λ2
p+1

λ2
p+1 + x2

)
=

p∑
i=1

λ2p
i

p+1∏
j 6=i

(
λ2
i − λ2

j

) 1

λ2
i + x2

−
p∑
i=1

λ2
p+1λ

2p−2
i

p+1∏
j 6=i

(
λ2
i − λ2

j

) 1

λ2
p+1 + x2

. (6.5)

Now, using Lemma 6.2 with x = λp+1, we obtain that
p∑
i=1

λ2p−2
i

p+1∏
j 6=i

(
λ2
i − λ2

j

) = −
λ2p−2
p+1

p∏
j=1

(
λ2
p+1 − λ2

j

)
and then (6.5) is equal to

p+1∑
i=1

λ2p
i

p+1∏
j 6=i

(
λ2
i − λ2

j

) 1

λ2
i + x2

.

This concludes the proof. �

Proof of Theorem 2.14: First, we will prove the result for the case in which
{Xt}t∈R ∼ FOU(λ1, λ2, ..., λp, σ,H) . Using property (5) of fH in (2.9) and
Lemma 6.3, we obtain that E (X0Xt) =
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σ2Γ(2H + 1) sin (Hπ)

2π

∫ +∞

−∞
eitx |x|1−2H

p∑
i=1

λ2p−2
i∏

j 6=i

(
λ2
i − λ2

j

) 1

λ2
i + x2

dx

=
σ2Γ(2H + 1) sin (Hπ)

2π

∫ +∞

−∞
eitx

|x|2p−2H−1∏p
i=1 (λ2

i + x2)
dx,

and so (2.12) holds.
Now, in the general case in which {Xt}t∈R ∼FOU

(
λ

(p1)
1 , λ

(p2)
2 , ..., λ

(pq)
q , σ,H

)
where p1+p2+...+pq = p, observe that for any t, Tλ+1/n(BH)(t) = e−t/nTλ(BH)(t)
→ Tλ (BH) (t) when n → +∞. This fact allows us to obtain the auto-covariance
function of FOU

(
λ(2), σ,H

)
as a limit of the auto-covariance function of any

FOU(λ, λ+ 1/n, σ,H) . If we call ρλ,λ and ρλ,λ+1/n the auto-covariance functions
respectively, then using (2.12) and dominated convergence theorem, we obtain

ρλ,λ+1/n (t) = cH

∫ +∞

−∞

eitx |x|3−2H
dx

(λ2 + x2)
(

(λ+ 1/n)
2

+ x2
) → cH

∫ +∞

−∞

eitx |x|3−2H
dx

(λ2 + x2)
2 .

Then, ρλ,λ (t) = cH
∫ +∞
−∞

eitx|x|3−2Hdx

(λ2+x2)2
and f(x) = cH

eitx|x|3−2H

(λ2+x2)2
is the espectral den-

sity of FOU
(
λ(2), σ,H

)
. Using this argument repeatedly, we obtain that the auto-

covariance function of {Xt}t∈R is the pointwise limit of the auto-covariance function

of
{
X

(n)
t

}
t∈R
∼FOU(p) with parameters λ1, λ1+1/n, ..., λ1+(p1−1)/n, ...., λq, λq+

1/n, ..., λq + (pq − 1)/n, σ,H. Then, from the fact that the spectral density of{
X

(n)
t

}
t∈R

satisfies formula (2.12), we deduce that

f(X(n))(x)→ f (X)(x) for all x, and so (2.11) holds. This concludes the proof. �

Proof of Lemma 3.1:

E
(
X

(1)
t+s −X(1)

s

)(
X

(2)
t+s −X(2)

s

)
= E

(
X

(1)
t+sX

(2)
t+s

)
+ E

(
X(1)
s X(2)

s

)
− E

(
X

(1)
t+sX

(2)
s

)
− E

(
X(1)
s X

(2)
t+s

)
= 2E

(
X

(1)
0 X

(2)
0

)
− E

(
X

(1)
t X

(2)
0

)
− E

(
X

(1)
0 X

(2)
t

)
.

