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Abstract. The paper has four goals. First, we want to generalize the classical
concept of the branching property so that it becomes true for historical and ge-
nealogical processes, where the classical concept fails (here we use the description
of genealogies by (V-marked) ultrametric measure spaces leading to state spaces
U resp. UY). In particular we want to complement the corresponding concept of
infinite divisibility developed in Glode et al. (2019) for this context. The processes
we consider are always defined by well-posed martingale problems. The point of
the generalized branching property is that the state at times ¢+ s can at any time ¢
be decomposed in a measurable function of the state at time ¢ and an independent
part which itself then decomposes in independent copies of the process evolving for
time s. Secondly we want to find a corresponding characterization of the generators
of branching processes both easy to apply and general enough to cover a wide range
of mechanisms and state spaces, this is our first main result.

As a third goal we want to obtain the branching property for some important
examples as the U-valued Feller diffusion respectively UY-valued super random
walk and the historical process on countable geographic spaces, the latter as two
examples of a whole zoo of spatial processes we could treat. The fourth goal is to
show the robustness of the method and to get the generalized branching property for
genealogies marked with ancestral path, giving the line of descent moving through
the ancestors and space, leading to path-marked ultrametric measure spaces. These
new processes are constructed here and proved to have the generalized branching
property, both together our second major result.

We develop an abstract framework covering above situations and questions, lead-
ing to a new generator criterion. The state spaces suitable for historical and ge-
nealogical processes are consistent collections of topological semigroups each en-
riched with a compatible collection of maps, the truncation maps. All objects are
defined on the state space of the process. The method allows to treat every type of
population model formulated as solution to a well-posed martingale problem. This
framework in particular includes processes taking values in the space of marked
ultrametric measure spaces and hence allows to treat historical information and
genealogies of spatial population models both at once, if genealogies are described
this way. Another example is a multitype population, more specific with genetic
types under mutation.
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1. Introduction

The problem and goals. Branching processes are one of the most important and
best-studied class of stochastic processes covered in many books, starting with Har-
ris (2002) and Athreya and Ney (2004) and later including spatial models (Dawson,
1993 and Etheridge, 2000). However new questions and aspects keep arising, con-
cerning in particular the evolution of genealogies and histories in such branching
models, as we shall see below in detail. The key point of this work is to define
and get criteria for the "generalized branching property” in the face of new types of
processes describing genealogies or histories in spatial population models, where the
classical branching property does not hold. Some of these processes are introduced
here, others are well known in the literature. The reader not familiar with the
terms genealogy or history is invited to read Remark 1.1.

The focus in the theory of branching processes has now shifted to historical and
genealogical information on the population as objects of interest in its own right. It
is also a tool to understand the behaviour of population sizes or type frequencies in
spatial models, see for example Neveu (1986), Aldous (1991a), Neveu and Pitman
(1989), Le Gall (1989), Le Gall (1993), Le Gall (1999), Duquesne and Le Gall
(2002), or in another perspective Bertoin and Le Gall (2000, 2003, 2005) to name a
few examples for the use of genealogies modeled as labeled trees. Here also multitype
models fit in as marked labeled trees, where individuals have genetic types which
undergo mutation.

We focus here on the description of genealogical information more in the spirit
of the description via historical processes (Dawson and Perkins, 1991) or R-trees
(Evans et al., 2006), by using here equivalence classes of (marked) ultrametric mea-
sure spaces. The latter approach is developed in Greven et al. (2009), Depper-
schmidt et al. (2011), applied to Fleming-Viot type models in Depperschmidt et al.
(2012) and Greven et al. (2013) and it has been extended to branching in Glode
(2012); Depperschmidt and Greven (2019); Glode et al. (2019). This particular
description of genealogies is chosen in this paper to be able to work with the frame-
work of well-posed martingale problems to characterize the models and second to
be able to use the concept of infinite divisibility from Glode et al. (2019).
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For this approach using (equivalence classes of) ultrametric measure spaces there
is a self-contained and detailed survey, see Depperschmidt and Greven (2020), where
in particular one can find examples and references showing more generally the
usefulness of this abstract approach to evolving (in time) genealogies of populations,
which is based on the construction of the genealogy valued processes via well-posed
martingale problems. The latter allows to use the tools which have been developed
in Ethier and Kurtz (1986), Dawson (1993) in particular for processes relevant in the
theory of spatial population models for example see Dawson and Greven (2014),
but where genealogical questions arise, which can in the framework of U-valued
processes now be tackled.

If we record genealogies and histories for the time-t-population there are two
forms in which information about the past may sit in the present state, for once in
the ancestral relationships of individuals (genealogies) or in the marks as locations
or types (histories). Examples are paths in geographic space or paths in type
space, the latter storing information on the genome. Both effects may require some
care in order to still distill a generalized branching property, since the classical
branching property does not hold in that situation. Our examples we treat show
the typical obstacles to the classical form of independence in the further evolution
of subpopulations with states storing information about the past.

The main goals of this paper are:

e first to develop for a generalized branching property a suitable abstract
framework and formulation,

e second to find and prove an operator criterion for a process specified by a
well-posed martingale problem to check this property,

e thirdly to apply it to historical processes and evolving genealogies the latter
described in a specific way namely as equivalence classes of ultrametric mea-
sure spaces, respectively their marked versions for spatial and for multitype
population models and

e fourth but not least, construct ancestral path marked genealogies, general-
izing and combining both historical processes as well as genealogical pro-
cesses and which we introduce here as new processes and where we use the
criterion to verify the generalized branching property.

Remark 1.1 (The word genealogy). As the word genealogy or history gives occa-
sionally rise to misunderstanding we clarify here some points concerning the precise
meaning of these words genealogy - history.

To clarify terminology consider a binary splitting Galton-Watson process in con-
tinuous time. We can draw the labeled tree of all individuals ever alive up to time
t (labeled means individuals are identified and distinguished by a name). Then we
observe how this object evolves further in time t. The vertices of the tree are the
individuals at their birth time and edges representing the life time are attached,
ending or giving rise to two descendants splitting the edge at a new vertex. This
allows to define ancestors and descendants and we define the distance between two
points in this tree as the sum of the two cumulative edge lengths back to the most
recent common ancestor. This induces a tree-like labeled metric space representing
the labeled genealogy. If we pass to the equivalence class under isometries we obtain
an equivalence class of tree-like metric spaces (we forget the names of individuals).

Embedded in the labeled tree is the set of leaves at height ¢ forming a labeled
ultrametric space, describing the labeled genealogy of the individuals alive at time
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t referred to as current population. The ultrametric space is always in one-to-one
correspondence with a unique minimal R-tree of which it is the set of leaves (com-
pare Example 2.2). Again we might pass to the equivalence class under isometries
and forget the names of individuals getting what we refer to as genealogy of the
current population. The genealogy including the fossils is then the whole genealog-
ical tree including everybody alive at some times before time ¢. The individuals
of our population might have types or locations in some space, where they move
according to some stochastic process. Then we get marked genealogies.

In such a genealogy we can recover historical information via the ancestral path,
obtained by tracing backward type or location of an individual alive at time ¢ till
its birth time, continue tracing the type/location of the father etc. This way we
get a collection of backward path in type or geographic space, the ancestral path.
Give each path weight 1 and obtain a measure on paths, this is the state of the
historical process a measure-valued process on the space of paths.

We are interested in the time evolution of genealogies/histories as the current
time ¢ evolves in particular in the genealogy of the population currently alive rep-
resented by the equivalence class of ultrametric spaces.

Since we are interested in large populations even the infinite population limit,
such a genealogy can only be observed by taking samples from the current pop-
ulation. Therefore we add a probability measure on the individuals alive at time
t to the genealogy. This results in a labeled genealogy, a triple (X,r, u) with X
set of individuals, r the genealogical distance (an ultrametric) and p the sampling
measure. The equivalence class under isometries which are measure preserving de-
noted [X,r, u] represents for us the relevant information on the genealogy of the
population alive at some time ¢. The genealogy of all individuals alive ever we call
the fossil process. This is however not the object of this paper. To incorporate pop-
ulation sizes fluctuating we consider also p which are finite measures. We return
to this point.

Branching property. Important examples for the typical structure of branching
processes are continuous state branching processes (Le Gall, 1999, Lambert, 2007)
and measure valued branching processes (Dawson, 1993, Le Jan, 1991) or the his-
torical Dawson-Watanabe process (Dawson and Perkins, 1991). The state spaces
then are linear spaces, here R% and M #(E), respectively. Here E is a Polish space
and M(E) is the space of finite measures on (E, B(E)). All branching processes
share the following characteristic branching property: given the state of the present
population, the states of sub-populations descending from different "ancestors" in
today’s population evolve independently from each other and with identical laws.
This has been formalized so far as follows.

The underlying state space S is a semigroup meaning it is endowed with the
binary operation of addition (of reals or measures, respectively). Suppose that
X = (X¢)t>0 is a Markov process with values in S.

The transition probabilities denoted by P;, that is, (P.f)(z) = Pi(z,-)[f] =
E[f(X:)|Xo = z] for f € bB(S), the space of bounded and measurable functions on
S. The semigroup (P,);>o has the branching property if

Pt(‘r+y7)[f] = (Pt(‘rﬂ ) * Pt(ya ))[f]v for all T,y € S and f € bB(S)7 (11)

with * the convolution. Then X is defined to have the branching property if (P;)i>0
has the branching property.
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If bB(S) contains a subset D of functions which are multiplicative w.r.t. the
semigroup operation + and D separates laws on S, then (1.1) holds if Pi(x +
y,)If] = Pe(z,)[f] Pe(y,)[f] for all z,y € S and f € D. Indeed, in some of
the classical cases the branching property is related to the form of the Laplace
transform. In the second example above we have X; € S = M(E). With the
help of a time evolution operator Vs : bpB(E) — bpB(E), 0 < s < t, bpB(E) the
non-negative, bounded, measurable functions on F, the Laplace transform can be
represented as (set (u, f) = [ fdp for every p € My(E) and f € bB(E)):

Elexp(—(X¢, ¢))|Xs] = exp(—(Xs, Vs19)),  as. (1.2)

Then (1.1) can be read of from this rhs. Clearly, for F = {1,2,...,d} this includes
R%valued processes.

Then first the question arises whether the processes describing features of the
history or genealogies of individuals of a “branching” population have an analogue
property and structure. The problem being that the present state contains infor-
mation about the state at past times. In other words, can we define an abstract
generalized branching property dealing with this problem. This complements the
investigation of a concept of infinite divisibility for genealogical structures modeled
as ultrametric measure spaces which is introduced in Glode et al. (2019) which
presents a generalized infinite divisibility since the classical one does not hold.

However even if we can define a branching property for the objects, in general it
may be difficult to obtain analytical expressions for P:(z,-)[f] to check in practice
whether (1.1) holds. In particular often an analogue of (1.2) cannot be found.
Instead of working with the Markov process’ transition probabilities (P;)¢>o or the
martingale problem itself we may use its operator A. Here we hope to derive a
statement in the following spirit: Suppose the generator of a Markov process (or
operator of a martingale problem) has a particular form, then the Markov process is
a branching process and similarly for the generalized branching property. Here one
has the Kurtz criterion in Ethier and Kurtz (1986). The point however is that this
particular form of the generator criterion needs to be such that it is easily verifiable.
This is important for general state spaces and more complex evolution mechanisms
for example for evolving genealogies. This means in the new cases we want to cover,
we have to go beyond the Kurtz criterion in Ethier and Kurtz (1986) by using an
additional structure. To find such a structure and criterion is our second goal.

Therefore we first extend the concept of branching processes to more general state
spaces and evolution mechanisms with certain algebraic and fitting topological prop-
erties. Second we find the characterization of operators for processes which have
the generalized branching property. In particular we will present simple criteria
which the generator has to satisfy in order for the processes to have the (gener-
alized) branching property. One of the criteria is such that it can be checked by
explicit calculation for complicated processes if we have checked that our setup ap-
plies, which needs of course some work, since it requires that our process is given
by a well-posed martingale problem.

We briefly explain below first using classical examples how the criterion works
in a simpler context where also the classical branching property holds and this
is verified by this criterion here. Then we come to our third goal and check the
generalized branching property for the genealogy of Fellers diffusion model or the
super random walk.
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We finally come to our fourth goal where we use the criterion to get the gen-
eralized branching property in a spatial model where every individual alive today
is equipped with its ancestral path. This is the line of descent moving geographic
or type through space till the own birth time, that of the father etc. This process
we define and characterize here via a well-posed martingale problem. We will argue
why this new class of processes with values in marked ultrametric measure spaces,
is in fact a very general class of population processes in this context of describing
genealogies and histories. This process has some relation to the "snake" of LeGall
Le Gall (1999) formulated via labeled trees. We construct our object in Section 3.2
and 3.3 combining the approach based on historical processes from Dawson and
Perkins (1991) with the approach based on the ultrametric measure space valued
description of genealogies Greven et al. (2013), Depperschmidt et al. (2013) and
Greven et al. (2016). The new processes constitute the class of (ancestral path)-
marked UY -valued Feller resp. super random walk processes and if we model the
population ever alive we obtain processes also including fossils.

The term very general is here meant in the sense that a multitude of processes
typically studied in population models can be embedded into this class. Therefore
we prove here the criterion works in this case which is then one of the deeper
reasons, that we have the branching property for all the embedded Markovian
processes often studied in their own right. As there are functionals typically not
one-to-one the proof of the branching property for them requires work (for example
getting the Markov property). We come to this at the end of Section 3.

We cannot cover here everything of interest however. It would be nice to cover
the case of the genealogy of the Dawson-Watanabe process. Here however at least
in the d > 2 case the martingale problem formulation of the process has a different
form on a continuum geographic space and preparing this needs some effort, which
would take too much space in this paper and will be treated in forthcoming work.
However we can define the UR'-valued process as a functional of the historical
Dawson-Watanabe process to which we can apply our criterion so that we obtain
the branching property of that functional as well. Similar issues arise also for
continuum state branching processes not of the diffusive type.

A corresponding interesting open problem is to find other examples of processes

fitting the abstract algebraic and topological framework, but are not arising from
genealogies or histories.
The classical framework and the criterion of Kurtz. In classical situations
the state space S has the following features, where we will always use .S as a generic
notation for a Polish state space. We will for now assume that S is a topological
semigroup with operation +.

Let us recall the following observations from Ethier and Kurtz (1986)[Section
4.10]. Assume the following properties, first

Dc D' ={febB(S): flw+2z)=f(w)f(z), for all w,z € S} (1.3)

is a set of multiplicative functions and A : D — bB(S) is a linear operator and
X?® solves the martingale problem for (A, D, d,) where x € S. Furthermore assume
that X has the (classical) branching property meaning for every z (1.1) holds.
Finally let X¥ be a solution of the (4, D, d,) martingale problem, y € S, which is
independent of X*.
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Then for any f € D, the process
¢
FOXE + 1) = [ AP + FXDAFXD s, e 20 (1)
0

defines a martingale. This in turn implies for the operator A that

Af(x+y) = f)ASf(x) + f(x)Af(y). (1.5)

Conversely, by uniqueness, if (1.5) holds this implies that X**¥ has the same
distribution as X* + X¥ where X* and XV are independent. This is the branching
property.

Thus, one can indeed prove that whenever the martingale problem for (A, D, d,,)
is well-posed for all z and D C D’ then the solution process has the branching
property iff (1.5) holds.

Obviously, for complicated operators A it will not be obvious whether or not
(1.5) is satisfied. Hence we would like to have a criterion for a generator which
is easy to check and which guarantees (1.5). That here the linearity of the rate
may play an important role was discovered and used used for R*-valued processes
in Caballero et al. (2009). This approach can be formulated more abstractly as
follows.

Towards a new operator criterion. It is easy to check that (1.5) is satisfied
if for any f € D C D’ there exists a semigroup homomorphism gy : S — (R, +)
(typically depending on f) such that for all z € S,

Af(z) = gs(@)f(2) . (1.6)
This works very well for the classical branching processes with values in linear
spaces (where we get the classical branching porperty), it is however not working
in the case of genealogical or historical processes as we shall explain latter on.
Therefore (1.6) will be the starting point for our criterion we develop below, which
needs some new elements if the state space is not anymore a linear space as in the
classical situation and also the mechanism of the process is of a different nature so
that we get only the generalized branching property.
The new criterion in some classical cases (Examples). Some well-known
examples for branching processes show that indeed (1.6) is a good criterion for the
classical branching property as well and that gy can be specified explicitly.

Example 1.2. First consider the simplest example, the classical continuous time
critical binary Galton- Watson process with branching rate b > 0, meaning we have
exp(b)-distributed splitting or death times. That is, E = Z, D = {Ny —» R,z —
e A >0}, Af(z) = $ba(f(z+ 1) + f(z — 1) — 2f(x)). The martingale problem
for (A, D) is well-posed, see Section 8.3 in Ethier and Kurtz (1986) and for f € D:

Af(w) = Gha(F0) + F(-1) = 2£(0))f (@), w € N. (17)
So, we can choose the homomorphism as:
ga(x) = %bx(f(l) + f(=1) —2/(0) = %b(e*A +e* —2)z,zeN (1.8)

and (1.6) is satisfied.

Example 1.3. Now, consider the class of measure-valued continuous state branching
processes (CSBP). (We specialize later to the case where the description via a
well-posed martingale problem has already been established.) They are spatial
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analogues of the real-valued CSBP, see Le Gall (1999). More precisely, let E be
a locally compact metric space and let S = M¢(E), the space of finite measures
on E. We denote the process by X = (X;);>0. Intuitively, X locally behaves like
a CSBP plus there is migration/mutation in F governed by a Feller process with
generator (B,D(B)), say. The branching dynamics is locally determined by the
branching mechanism, where for each z € E, a(z) € R, 8(z) >0 for allx € F

Y(z,u) = alx)u + Blx)u® + / (e =1+ ru) w(z,dr) (1.9)
(O’m)

and the measure 7(z, dy) satisfies supgc,eE(fO1 rim(z,dr) + [ ra(z,dr)) < co. The

generator of X then takes the following form, see Dawson (1993, page 106):

with D = {F (1) = Fy(s) = f({6,)) : 6 € D(B)}, choose f(z) =~ (1.10)
and set for arbitrary ¢ € D(B)

O, (k) = F((1:0)) (1 BO) + 1" )t 00) + 57" (G ) 6% (111)

+ [ ) [ " e, dw)[f (1, ) + ud(a))

= f (s 0)) = f'({, 8))up()] -

The martingale problem for (2, D,d,) is well-posed for all ¢ € M;(E). One can
easily check that

QFy(p) = go(u) Fs(p), (1.12)
with the linear function

90(h) =~ B6) ~ (a6 + . 556%) + [

E

u(da) / " e, du)[f (ud()) — 1

+u(¢(z))]
(1.13)

Hence criterion (1.6) is satisfied. Note that if E is a point this covers the well-known
R-valued CSBP.

Ezample 1.4 (Shortlist of classical examples). We could add here spatial models
like super random walk or multitype branching with mutation and many more as
long as we have a characterization of the process as well-posed martingale problem
of the form given by an operator A. The latter is a restriction, as we will see in the
context of the Dawson-Watanabe process which we can only treat with our method
so far in d = 1. Given such a characterization the criterion is easily checked again,
by explicit calculation left to the reader.

These examples show that the criterion given in (1.6) is indeed easy to verify. For
the classical processes mentioned above the branching property is typically proven
by verifying (1.2), see for example Dawson (1993, Chapter 4) for the measure-valued
setting and Le Gall (1999, Section II.1) for the real-valued setting.