We will work with the difference E
(
X

(1)
0 X

(2)
0

)
− E

(
X

(1)
0 X

(2)
t

)
, the other dif-

ferences can be treated analogously.
Using (2.7) we can decompose

E
(
X

(1)
0 X

(2)
0

)
− E

(
X

(1)
0 X

(2)
t

)
= At +Bt + Ct

where

At :=
σ2HΓ (2H)

λ1 + λ2

(
λ1−2H

2

(
1− e−λ2t

)
+ λ1−2H

1

(
1− eλ1t

))
,

Bt :=
σ2H

λ1 + λ2
λ1−2H

1 eλ1t

∫ λ1t

0

e−ss2H−1ds

and

Ct :=
σ2H

λ1 + λ2
λ1−2H

2 e−λ2t

∫ λ2t

0

ess2H−1ds.
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Using that e−s = 1− e−css for ct ∈ (0, λ1t) we obtain that

Bt =
σ2Hλ1−2H

1 eλ1t

λ1 + λ2

∫ λ1t

0

(
1− e−css

)
s2H−1ds =

σ2λ1

2 (λ1 + λ2)
t2H + o

(
t2H
)
.

Analogoulsy, Ct = σ2λ2

2(λ1+λ2) t
2H + o

(
t2H
)
. Then,

Bt + Ct =
σ2

2
t2H + o

(
t2H
)
.

On the other hand, we can decompose

E
(
X

(1)
0 X

(2)
0

)
− E

(
X

(1)
t X

(2)
0

)
= A′t +B′t + C ′t

where

A′t :=
σ2HΓ (2H)

λ1 + λ2

(
λ1−2H

2

(
1− eλ2t

)
+ λ1−2H

1

(
1− e−λ1t

))
,

B′t :=
σ2H

λ1 + λ2
λ1−2H

2 eλ2t

∫ λ2t

0

e−ss2H−1ds

and

C ′t :=
σ2H

λ1 + λ2
λ1−2H

1 e−λ1t

∫ λ1t

0

ess2H−1ds.

Then, B′t + C ′t = σ2

2 t
2H + o

(
t2H
)
.

Thus,

2E
(
X

(1)
0 X

(2)
0

)
− E

(
X

(1)
t X

(2)
0

)
− E

(
X

(1)
0 X

(2)
t

)
= At +Bt + Ct +A′t +B′t + C ′t =

At +A′t + σ2t2H + o
(
t2H
)
.

To finish the proof, it is enough to see that At +A′t = o
(
t2H
)
. Indeed,

At +A′t

=
σ2HΓ (2H)

λ1 + λ2

(
λ1−2H

2

(
2− e−λ2t − eλ2t

)
+ λ1−2H

1

(
2− e−λ1t − eλ1t

))
= o

(
t2H
)
.

This concludes the proof. �

Proof of Theorem 3.2: Observe that it is enough to prove the result for the case in
which all the λi are distinct. This is because in the general case, any FOU(p) is
pointwise limit of a sequence of FOU(p) where the parameters are pairwise distinct,
and then we use a similar argument to the one used in the proof of Theorem 2.14.

Now, suppose that Xt =
∑p
i=1Ki (λ)X

(i)
t where Ki (λ) are defined in (2.2), and

define vi(t) := 1
2E
(
X

(i)
t+s −X

(i)
s

)2

the variogram of each process
{
X

(i)
t

}
t∈R

. To

simplify the notation, we write Ki instead of Ki (λ) .
We start with

v(t) =
1

2
E (Xt+s −Xs)

2
=

1

2
E

[
p∑
i=1

Ki

(
X

(i)
t+s −X(i)

s

)]2

=

1

2

p∑
i=1

KiE
(
X

(i)
t+s −X(i)

s

)2

+
1

2
E

p∑
i 6=j=1

KiKj

(
X

(i)
t+s −X(i)

s

)(
X

(j)
t+s −X(j)

s

)
(6.6)
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Now, using that vi(t) = σ2

2 |t|
2H

+ o
(
|t|2H

)
and Lemma 3.1, we obtain that (6.6)

is equal to
p∑
i=1

K2
i

[
σ2

2
|t|2H + o

(
|t|2H

)]
+

1

2
E

p∑
i 6=j=1

KiKj

[
σ2 |t|2H + o

(
|t|2H

)]
(6.7)

and using that
∑p
i=1Ki = 1 we obtain that (6.7) is equal to

σ2

2
|t|2H + o

(
|t|2H

)
.

This concludes the proof. �

Proof of Theorem 3.5: We verify the hypotheses of Theorem 3 (i) and (iii) in Istas
and Lang (1997). We do not follow strictly the notation of Istas & Lang. The
writing of this theorem is adapted to the notation of our work. The theorem start
with the assumptions (A1) and (A2) that we show below.
Assumption (A1)

Denote D the greatest integer such that v is 2D times differentiable. We assume
that there exists a real s such that 0 < s < 2 and a real C > 0 such that:

v(2D)(t) = v(2D)(0) + C(−1)D |t|s + r(t) and r(t) = o (|t|s) at zero.