However, the Laplace approach turns out to be difficult to apply to more general
classes of processes like U-valued branching processes while the generator approach
introduced above still works to at least give a generalized branching property. One
reason is that the classical approach of showing the branching property via Laplace
transforms (evolution equations) depends on the underlying state space being linear,
or at least a convex cone, which is not true for U-valued processes. It turns out
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however that the generator approach can be extended and the branching property
generalized to cover genealogy-valued branching processes (in ultrametric measure
space description) and its spatial versions as well as historical processes, where the
classical property does not hold.

A generalized branching property. The classical concept of branching processes
can be modified and then extended to much more general mechanism and with it
state spaces, where the branching property in the classical sense is false as for
example Markov processes of evolving histories and genealogies in particular also in
the description with marked ultrametric measure spaces. The idea of the generalized
branching property in that context is as follows.

We have to incorporate the possibility that sub-populations originating from the
population at time s still at a later time t share some common information about
the population and hence, conditional on the information up to time s fail to be
independent and hence the classical branching property is false.

For ezample, consider a Galton-Watson branching dynamics on Ny. Conditional
on the information up to time s, the sizes of the subfamilies at a later time ¢
originating from the individuals alive at time s are independent. However, if we
incorporate the genealogical relationships into the state space independence fails.
The reason is that unless the population at time s consisted of only one individual
all individuals at time ¢ are connected by ancestral lines going back beyond time
s. Another example for the same problem occurs for instance if in addition to
branching the individuals migrate independently from each other in geographic
space or mutate in type space (genome). Then if we include information about
their path in geographic or type space up to the present time s, then independence
fails.

However we would like to consider both these processes as generalized branching
processes. Since we have no branching property as a process with values in S in the
classical sense we have to introduce some additional structure on S and to define a
(new) general branching property.

The branching property is intimitely connected with the concept of infinite divis-
ibility. In Glode et al. (2019) we developed a new concept of infinite divisibility for
genealogy valued processes, which used some abstract algebraic and fitting topo-
logical structures which allowed to prove basic facts on infinitely divisible random
variables with states in genealogies. This allowed to prove the (generalized form
of) Lévy -Khintchine representation of genealogy valued random variables. This is
based on algebraic arguments which had been developed by FEvans and Molchanov
(2017). We also formulated a branching property for stochastic processes on U and
UY. We therefore make here again use of abstract concepts in this spirit and use
the tools developed in that paper.

However we move on here to a more abstract approach of the branching property
which allows us to handle more examples as the historical process and path-marked
genealogical processes as we shall see later on. This allows us then in particular
also to obtain new examples for processes whose marginal distributions have Lévy
-Khintchine representations and inhomogeneous Poison point process representa-
tions.

This we next first motivate and then introduce formally in Section 2.

Idea of formalization for a general branching property and a generator
criterion: Intuitively, the solution of the problem from above is as follows. Here
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since we have to distinguish past and the future the time parameter ¢ will appear,
the past is taken relative to t. We have to replace the +-operation we have in the
measure-valued process by an abstract algebraic operation LI!, in fact depending
on a time parameter ¢t and which forms a semigroup for each ¢ > 0. Furthermore
we need maps T3, which extracts the part of the state at time ¢, which contains
information on the past and the part which arises newly in the future. For that
we then need the set S; of these pieces of the state and the map 7} and the "L!"-
operation has to be compatible.

The state space S contains subsets S; for ¢ > 0. Elements in S,, contain genealog-
ical information (or historical one) which has been generated at times at most u
back from the current time ¢. Formally we require S,, C S, for u < s.

Furthermore we need three assumptions. Consider times u < s < t. First, we
assume that there are “truncation maps” Ts on S which allow us to remove at any
time ¢ the information about the states of the process before any time s < ¢. This
is mathematically a function T;_5 : S — S;_s. Second, we assume that on each S
there is a binary operation LI : S; x S; — S; we call concatenation. This operations
generate for each t > 0 a topological semigroup structure. This is the analogue of
the addition in the classical settings with S a linear topological space. Thirdly we
will relate Ty and L allowing to extend the latter naturally from S; to S x S using
Tt.

The idea is now that a process which at time ¢ takes values in S; is a generalized

branching process, if for each s < t conditional on time s, the (¢t — s)-truncation
of a state in S; has the same distribution as the concatenation of independent
subfamilies originating from the individuals alive at time s. Then we generalize
the generator criterion 1.6 to this structure working with the whole collection of
semigroups and truncations.
Outline. The results on our four goals we present in two sections 2 and 3. We
make these ideas described above rigorous in Section 2 and give the precise result,
which characterizes the generalized branching property via the generator criterion.
In Section 3 we give an application to processes of evolving genealogies. Namely
to the U-valued Feller diffusion in Section 3.1 and in Section 3.2 to the UY-valued
super random walk and to historical processes or more general evolving populations
with individuals carrying ancestral path. Altogether we have the four main results
Theorems 2.11, 3.3, 3.14, 3.17, the first and the last the highlights.

The proof of the criterion is given in Section 4. The proofs of all other statements,
those concerning applications, are in Sections 5, 6 and then in 7 we formulate the
additional arguments needed for the extension of the claims to spatial models.

2. Results 1: Generator Characterization of Generalized Branching

We now carry out the last two points of the last sections rigorously with the key
result Theorem 2.11.
Formal framework. The whole section works for processes with Polish state space
S arising as solution of a well-posed martingale problem. We need the following
assumptions on the state space S which formalizes the maps T3, truncation and
the binary operation LI, concatenation as well as their relation, which is a form of
consistency property, together with the further technical Assumption 2.6 below.
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Assumption 2.1 (Collection of semigroups with consistent truncation maps). Let S
be a Polish space. We use B(S) for the Borel o-field on S and bB(S) to denote the
bounded measurable functions on S.
Assume there are S; C S, t > 0 with the following properties.
e S, CS;for0<s<t.
e S; is closed in S for all £ > 0.
e There is for every ¢t > 0 a continuous mapping T3 : S — S;, which is the
identity if restricted to Sy: Ti(x) = z for any = € S;.
e There is for all t > 0 a binary operation LI’ : S; x S; — S; such that (S, U?)
is a commutative topological semigroup with neutral element 0 € S.
e The extension of LI! to all elements of S is defined for all ¢t > 0 via

U S xS =Sy, (z,y) — (Ty(z)) U (Ti(y)) . (2.1)
For simplicity, we drop the index ¢ at LI® if it’s clear from the context.

There are many natural examples for this structure without the dependence on
t,i.e. § = S, for all ¢, namely all classical case and the classical branching property,
see Example 1.2, 1.3 and the list 1.4, where we saw they include S = [0,00) and
S = My (E), the space of finite Borel measures which both are semigroups when
equipped with addition (of reals or measures, respectively).

However including genealogical or historical information requires t—dependence
and the generalized branching property, here are examples for both these effects.

Ezample 2.2 (Ultrametric measure space U-valued processes). Recall the setting
of Glode et al. (2019) and Depperschmidt and Greven (2019) using equivalence
classes of ultrametric measure spaces and the semigroup of t-forests. In that paper
the evolving genealogy of the population alive at time ¢ was described via a set of
individuals Uy, the genealogical distance between individuals 7(+,-) on Uy X Uy, a
population size i, and a sampling (probability) measure ji; on Uy, altogether giv-
ing an ultrametric measure space (U, 4, figfiy) and finally with its isomorphy class
(Ui, 7, fiefiz] we get the elements of the state space U describing for us genealogies.
(These objects are called often trees in some literature even though they describe
the subset of the leaves of weighted R-trees, since nevertheless for every ultrametric
space there is an R-tree such that the space can be mapped 1 — 1 isometric in the
set of leaves, see Greven et al. (2013), Remark 2.2 for details.)

Elements of U are t—truncated by truncating the metric at 2¢ and two such
objects are concatenated, denoted LIY, by taking the disjoint union of the sets of
individuals, keeping the metric in each population and setting the distance between
individuals from different sub-populations equal to 2¢ and by adding the (extended)
measures. Then S = U, S; = U(#)Y, the latter the equivalence classes of ultrametric
measure spaces of diameter at most 2t and Tyu = |u(t) = [U,r A 2t, ] the ¢-
truncation map, ¢t > 0, u = [U,r, u] € U. Details are in Section 3.1.

Ezample 2.3 (Historical process: measures on ancestral paths). Consider S; =
M (DR, E)),t > 0 where D*(R,E) = {f € DR, E)|f(u) = f(0) Vu <0, f(u) =
f(t) Yu > t}, as subsets of measures on cadlag functions on R with values in FE,
a locally compact metric space, for example F would be a geographic space as Z¢
or R? or E is a type space as finite sets (genome) embedded in [0, 1]. These paths
could either represent the geographic location in the past along the ancestral line
through migration, or of say a genetic type evolving under mutation.
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Now there are two possibilities to proceed. This is due to the fact that of interest
for us is the ancestral path seen from the present individual, i.e. all positions are
relative to this present location or alternatively we can thin of the class of path
differing only by time-shift as the key object.

(1) The set S; consists then of the measures on the path constant except for an
interval of at most length ¢. The equivalence classes are taken w.r.t. translation in
time of the path. The truncation of the state is the push forward under the map:
replace the path after time ¢ by its time ¢ value (this means after the ¢t —s truncation
the equivalence class is a path which has evolved for time ¢t — s and is otherwise
constant, the bracket indicates taking the equivalence classes. The binary operation
is the one induced (on the equivalence classes []) by the addition of measures.

(2) Alternatively we could at time t shift all path by —t in the time index to
get path which are not constant only for times in [—¢,0]. The truncation and
concatenation are defined analog to (1).

Indeed we shall later exploit mainly this second possibility. See Section 3.2.

Certain functions on the semigroup will play an important role.

Definition 2.4 (t-multiplicativity and ¢-additivity). Let f : S — R measurable
and t > 0. We say that f is t-multiplicative on S if

flomy Ut U ay) = f(oy) - f(zn), nEN,z,...,2,E€S. (2.2)

We say that f is t-additive on S if
flziu - Ula,)=fl@)+ -+ f(zn), neEN,z1,...,2,€8. (2.3)
Remark 2.5. (1) In fact the previous definition means that multiplicative func-

tions f are semigroup-homomorphisms f : (S, UY) — (R,-) except for the
usual continuity assumption for topological semigroup homomorphisms.
Likewise for t-additive functions and the semigroup (R, +).

(2) The previous definition implicitly implies that f(x) = f(Ti(x)), € S for
a t-multiplicative (or t-additive) function. This can be seen in the case of
a t-multiplicative function via

f@) = f(@)f(0) = f(z U 0) = f(Ti(z) U" 0) = f(T()) . (2.4)

In order for the above functions being a rich enough set to work with later on
we complement the Assumption 2.1 and require:

Assumption 2.6. For any ¢t > 0,bB(S;) contains a set Dy C {f € bB(5)|f(z +y) =
f(x)f(y), z, y € St} of functions which are all strictly positive and the set separates
points in S, i.e. for all  # y € S; we can find f € D; with f(z) # f(y).

The examples 2.2 and 2.3 above will be shown to satisfy this further condition.
Key result. Next we define the new concept of the generalized branching property
which holds for a richer class of Markov processes then the Markov processes satis-
fying the classical one. This is formalizing the property that a process which at time
t takes values in S; is a generalized branching process, if for each s < t conditional
on time s, the (¢t — s)-truncation has the same distribution as the concatenation of
independent subfamilies originating from the individuals alive at time s.

Definition 2.7 (Generalized branching property). Suppose Assumptions 2.1 and
2.6 hold. We are given furthermore a Markov process (X;);>o with values in S
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defined by a family (P;);>o of probability kernels P, : S x B(S) — [0,1], ¢ > 0,

given via

Pz, f) =E[f(X:)| X0 =2], z €S, f €bB(S),t>0. (2.5)
The process has the generalized branching property if
Pi(x1 U 29, hy) = Pi(x1, he) Pi(w2, he), 71,22 € S, (2.6)

for any s,t > 0 and h; € bB(S) t-multiplicative on S;.
This defines as well the generalized branching property for a solution of a well-
posed martingale problem on D([0, c0), S).

We write h for h(t,z) = hi(x), (t,2) € RxS. Of course in the previous definitions
it suffices to consider a separating subset of D, functions in (2.6).

Remark 2.8 (Terminology). Note that we really have here a "((Sy, U");>0, (T%)i>0)-
branching property", but since we will specify these ingredients in examples we
suppress this in the notation throughout.

Remark 2.9 (Time-homogenity of (Xi)i>0). If we want to treat the time-
inhomogeneous case we would have to consider ((Sy ¢, I_I(“’t))tZu7 (TY)t>u)u>0 here
setting of a cascade of indices which we want to avoid to focus on the key point.

Remark 2.10 (Measurable path). Recall at this point that solutions of a martingale
problem must have a version with measurable path, since otherwise the defining
relation for the martingale problem is not welldefined, since the compensator would
not be properly defined. This property is implied by the stochastic continuity of
the process, but is in infinite dimensional state spaces not equivalent to it, therefore
requiring stochastic continuity is a restriction.

From our heuristic reasoning it should be clear that the time an evolution has
run is of importance. Therefore we will even in the time-homogeneous case i.e. a
time independent operator for our martingale problem generating the process X
consider the time-space process (¢, X;);>0 to have the time the evolution has run
explicitly coded in the state.

We can now formulate the main result which gives the characterization of oper-
ators A of processes (X);>o which satisfy the generalized branching property. We
consider here the time-space process (¢, X;);>0 with state space [0, 00) x S and op-
erator A + %. By Ethier and Kurtz (1986, Lemma 4.3.2) the wellposedness of the
(A, D)-martingale problem implies wellposedness of the (A, D) martingale problem.

Theorem 2.11 (Criterion for operators of generalized branching processes). Sup-
pose Assumptions 2.1 and 2.0 hold and let D; denote the set introduced there. Let

D C {(z,t) = P(t)h(x) : p € CLHR,R), hy € Dy, (t + hy) € CHR, Cy(S))}
(2.7)
and let furthermore be given A= A+ 0y : D — B(R x S). Finally assume that for
any (z,0) € S X R the following holds.

For any two solutions (t,Xy)i>0 and (t,X})i>0 of the martingale problem for
(A,D,é(xﬁo)) one has Ty Xy £ Ty X, for every t > 0, and a solution (t,X;)¢>0 has a
stochastically continuous version.

Under those conditions the family (P;);>o as in (2.5) has the generalized branch-
ing property if and only if either of the following conditions is satisfied:
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(1) For xy,x9 € St, Yh € D, t>0:
Anp(t) (1 U ) = o' () g (1 L o) + () [ (w2) Ahy (1) + he (1) Ahy (2)]. (2.8)

(2) For each yh € D there erists a function gp.n Ry xS — R such that
g1 (t, ) is t-additive for each t > 0, the hy are all strictly positive and, for
all (t,x) € Ry x Sy,

Ap(t)he(z) = ¢ (Ohe(@) + () gyt 2)he(). (2.9)

Note that (a) is the generalized Kurtz criterion and it is (b) which we will apply
in examples.

In the next section we apply part (b) of this result to U-valued and historical
processes to get new examples for the generalized branching property, where the
"classical" one does not hold. In this section we conclude by explaining how the
previous result simplifies if S; = S for all t > 0 as in our classical examples 1.2- 1.4,
where then the classical branching property holds. This applies in particular to
all classical branching processes mentioned in the introduction, hence it gives an
alternative proof of the branching property of measure-valued CSBP in particular
of all real-valued CSBP.

Indeed if S = S; for all ¢ > 0 then multiplicativity of h; on .S; just means that h;
is multiplicative on S. Assume D C bB(S) is a set of multiplicative functions and

D c {(z,t) = Y()h(x) : P(t) =e M X>0, he D} (2.10)

We get, recall from above (4, D), (Z, 5)—Well-posedness are equivalent, the following
corollary to Theorem 2.11 giving the classical examples in (1.7)-(1.13) by choosing
for D the functions specified there and for L just +.

It is then immediate from Theorem 2.11, that we have the following.

Corollary 2.12 (Branching generator: classical case). Assume S is a Polish space.
The test functions D satisfy, (i) D C bB(S) is a set of multiplicative functions on S,
(i) contains only strictly positive functions and is (iii) separating. Finally require
that the (A, D)-martingale problem is well-posed and has a stochastically continuous
solution (X)i>o0-

Then the semigroup associated to (X)i>o has the branching property if and only
if either of the following conditions is satisfied.

(1) For all x1,290 € S, h € D:
Ah(zq Uxg) = h(xo)Ah(z1) + h(z1)Ah(xs). (2.11)
(2) For each h € D there exists a U-additive function g, : S — R, i.e. gn(x U
x2) = gn(x1) + gn(z2) for any x1,22 € S, with
Ah(z) = gn(z)h(z), z=€ S, heD. (2.12)

3. Results 2: New Applications for some evolving genealogies
or histories

This work was motivated by trying to generalize and prove the branching prop-
erty for evolving genealogies modeled as marked ultrametric measure spaces, where
the classical branching property does not hold. Of particular interest are Feller’s
diffusion model and the super random walk, see Depperschmidt and Greven (2019).
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Note that we need in order to apply our theory that the martingale problem is well-
posed. Hence we need to know this either from the literature or we have to prove
this here. For reasons of keeping page numbers under control we give three exam-
ples and treat only one example, where we construct a new process and the others
are chosen such that we can refer for the constructions of the process to existing
literature. The corresponding results we have here are Theorems 3.3 , 3.14, 3.17.

Indeed we now discuss two classes of examples, each in a subsection which are
processes of evolving genealogies respectively histories, arising as diffusion limits of
classical Galton-Watson models. First we treat the prototype case which motivated
the present paper, the U-valued Feller diffusion.

Then next we adapt this to the world of spatial UY-valued branching processes
covering in particular the genealogical super random walk or the corresponding
historical super random walk process. This shows the potential of the criterion for
the study of population models. There is a whole zoo of further examples. With
the same method we could treat branching random walks, branching Brownian
motions or multitype branching processes where individuals undergo mutation or
more general continuous state branching processes.

Finally we formulate and construct a new type of example the (ancestral-path)-
marked genealogical super random walk combining histories and genealogies. This
shows the robustness of our concepts and methods for a new process of great interest
in its own right.

Remark 3.1. The last model contains the other ones mentioned in the sense that
they are functionals. However that does not mean that we get the branching prop-
erty that easy from the general result, since first of all we have to still check the
functionals are Markovian, which requires wellposedness of their martingale prob-
lems to obtain the Markov property of the functional. Furthermore we need to
show that the ingredients ((S¢, U")¢>0(T%)¢>0) arise as projections. Therefore we do
not loose much by building our examples from bottom to top.

Then in the last subsection we describe further examples where the criterion is
probably applicable if one carries out some extensions of the theory of U-valued
processes to construct them rigorously via well-posed martingale problems. An
example is the continuum space spatial models as the Dawson-Watanabe super
process.

3.1. U-valued Feller Diffusion.

Description of current population and its genealogy. We consider now the
evolution of the genealogy of the population currently alive (i.e. at a time t) de-
scribed by an equivalence class of ultrametric measure spaces, in a continuum mass
version of a critical binary branching process. This is the U-valued Feller diffu-
sion. The main result of this subsubsection is Theorem 5.3. However first we have
to explain the state space and the process. To explain the method of describing
genealogical information consider first a critical Galton-Watson process.

The idea is to give two individuals in the population alive at time ¢ a genealogical
distance, which is twice the time one has to go back to the most recent common
ancestor and to equip the population with the uniform distribution. Then we get an
ultrametric measure space which describes the genealogy and whose evolution we
follow. The exchangeability of names and with it the exchangeability of individuals
with equal sampling weight then suggests to pass to equivalence classes of these
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objects under weight preserving isometries. More precisely we proceed as follows
and begin by shortly reviewing the state space of this process.