Assumption (A2)
Given a filter a = (a0, a1, ..., ap), we assume that for any real s such that 0 <

s < 2M(a) and s is not an even integer:
p∑
k=0

p∑
l=0

akal |k − l|s 6= 0,

where M(a) denotes the order of the first non-zero moment of the filter a. It is
defined by:

p∑
i=0

aii
k = 0 for 0 ≤ k < M(a) and

p∑
i=0

aii
M(a) 6= 0.

Theorem 3 (i) (Istas & Lang)
• Let X be a centred process with stationary increments satisfying the con-

dition (A1).
• Let α > 0 and define the observation mesh ∆ by ∆(n) = n−α.
• Consider several filters a1, a2, ..., aI .We denote pi the length of the sequence
ai and define the matrix A with size I × p where p = max

{
p1, p2, ..., pI

}
by Aij = 2

∑pi−j
k=0 aika

i
k+j for j = 1, ..., pi and Aij = 0 otherwise. Assume

that the ai are such A is full rank.
• Assume that there exist three reals δ,G > 0, γ > s and an integer q >
γ + 1/2, such that the remainder r(t) is q times differentiable on (0, δ] and∣∣r(q)(t)

∣∣ ≤ G |t|γ−q . If δ < T , assume that for some integer d > s + 1/2, v
is 2D + d times differentiable on (δ, T ] and that∫ T

δ

∣∣∣v(2D+d)(t)
∣∣∣ dt < +∞.

We choose a filter a satisfying (A2) with 2M(a) ≥ max {2D + q, 2D + d} .
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Then, as n→ +∞, (
ĥ, Ĉ

)
a.s.→ (h,C) .

Theorem 3 (iii) (Istas & Lang)
• Let X be a centred process with stationary increments satisfying the con-

dition (A1) .
• Let α > 0 and define the observation mesh ∆ by ∆(n) = n−α.
• Consider several sequences a1, a2, ..., aI . We denote pi the length of the se-

quence ai and define the matrix A with size I×p where p = max
{
p1, p2, ...,

pI
}
by Aij = 2

∑pi−j
k=0 aika

i
k+j for j = 1, ..., pi and Aij = 0 otherwise. As-

sume that the ai are such A is full rank.
• Assume that there exist three reals δ,G > 0, γ > s and an integer q ≥ 2,

greater than γ + 1/2, such that the remainder r(t) is q times differentiable
on (0, δ] and

∣∣r(q)(t)
∣∣ ≤ G |t|γ−q . If δ < T , assume that for some integer

d ≥ 2, greater than s + 1/2, v is 2D + d times differentiable on (δ, T ] and
that ∫ T

δ

∣∣∣v(2D+d)(t)
∣∣∣ dt < +∞.

We choose a filter a satisfying (A2) with 2M(a) ≥ max {2D + q, 2D + d} .
• If s > 1, we choose ∆ (n) such that

n∆2(s−1)(n)→ +∞. (6.8)

Then, as n→ +∞,

√
n
(
ĥ− h

)
converges in distribution to a centred Gaussian variable.

√
n

log n

(
Ĉ − C

)
converges in distribution to a centred Gaussian variable.

From Theorem 3.2, we obtain that v(t) = σ2

2 |t|
2H + r(t) where r(t) = o

(
|t|2H

)
when t → 0. Then h = 2H and C = σ2/2. We use I = 2 in condition (A2) by
taking a filter a and a2 defined in Definition 25. Further, in the proof of property 4
in Proposition 2.7, we see that there exists G > 0 such that∣∣∣r(4)(t)

∣∣∣ ≤ G|t|2H+1−ε−4 for t ∈ (0, 1) (6.9)

holds for any H, ε ∈ (0, 1). In the other hand, observe that in our case s = 2H > 1
(because H > 1/2) and condition (6.8) is fulfilled by taking ∆n = n−α for α such
that 0 < α < 1

2(2H−1) . This concludes the proof.
�

Proof of Theorem 3.6: The formula for the spectral density (2.11) and the choice
of the weight function w, allow us to verify the conditions A.I to A.V of Leonenko
and Sakhno (2006) which demonstrates the consistency and asymptotic normality
of our estimators. Conditions A.I to A.V are the following:

A. I. Let Y (t), t ∈ [0, T ], be an observation of a real-value measurable stationary
Gaussian process Y (t), t ∈ R with zero mean and spectral density f (x, λ) x ∈ R,
λ ∈ Λ ⊂ Rm, where Λ is a compact set, and the true value of the parameter
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λ0 ∈int(Λ) , the interior of Λ. Suppose further than f (x, λ) 6= f(x, λ′) for λ 6= λ′

almost everywhere in R with respect to the Lebesgue measure.
Consider w (x) a symmetric about x = 0 function such that UT (λ) defined in

(3.6) is well defined.
A.II. f(x, λ0)w(x)/f(x, λ) ∈ L1 (R) ∩ L2 (R) for all λ ∈ Λ.
A.III. There exists a function v(x), x ∈ R such that:
(i) The function h(x, λ) = v(x)/f(x, λ) is uniformly continuous in R× Λ;
(ii) f(x, λ0)w(x)/v(x) ∈ L1 (R) ∩ L2 (R).
A.IV. The function 1/f(x, λ) is twice differentiable in a neigborhood of the

point λ0 and
(i) f(x, λ0)w(x)

(
∂2/∂λi∂λj

)
(1/f(x, λ)) ∈ L1 (R) ∩ L2 (R), i, j = 1, 2, ...,m,

λ ∈ Λ;
(ii) f(x, λ0)w(x) (∂/∂λi) (1/f(x, λ)) ∈ Lk (R) for all k ≥ 1, i = 1, 2, ...,m, λ ∈ Λ;

(iii)
√
T
∫
R E
(
IT (x)− f(x, λ0)

)
w(x) (∂/∂λi) (1/f(x, λ)) dx→ 0 as T → +∞ for

all i = 1, 2, ...,m, λ ∈ Λ.
A.V. The matrices W1 (λ) and W2 (λ) are positive definite.
Theorem 1 and Theorem 2 in Leonenko and Sakhno (2006), prove that under

the conditions A.I to A.V it holds that
• λ̂T

P→ λ0 when T → +∞ and
•
√
T
(
λ̂T − λ0

)
w→ Nq

(
0,W−1

1

(
λ0
)
W2

(
λ0
)
W−1

1

(
λ0
))

when T → +∞.
In our case m = q and we will check conditions A.I to A.V for our process.

Conditions A.I, A.II and A.IV are verified directly. For condition A.III, it is
enough to take α such that ‖λ‖2 ≤ α for all λ ∈ Λ and consider the function
v(x) = |x|(2p−1−2H)

(α+x2)p . To conclude the proof we will show now that the matrices
W1 (λ) and W2 (λ) are positive definite (condition A.V).

We work in L2 (w(x)dx), so that 〈f, g〉 =
∫ +∞
−∞ w(x)f(x)g(x)dx. Fixed λ, for each

z ∈ Rq we obtain that ∥∥∥∥∥
q∑
i=1

∂

∂λi
log f (X) (., λ) zi

∥∥∥∥∥
2

=

q∑
i,j=1

〈 ∂
∂λi

log f (X) (., λ) ,
∂

∂λj
log f (X) (., λ)〉zizj =

q∑
i,j=1

w
(1)
ij (λ) zizj .

Then
∑q
i,j=1 w

(1)
ij (λ) zizj ≥ 0 for all z ∈ Rq. Up to this point the formula for

f (X) (x, λ) has not been necessary.
If
∑q
i,j=1 w

(1)
ij (λ) zizj = 0 then

∑q
i=1

∂
∂λi

log f (X) (., λ) zi = 0 and it follows that
(using that w > 0 and the formula for the spectral density)

∑q
i=1

piλizi
λ2
i+x

2 = 0 for
all x 6= 0. Writing ai = piλizi for each i = 1, 2, 3, ..., q, and taking the derivative
q times in the equality

∑q
i=1

ai
λ2
i+x

2 = 0, and taking limit when x → 0, we obtain
∑q
i=1 αiai = 0∑q
i=1 α

2
i ai = 0
...∑q

i=1 α
q
i ai = 0

where αi = 1
λ2
i
. As the λ′is are distinct we may use well known facts about the

Vandermonde determinant, to deduce that a1 = a2 = ... = aq = 0, thus z1 = z2 =
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... = zq = 0 and the matrix W1 (λ) is positive definite for each λ. Analogously,
working in L2

(
w2(x)dx

)
yields that W2 (λ) is positive definite. This concludes the

proof.
�
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