The genealogy is modeled as equivalence class of a ultrametric measure spaces
[U, r, u] where the set U describes the set of individuals alive at the current time, the
ultrametric r on U the genealogical distance between individuals and p = i, g €
R* the population size and i € M1 (U, B(U)) the sampling measure specifying how
to draw samples of typical individuals from the population alive at time ¢ as for
example the uniform distribution. The equivalence class is denoted, $t = [U,r, y,
equivalence of representations is defined w.r.t. the isometries of the supp(u) C U
which are measure preserving. For i = 0 the measure fi is not defined. The
corresponding element we call the zero tree.

The space of all equivalence classes is denoted

U. (3.1)

Note that a finite set of points is as metric space characterized by the pairwise
distances, i.e. the distance matrix. The set U is equipped with the Gromov weak
topology and is with this topology a Polish space. The topology can be defined, see
Greven et al. (2009),Glode (2012) introducing a metric. It is well known however
that this topology arises, if we require that a sequence of elements u,, converges to
an element u iff the sequence of distance matrix distributions v,, converges to the
distance distribution v of all orders m € {2,3,...}. Here the distance distribution
of order m arises (denoting with the II* the push forward of measures under a map

) as R*(u®™) with R: U™ — (R+)(;) given by

R((zi,25)1<ici<n) = (r(@i, %)) 1 <icjcom - (3.2)

The description of genealogies by ultrametric probability measure spaces was
introduced in Greven et al. (2009) extending ideas appearing in Evans (2000) and
Evans et al. (2006). This was generalized to the case of finite measures in Glode
(2012) and to locally bounded measures in Greven et al. (2016).

The objects of Assumption 2.1 now arise as follows. Recall here that the ultra-
metric spaces can be represented by the set of leaves in an R-tree. This motivates
the following definitions. The state spaces are the equivalence classes u = [U, r, u] of
ultrametric measure spaces (U, r, u) called U, U(h)" are the elements of U with di-
ameter at most h, U(h) with diameter strictly less than h and one considers the trun-
cation of "trees" of diameter t at height ¢ —h for h € (0, t] and the h—concatenation
of "trees" as the binary operation on U(h)".

Formally define

U(h) ={ue Ul p®*({(z,y) € U? | r(z,y) > 2h}) =0 (3-3)
U(h) = {u € U | n®*({(z,y) € U? | r(z,y) = 2h}) = 0. (3-4)

Then define for u,v € U(h)" the concatenation (using & for disjoint union):
ullo = [UwV,ry U ry, i + 9], with (3.5)
ro U ry luxu=ru, roU"ry lvxv=ry, (3.6)
roUry(z,y) =2h, x €U,y eV (3.7

and v, i the extension of v and p to the disjoint union which is zero on the respective
other component.
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The h-top [u|(h) of u € U is defined:

|u|(h) = [U,r A 2h, u) € U(h)". (3.8)
Then we define the h-truncation:
Tn(u) = |u|(h), Sp =TU(h)". (3.9)

The process: U-valued Feller diffusion. We consider the U-valued Feller
diffusion (&4;);>0 the process which corresponds to the large population-rapid
reproduction-small mass limit of the genealogy of the population alive at time ¢
of the critical Galton-Watson process. The process is the U-valued process re-
lated with its population size process (X;);>o to the solution of the SDE dX; =
aXydt++/2bX; dB;, where b > 0 and a € R. For the construction and uniqueness of
U-valued processes already treated in the literature we refer to Greven et al. (2013);
Glode (2012) and for the present model and its spatial versions to Depperschmidt
and Greven (2019) where the process is constructed via a well-posed martingale
problem and many properties of its longtime behaviour are studied.

We recall its operator for the martingale problem. We need the concept of a
polynomial to get the domain of the operator. Fix n € N and ¢ € C} (R(g),R).
Then define for an equivalence class of an ultrametric measure space [U,r, u] the
function

om0 ([U,rp] ) = / o((r(wi ), 1 i< j<m) pldan) ..p(den) — (310)
and the action of the operator is given as sum of two operators:
QT™? () = QPE W P2 (y) 4 QT Prangm@ (yy) (3.11)
and QT®™%(0) = 0. We need the notation
u=puU) (3.12)

for the total mass of (X,r, ), which is an invariant of [X,r, u]. The operators on
the r.h.s. are given by
1,grow {n,¢ n,2V ¢ 7 a¢
QbEeveno(u) = o"VO), Vo= , (3.13)

or;.
1<i<j<n  "J

b
QUM (1) = an@™ Y (u) + = N @Mk (u), (3.14)
Yckai<n
where
(Or1(r), ;= rigliizizn +reili—n +riplyon, 1<i<j. (3.15)

Note that the martingale problem for (Q1,I1(C})), where II(A) are the polyno-
mials defined by ¢ chosen from the set A, has a unique solution, see Depperschmidt
and Greven (2019). This result is presented in Proposition 5.6.
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Interpretation of generator. This generator arises in this form in a scaling limit
of an individual based model (binary critical Galton-Watson process) as the number
of individuals tends to infinity. The first part correspond to the growth of the
genealogical distance with time arising from the growth of the genealogical tree
at the tree top only. The second part describes the effect of a splitting in two
branches of the genealogical tree upon a surviving birth. The term @ in (3.14)
arises as rate of the operator which in fact is the resampling operator defining the
U-valued Fleming-Viot model. The background here is the fact that, if we have two
groups of ancestors and follow the relative proportion of one among the complete
population, we obtain a Fisher-Wright diffusion at a rate which is the inverse of the
total mass.

See Depperschmidt and Greven (2020) for more explanation and Depperschmidt
and Greven (2019) for the derivation from an individual based model and detailed
information on the structure of the generator and its relation to the Fleming-Viot
operator.

Definition 3.2 (U-valued Feller diffusion). We refer to the unique solution of the
(QT,TI(C}))— martingale problem as U-valued Feller diffusion and denote it by
il == (ut)tzo.

The result. We consider here as binary operation the concatenation U? of trees in
U"(s) and as operation Ty the truncation operation, which associates if we consider
the R-tree representation of the ultrametric space with such a tree its t-tree top of
depth ¢ < s, with S; the set of such objects.

We state the main result of this subsection obtained with our criterion.

Theorem 3.3 (Generalized branching property: U-valued Feller). The U-valued
Feller diffusion 3 has the generalized branching property.

A concrete consequence: expected sum of squares of subfamily sizes.
At first sight, Theorem 3.3 seems to be an abstract statement about an “extended”
martingale problem on a complicated space. However if we use Lemma 5.2 from
the proof section we can obtain interesting statements, since we can obtain differ-
ential equations for expectations of moments where the rhs. involves lower order
moments. This allows in some case to obtain an explicit solution of such closed
systems of equations. The following is an example. There are much more explicit
representations coming out of the martingale problem, in particular via duality
relations, see here Depperschmidt and Greven (2019) for details.
We consider the expected sum of the squares of the subfamily sizes.

Theorem 3.4 (Moment recursion for Feller diffusion). For the U-valued Feller
diffusion and t > 0, if a # 0:

E[(p2,]l(7"12<2t) (ut)] — bﬁol (62at — eat) . (316)
a

Note the rhs. is nothing else than the variance of the Feller diffusion on RT. It
is known that if y = [Uyg,re, pue] then (ue(Up))e>o is the classical RY -valued Feller
diffusion with parameter b, see Depperschmidt and Greven (2019). In the case a =0
the right hand side of (3.16) is replaced by 2buy.
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So far we are not able to derive from the martingale problem other equations
which form a closed system and allow for an explicit solution. However the compen-
sator of the martingale problem involves lower order expressions which gives some
hope.

3.2. Historical Branching Processes, evolving genealogies of super random walk and
path-marked genealogies. We consider now stochastic evolutions of the genealogy
of populations distributed in a geographic space (or type space) E, more precisely
a Polish space (F,rg). In addition we have an evolution of the marks, think
of migration if marks are locations and of mutation if they are types. Since the
mechanisms are linear in a proper sense we can still hope for a generalized branching
property. This modification of the process requires the generalization of the setup
of the previous subsection from the state U we have to pass to the state space of
marked genealogies UV .

Here E is separable, complete, metric space which is locally compact as E = Z¢
or any other at most countably infinite abelian group with a metric or a continuum
for example E = R?. We also consider the case where we have further historical
information on the whole ancestral paths of the population as they evolve in time.

The key results on the generalized branching property are on versions of the
model initially motivating the present paper, namely enrichments of the classical
super random walk (sometimes called interacting Feller diffusions, see Dawson and
Greven, 2003 for example). In particular the genealogical super random walk pro-
cess, the ancestral path marked genealogical super random walk process and the
historical process of super random walk, which are Theorem 3.1/, Theorem 5.17
and its Corollary.

However we have first to define these processes and develop the ingredients for
our framework which needs some effort. We give here the concepts to handle E of
the form mentioned even though we prove the main theorem assuming only that F
is a countable abelian group, because the theory of such processes is for continuum
space not yet well developed on the genealogical level i.e. as UV -valued process with
V = FE to be introduced below. However as soon as we have settled the existence and
uniqueness problem of our process we can readily verify the generalized branching
property via our criterion.

We discuss first of all three important and related processes which are spatial
versions of the case discussed in Subsection 3.1, among which is the historical process
or the location-marked genealogies of the super random walk modeled as marked
ultrametric measure spaces and show that their generators allow to read off the
generalized branching property via our criterion and therefore get more and new
examples, in particular ones not satisfying the classical branching property.

At the same time we introduce a third model (containing the above as Markovian
functionals). Namely we take up and generalize from historical processes, see chap-
ter 12 in Dawson (1993), the concept of ancestral paths associated with individuals
currently alive and combine this with the genealogy described by elements of U.
Then we can define here a (ancestral paths)- marked genealogy-valued, precisely UY -
valued, class of super processes. This class contains as functionals many processes.
In particular all processes describing historical and genealogical information of an
evolving population: location-marked U-valued processes, U-valued processes, his-
torical processes, measure but also R% or R-valued processes for which the generator
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criterion for the branching property works very well. However the case of ancestral
path marked genealogies is conceptually and technically quite demanding.
Outline. We proceed now in four steps, first we develop the formal description of
genealogical and historical information, second we rigorously define the involved
stochastic processes via well-posed martingale problems and thirdly we identify the
ingredients of the formal framework fitting Theorem 2.11 and finally we state in
the fourth steps the main results on the generalized branching property. (For facts
on relevant spaces of measures and Laplace methods see Section 3 and 4, 6, 8 of
Dawson, 1993).

Step 1: Genealogical and historical information in spatial population
models. We begin by introducing the state space of the involved processes system-
atically.

(1) Historical process. The historical process, a process with values in measures
on paths, was invented in Dawson and Perkins (1991) to describe the ancestral paths
of the population alive at time t in a spatial critical branching process. Here we
assume that the population is observed from time 0 on and no further information
on the past does exist.

Namely every individual alive has a path associated with the migration in space
from his birth on, before this birth times the birth time of his direct ancestor, etc.
so that the ancestral path of a currently alive individuals gives the path of descent
(or ancestral path) and the motion through geographic space (or in type space
under mutation).

(i) State space That is if F denotes the geographic space, which has to be
at least a Polish space (most frequently with a specified metric, this the setup in
chapter 12 of Dawson, 1993) one has an element of D(R, F) by continuing the path
as constant beyond time ¢ and before time 0. These paths merge of course and are
in particular equal for all times before T if they belong to individuals descending
from the same parent and 7' is the parents death time and the birth time of the
two new descendants. All individuals are considered exchangeable if they have the
same ancestral path. Hence for time ¢ consider for the population currently alive
simply the "counting measure” on the space of the ancestral paths to describe the
state of the population.

(#) Initial states As initial state in this description one uses typically initially
constant paths so that the initial state corresponds to the locations of the individuals
at the time 0 in F in a unique way. Note that in fact we have values in the
closed subspace Dy where Dy, C D are the cadlag paths with values in E/ which
are constant before time 0 and beyond ¢. This is a closed subset of D. To get
a dynamically closed set of states we need to use tgoDO’t' Similarly call Dy o

the (topologically closed) set of paths constant for times < 0. In order to then
discuss infinitely old populations and equilibria we need D_o ¢ resp Do oo = D.
In particular we do have that

Ds; with s,t € R is a Polish state space for ancestral paths. (3.17)

Traditionally one describes the state of these ancestral lines by a locally finite
measure, i.e. avy € M(D(R, E)) for a locally compact geographic space E (like RY
or some countable set E like Z¢). In the general setup we have measures which are
bounded on bounded sets. These measures generalize the empirical measures of a
finite population of ancestral paths at varying times and contains in particular the
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occupation measure of the population by projecting the measure v on E by regarding
from the path only the time-t position. This measure v} "counts” the ancestral path

having some specified features, in particular projecting on the current position gives

the occupation measure v; * on E of the population at time ¢. Namely we define
vit(A) =vi({v e D(R,E) : v(t) € A}), VA e B(E). (3.18)

Now we say v; has the "locally finite property" if all its time-t projections satisfy:
Vi (A) < oo, for all A bounded respectively finite in the discrete case.  (3.19)
So we have altogether as historical process the following measure valued process:

(v)ez0, vi € M(Doy(R, E)). (3.20)

Remark 3.5. The process X, as for example the process in (3.20) has typically a
time inhomogeneous dynamics and therefore it is better to work with the time-
space process (i.e. (t, X (t))i>o instead of X) of the path process and on top of that
also with the time-space process of the measure valued process i.e. we consider
(R x D(R, E)) respectively in (3.20) R x M(R x Dy (R, E)) as state space and
consider measures on that space together with another explicit time coordinate.
This way one obtains a time-homogeneous Markovian dynamics.

The historical process, better its law in its general form, see Dawson and Perkins

(1991) can be described as solution to a Log-Laplace equation or for us more relevant
as solution of a martingale problem (see Dawson, 1993, chapter 12), in the form
which is specifying martingales for evaluations of the measure and giving their
increasing processes. We will use here for our purposes the more traditional form
of the (local) martingale problem for a given operator, which however is known to
be equivalent to the above descriptions.
(2) Genealogical processes. The object in (3.20) describes the genealogy at least
implicitly, only if independent copies of the migration paths do not agree on any
positive interval, so that the time point before which the ancestral path agree must
be the exact birth point. This problem can be avoided as follows, using the concept
of marked genealogy-valued processes describing the genealogy of the population
currently alive, which also allows to formulate and prove the generalized branching
property with our criterion. In that concept it is possible to attach marks to the
individuals as for example types or locations. This concept has been introduced
in Depperschmidt et al. (2011) and has been successfully applied in the context
of Fleming-Viot processes and their genealogies in Greven et al. (2013), Depper-
schmidt et al. (2012) and Greven et al. (2016) and we use it here for the branching
world, see here for U or UY-valued processes of this form also Glode et al. (2019);
Depperschmidt and Greven (2019).

(i) State space: generalities We consider more precisely a random variable &
with values a equivalence class of V—marked ultrametric measure spaces

U=[UxV,rary,v), (3.21)

with (U,r) an ultrametric space, (V,7y) is a metric space both complete and sep-
arable and v is a Borel measure on B((U x V,r ® ry)) which is boundedly finite
meaning v(U X -) is a boundedly finite (on bounded sets finite) measure on V. We
denote by £ the measure on (U, B(U)) given by u(-) = v(- x V'), which is increasing
limit of finite measures on that space. Here we have to allow measures p now,
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which are infinite, since on an infinite geographic space we typically want to allow
a population with infinite total mass which is only locally finite.

Consider (U x V,r @ ry,v) and (U’ x V' @ ry.,v'). Call a map ¢ : U X
V — U’ x V on mark and measure preserving isometry if ¢(u,v) = (¢(u),v) for
all u € supp(v) and % is isometric between supp(p) and supp(p’) and measure
preserving, i.e. ¢,v = v'. The space of all equivalence classes, the latter denoted
[UXV,r®7,,v], of V—marked ultrametric measure spaces w.r.t. measure and mark
and measure preserving isometries of the support of u of all restrictions to points
with marks in bounded sets, equipped with the marked Gromov weak topology, we
denote

UY, which is a Polish space. (3.22)

We may take equivalently any sequence of bounded sets exhausting the full space V.

See Depperschmidt et al. (2011) and Greven et al. (2016) for the concept of
V —marked ultrametric measure spaces and basic topological facts. Roughly con-
vergence amounts to convergence of all equivalence classes of marked finite sub-
spaces spanned by n points sampled according to v. (Alternatively we could say:
convergence of all polynomials a concept we shall discuss in detail in (3.31).) Then
define for € M(U) with u(A) = v(A x V) the kernel « by

V=UuQ K, (3.23)

called the mark kernel. This k arises in the special case where a mark function
exists as K (u,dv) = d,(y)(dv) for a measurable function x. The second marginal of
v corresponding to V is denoted

vr (3.24)

We want to choose the current locations or alternatively the ancestral paths as
marks:

V=E or V=DR,E). (3.25)

The latter choice embeds then the historical process in the genealogical process on
UY which contains then the combined information of the U¥ and the M(D(R, E))-
valued process.

In (3.25) the first case is easier to handle (compare Greven et al. (2016) for the
Fleming-Viot process in that case and Depperschmidt and Greven (2019); Glode
et al. (2019) for the branching case). For the second case we need some further
preparation we focus on next, a reader only interested in the more classical situ-
ation, the first case (genealogical super random walk) might move on to the next
step. Nevertheless, this second example is the highlight, despite the technicalities
necessary.

(#i) State spaces: Path-marked genealogies Indeed the spatial branching process
of Dawson and Perkins (1991), the so called historical process, can be extended to
a UY-valued process { containing most of the relevant genealogical and historical
information (see the discussion below) and then this v* of (3.24) is the measure state
and with it we get a version of the historical process, formulated in the "classical”
way, i.e. for the measurable ¥ on U" arising from projecting an element of U x V
on V and hence v on v*, set:

(11 )10 = V((U)e>0). (3.26)
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We formulate now a setup in which to apply the martingale problem techniques
(see Remark 3.5). Introduce as mark space V:

D=|JDyoy . D= |J Dos(R,E). (3.27)
teR te[0,00)

We use parallel to the historical process also his time-space process (recall Re-
mark 3.5), hence also as mark resp. state space:

V=RxDorV =D"resp. RxU". (3.28)

Note that we pass here both on the level of the ancestral path and on the UV —valued
process to the time-space process because we want on both levels time-homogeneous
processes (recall Theorem 2.11 is for time-homogeneous processes). In that case we
choose as marks in points with the explicit time component ¢, paths in Dy (R, E),
which are constant after time ¢ and before time 0.

Step 2: The class of genealogical and historical models: Formal construc-
tion of UY-valued super random walk. We focus now on two cases, namely
V = E and V = D where E is a metric space, which is Polish. But we restrict
E to be a countable abelian group such that we can define random walks, which
allows simplifications in construction and more is known about populations in such
geographic spaces. The basic process is now the UF-valued super random walk on
E, which we now introduce in (1) before we come to (2) to the case V= D and
in (3) to an alternative path-valued process. As preparation we begin with the
classical case.

(0) A classical spatial process. The classical super-random walk is the following

system of interacting diffusions X = ((:vi(t))ie E) with parameter b > 0 and
>0

a(+,-) a transition probability on E x E and state space contained in [0,00)E:

dx;(t) = Z a(i, j)(z;(t) — z;(t))dt + /bx;(t) dw;(t) i€ E, (3.29)
JEE

where E is embedded in a continuum group F’, which is Polish and with a(.,.) a
transition probability on E some discrete abelian group, for example E = Z*, E' =
R?. See Dawson and Greven (1996), Greven et al. (2002) for construction and prop-
erties of this process. Recall that in the approximating individual based model indi-
viduals migrate from ¢ to j with probability @ instead of a(here a(¢, &) = a(¢/,€)).
The associated marked genealogy-valued, i.e. UY-valued, dynamic has to be
defined below rigorously by a well-posed martingale problem which can be show to
arise as a scaling limit of the genealogy of a branching random walk on E, equipped
with the appropriate marks in E resp. D, the walk with transition rate a(-,-) with

critical branching with many individuals-small mass and rapid branching.

Remark 3.6. It is also interesting to consider continuum space versions of the above
process, as the Dawson-Watanabe process. The Dawson-Watanabe process as usual
arises as spatial continuum limit from the systems indexed by scaled versions of F,
for example E' = R% and E = ¢-Z%, with ¢ — 0, compare Section 3.3 part (iii) for
a more detailed discussion of the arising problems.

If the underlying geographic space E is finite we work with finite measures. If
however E is countable it is more natural to work with measures which are only
locally finite. In that case the construction of the process of total masses (per site
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population sizes) via the system of SDE’s in (3.29) already requires to restrict the
state space to configurations, where the local mass cannot explode in time due to
the flow of migration. The appropriate tool here is the so called Liggett-Spitzer
space, a subset of [0,00)F of the form

{T €[0,00) | Y Ty < o0} (3.30)
i€E
for some summable positive v satisfying ay < M~ for some M < co.

On this space the solution of the SSDE can be constructed and any random
configuration which is translation invariant with E | Ty |< oo is almost surely in
this space, regardless which v we choose, and furthermore the solutions of the SSDE
have almost surely path which take values in the Liggett-Spitzer space for all ¢ > 0.
We do not discuss this in more detail here, the reader may look at Liggett and
Spitzer (1981), Dawson and Greven (1996) and Greven et al. (2005) for details.
(1) The U¥-valued super random walk. We have to discuss now state spaces,
test functions and operators.

(i) Marked genealogies of super random walk and their state space. For this
process above we want to construct now the genealogy of the individuals alive at
a given time t together with information on locations, which is described as an
element of UY. Primarily this is a EF-marked genealogy (V = E) which we have to
define.

The next point needed are the genealogies which requires the extension of the
theory of processes in marked ultrametric measure spaces from the state space of
the previous subsection. Here we consider as marks on the genealogy the current
location of the individual which is changing due to migration or more generally its
path of descent, here the marks evolve according to the path process, see Dawson
(1993). Processes on that space of marked genealogies have been introduced in
Depperschmidt et al. (2012), for the case of finite sampling measures, we explain
the basic concepts and facts we need here. A further point is to allow on infinite
sets infinite population sizes in the form of boundedly finite measures. This works
by considering the localization of the population to ones with marks in bounded
subsets of the geographic space, defining the equivalence classes w.r.t. to all the
restrictions and defining the topology by defining convergence by the convergence
of all localizations to finite (bounded) sets. For detail we refer the reader to Greven
et al. (2016) where also a class of genealogical processes is introduced, different
from ours though, namely for the spatial genealogical Fleming-Viot process.

The UY -valued process is constructed as solution to a well-posed martingale prob-
lem. The martingale problem of the U-valued process is treated in Depperschmidt
and Greven (2019) together with its spatial U”-valued version in all detail for a
survey see also Depperschmidt and Greven (2020).

As starting points for our dynamic we will allow states of a special nature by
requiring that if [U x V,r, v] is such a state, then the restriction of v to V satisfies
(3.30), for V. = E and for the case of path that the further projection of the path
onto the time ¢ position satisfies this relation. This subset of UV satisfying (3.30)
is called then &, a set defined by requiring the property of the projection of v on
V that is supported by the measurable subset.

(#i) Test functions, generators and the genealogical processes. We specify now
the generator of the martingale problem and its domain. The basis is the operator
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we had in (3.11)-(3.15) but we have to lift it to the marked case and we have to add
the migration part giving the dynamics of the marks by specifying the generator.
(a) Test functions. The first step is to generalize the concept of a polynomial to
cover marks. Choose now a function y : V" = R, ¢ € C,(V™ R) and consider the
monomial:

QMOX([U x V,r,v]) = (3.31)

/ 10 ((r(xi,xj))lgiqgn) X (v1,v2,...,0,) v (d(xl,vl), ... V(d(a:n, vn))) ,
(UxV)m

where it suffices to consider y of the form (these are still separating)

x(v1, -+, ) =X1(U1)"'Xn(vn)- (3.32)
Then consider the generated algebra the polynomials, denoted Ilg see Depper-
schmidt et al. (2011), Greven et al. (2016).

The simple case is where V is simply the geographic space then V = F and
x* : E — R. Then we can consider again Laplace functionals exp(—®™*X) for
¢, x > 0,n € N. In this marked case where E is not a finite (bounded) set and where
we work with populations which are not necessarily finite but are only locally finite
we take F,,, T E, E,,, finite (bounded) and restrict the y to be of finite (bounded)
support. We work with y* of the form that it specifies a single site of observation,
ie.

xX*() = 1{€k}(-),§’“ € E and write for y in that case y* for £ = (&', ,¢€") € E™.
(3.33)
Then the polynomial ® depends only on the population in a finite number of sites
in E. Then we can take the generated algebra and have a separating set (Greven
et al. (2016)). The reader only interested in the super random walk V' = E may
skip the next point and continue directly with the dynamics.
(b) The dynamics and the operator. Next the action of the operator. The growth
and branching operator from (3.13) and (3.14) act now as follows. The growth
operator acts only as before on ¢ and the replacement operator the same but only
if the marks of the two chosen points have the same current locations, i.e. are
marked with path with the same current site.
The branching operator Q"' however is now a sum of operators Qg’bra acting
on the population at the site &, the sum over £ € E. We have
2b

,bra m,Q, _ m, /7 . .
QlPregmox = = o™X with ¢ = > (Bki & — &)L {v,—v,=c}- (3.34)

m

k,i=1
k#i

Note that our polynomial depends only on a finite number of sites so that the sum
is well defined.

Also the operator ngra(l)m@’x is only non zero for such & € {¢!,..., ")} which
specify x as in (3.33) and (3.41) such that tigx # 0.

Note also at this point that now for ity = 0 for some £ on which the polynomial
depends we have a singularity and we set then ng)mmx = 0. Observe that this
occurs now even if the population as a whole is not yet extinct. This requires
restrictions on the test functions we can use in the martingale problem. Here we
refer for the technicalities also to Dawson and Greven (2003).
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Next we need the operator of the mark evolution the migration operator. We
need here that the path of marks arises from a Markov process (Y (¢));>0 on E
solving a well-posed martingale problem, with operator A. For example for the
branching random walk the migration rate @, where a(v,v’) = a(v’,v) for v,v' € E
we have:

(ANE) = (Y awv)f0)) - f), ve B fEBER),  (3.35)
v'eE
representing the motion of individuals on F.
We define the operator Q1™ describing the evolution of the marks driven by
the migration defined by A above and which acts on the polynomial ®#X as follows:
n
QPmiEpnox = 37 oA Ay = (H XEl)AXE"’. (3.36)
k=1 i#k

Then summing the migration operator in (3.36), the growth operator and the

resampling operator QP (see (3.34) and above) results in an operator

(Q°F, ). (3.37)

Definition 3.7 (UF-valued super random walk). The well-posed (2% Ig,u)-
martingale problem (see the non-spatial case and the spatial case in Depperschmidt
and Greven (2019) for the wellposedness result) specifies for u € U with u € £ a
process :

()20 (3.38)
the UF -valued super random walk on E.

(2) The (ancestral path)-valued case: D' Next we have to focus on the
case of ancestral path as marks. Recall here (3.27). We will give here first the
process using as ancestral path elements in D¥ which are the ones directly given
by as by the dynamics naturally and will only later introduce the ones marked with
D* using the knowledge of the Dt case. First we discuss the test functions for
path-valued marks, then the dynamics and operator.

Here we have to begin by introducing the test functions on V' which is in our
context a set of E-valued cadlag path.

(i) Test functions Here we have the time-inhomogeneous and time-homogeneous
case.

(a) The test function x* on the rhs. of (3.32) each evaluate the positions of the
path at a tuple of time points and will be of the form of a product of functions
on E which are applied to the position of the path at a specific time giving now a
tableau of functions representing the x* of (3.32):

n m(i)

§ i
) =TT T xi (v@;))) , v e D(R, E), (3.39)
i=1 k=1
for some n € N and for k =1, -+ ,m(i) we have 0 < tgi) < téi) <. < tii)(l.) < 00,
€
with ¢ = 1,--- ,n. The Xi,x are again indicators as in (3.33). Here { from above

— (gt 1 m L
becomes § = (&) 51,

Note that Xé above is not in Cy(D(R, E)) as required in the basic setup of UY -
valued martingale problems where we take usually functions from Cy,(U", R) (fitting
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the ones in the definition of the topology), but here we have functions being only
in bB(UY, E)). This technical point we have to tackle later in the proof section
by giving either an equivalent martingale problem on continuous functions via a
moving average of the present test functions or we have to use special properties of
the path which are charged by the law.

Remark 3.8. One could try to work with occupation time integrals of the form:

M M
= n!_:[l Xm (V) = }_:[1 /RdsFm(s)]lgm (vs) (3.40)

for &, € E,F,, € CL(R)YNLY(R), m = 1,..., M. This however does not fit together
easily with the martingale problem for V' which is the one which allows to access
easily and directly important information about the f.d.d. of the ancestral path.
We will use this idea in a different form namely once we work with truncations and
we have to smoothen.

(b) For the time homogeneous set up of the path process (i.e. the time-space
process) we consider

- f[ nﬁ e (t v tAt(”)) (3.41)

with T+ (1, v) = (1) \Il%k(t)x%k(v) and (t) and U5, € C} (R, R) as the functions
n (3.31) to generate polynomials. Call the set of these polynomials I

We continue now the discussion of path-marked processes, with giving the dy-
namics.

(i) Dynamics and operator Here we proceed as in the point (1) on V = F
except now that the operator of the mark evolution given in (3.35)-(3.37) has to
be replaced by a new operator and in particular the test function x from (3.41)
instead of (3.33) has to be used.

Here we proceed in several steps. First introduce the operator which describes
the change in the path process, then secondly based on this we define the operator
of the mark evolution of the UY-valued process with V = D(R, E) acting on the
polynomial ®. The evolution of marks, i.e. of the ancestral path as time evolves
is driven by an evolution of an element of D(R, E). This Markov process is called
the path process. This process was introduced, for example in Section 12.2.2. in
Dawson (1993). This evolution is time inhomogeneous.

The next step is to write down the generator of the path process. Since already
the path process Y is time-inhomogeneous (recall the path is R—indexed), we pass
first on that level to the time-space process and need test functions on R x E rather
than just F.

Recall the generator of the motion process of a single individual (Y (¢));>0 was
called A. For the process Y the time-space process (¢, Y (¢ ))t>0 then has generator
A= a + A. The corresponding path process generator A acts (see Section 12.2.2
in Dawson (1993)) on x of the form (3.41) for t; < s < tp41:

k m
X(s,v :H (s,v(s Aty)) g( H 5&(8,’1)(8))) and gives 0 for s > t,,

l=k+1
(3.42)
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This operator specifies a well-posed martingale problem on the spaces D([0, 00), R x
D(R, E)) (Section 12.2.2 in Dawson, 1993). In a second step this has to be then
lifted to an operator on the polynomials on U, where it acts via the action of the
path process generator on the function y appearing in the polynomial.

Now turn to the UP-valued super random walk, the process £4*2"¢. In order to
get a time-homogeneous Markov process we pass to the state space

R x UP and polynomials in II = I, (3.43)

which are products of a function ¥ € Cy(R,R) and a polynomial as in (3.31) with
X as in (3.41).

The operator Q727¢ corresponding to the change of the marks now acts on the
polynomial @ as follows. Namely denoting this operator of the mark evolution of
U by QF2¢ we have for each sampled marked individual the action of the path
process generator A but now acting on the corresponding factor Y*:

QT,anc(I)qb,)A( — Z @@AZ? , where AZS(\ = (H X‘f)]{;(\k (344)
k=1 s
1£k

Taking the sum of the mark operator Q77¢ and the adapted and lifted (from U
and then from UY to R x UP) growth and the resampling operator from point 1
then gives immediately

(Q2ne 1I). (3.45)

We now have to specify precisely the possible initial states for starting times s for
our martingale problem. We choose here the subset of U” which is characterized by
a further restriction namely having marks only on a set V (i.e. supp(p) C U x V):

D= |J {t}xDssoreven | J{s} x D... (3.46)

—oco<s<t< oo seR

The corresponding subset of UP N € is then called &.
We have to show now that the martingale problem on the set of test functions
above is well-posed.

Proposition 3.9 (Existence and uniqueness of the U”-valued super random walk).
The (2%22¢ T, u)-martingale problem is well-posed.

Here some technical points have to be addressed in case of an infinite geographic
space in particular the potentially infinite total mass of the measure v on U x D.
We address this in Section 7 in more detail as well as the martingale problem
establishing wellposedness. We now have made sense of what we mean by the
ancestral path marked process.

Definition 3.10 (UP-valued super random walk). The solution of the well-posed
(*an¢ 11, u)-martingale problem, the UP-valued super random walk, is denoted

(U e0- (3.47)

Remark 3.11. We note that this process is different from the E-marked ultrametric
Feller process who records genealogy and current position, which is a Markovian
functional of U*2"¢. We shall see later how we can verify for this process as well
the generalized branching property, similarly for the historical process. This will in
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particular show how these various processes and their (7});>0, (S¢)i>0 and (U)o
are related.

(3) Pathmarked case: a sufficient variant of the standard state de-
scription via D* We have to specify state space, test functions, operators and
processes.

(i) State space In this setup for the version we formulate next we can then show
the generalized branching property since we use a more suitable concept of ancestral
path which we introduce next. Namely we have to modify the description of the
genealogy and mark a bit further to fit our framework of Assumption 2.1 and of
the Theorem 2.11 to be applied here, but in which we are keeping the really wanted
information described above. Recall Theorem 2.11 requires a time-homogeneous
process and a semigroup setting.

The idea is that the ancestral path describes the situation looking back from
the presently living individual and hence in particular positions relative to this
current position give the interesting informations. We define therefore the set of
path providing the desired information as follows:

D_o(R,E) ={ve DR, E)v(s) =v(—t)Vs < —t, v(u) =v(0) Vu > 0}, t € [0, 0]
(3.48)
and
D*= |J Do (3.49)
te[0,00)
as paths which are constant before a specific time —t and after time 0. To obtain
a Polish mark space we have of course to take

D* as the closure of D*. (3.50)

The last space D* defines now the mark space of interest and the resulting state
space for the generalized branching property is

uP”. (3.51)

(ii) Test functions The V = D*-set up is handled as follows. This process arises
for us later on as a functional of the process in (2) via a map R in (3.55) and (3.56).
In order to specify a martingale problem for this process which is again Markovian
we have to begin by introducing the test functions on V' which is in our context
an E-valued cadlag path constant after time 0 and before time —¢. This means we
get functions as (3.39) but with tgl) < tg) <. <tV <0,2=1,...,n. The test

m(1)
function x* on the rhs. of (3.32) each evaluate the positions of the path at a tuple
of time points and will be of the form of a product of functions on E which are
applied to the (—t)-shifted version of the function Xi from above at time ¢, which

means that we work with a function )?é evaluating D_ o o-functions at fixed times
and locations, independent of the current time ¢ as in (3.39).

(#ii) The D*-marked genealogical super random mark and the operator
From the process 4*2"¢ we obtain now another process. We observe that relevant
for us is the information on the path viewed from the present position which we
can identify with a path which moves only between time —t and 0. Therefore we
apply the (—t)-shift at time ¢ to the marks, which are the ancestral path. The new
path we call the adjusted path. This gives uniquely a new process for which we
obtain the well-posed martingale problem (see Section 7) by adding the operator

shift
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corresponding to the (—t)-shift of the ancestral path, which then allows us to apply
our theory. This additional operator we have to specify below. In addition we act
now with the operator Q72" acting on the marks on elements in D_; ¢ at time ¢
only and call this restriction of Q72"¢ now Qmanc—sh,

Observation: The interesting information on the path sits at time T of evolution
starting in an element {s} x D, ; in the piece (I' > t > s) i.e. a path in the time
interval [s, T7.

For our purpose revealing the generalized branching property the following fact
is important. Using the setup for the path space D* we can formulate a time-
homogeneous dynamics. This is different from the classical historical process as
defined in Chapter 12 of Dawson (1993). We modify (3.42) by putting s = 0 and
adding at time ¢ in (3.36) the generator of the path shift by —t.

Before we can define the generator of our process we have to calculate the effect of
the shift. Observe that the underlying path is that of a jump process with generator
as in (3.7) which means that the path are piecewise constant with finitely many
jumps in finite time intervals. At each jump time of the path coinciding with a
time of evaluation of the path by our function we may get a contribution to the
generator since the jumps then leads to a jump of the evaluation functional of the
path as we shift. Such a situation does occur with probabilities we can control.
Proceed as follows. o

3

Calculation. Consider now a polynomial ®#X where y is as in (3.39). Let —t;, <

—tﬁ:)_l << —tgi) < 0 be the times where such a path is evaluated for the n paths

labelled i = 1,--- ,n and which is tested whether it is in points &,k =1, ,m(q)
at the times tl(;). Furthermore consider the jump times of the n paths which we

denote by (ng))kzl,--- ,m(i) ordered from the left to the right in k, where the path

jumps from the point ¢} to (™.

A contribution arises if & € {CZ"", (i} since then in the concerned factor by a
small shift a jump from 1 to 0 or 0 to 1 occurs and is then causing a change in the
complete product of +1,0, or —1 respectively. Note that this effect occurs along
the whole path. The corresponding operator is the jump generator of the switch of
Xi,k to 0 resp. 1, if a jump from & away resp. into that point from outside at the
rates given below in (3.52).

We have next to obtain the probability for this possibility to occur due to a
small time shift At¢, which allows for one jump at order At probability at each of

the possible time point ¢ = 1,--- ,m(¢) of one path. However the intensity for a

jump from & away respectively into at time t,(:) for some ¢ € {1,--- ;m(i)} is given

by

> alg.€) respectively Y a(€, &) (3.52)

£eQ\EF £en

at both expressions summed over k € {1,---,m(¢)}. This can happen in one for
each of the n path (corresponding to the index 7).
We get therefore as additional generator term the expression:

n m(i)
QIO = 37 @OATX with ATy = > Apxia, (3.53)
i=1 k=1
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where Zk acts on the k-th component of the samples. Note that the operator on

the rhs. does in fact not depend on t.
—*k,anc

Now add QT-bran Qt.grow Qtanc—sh anq Qshift 4 get ()
(#i) Dynamics This allows us now to define a new process as follows.

Definition 3.12 (U” -valued super random walk). We call the solution of this

«k,anc __
well-posed (£ ,II¥)- martingale problem the adjusted ancestral path-marked
genealogy-valued super random walk a process denoted

< *,anc

o, (3.54)
with values in UP" as in (3.51).

What is the relation between states in UP" and UP? Why is the martingale
problem on UP" wellposed? The key point is now that we have a collection of
1 —1 maps R, t > 0 between our process of interest with value in U the one with
V = D and the one with marks V = D*. Namely for the path-valued process at
time ¢, starting at time s with ¢ > s,¢ > 0, we shift to the left all the paths by ¢ in
the time coordinate and we obtain a time-homogeneous process with marks in D*:
i.e. for a functional of our process at some specific time ¢t we have a map

R ([UxV,r@ry,v]) =[(Ux D*,r @rp«,v")] (3.55)
induced by

(u,v) = (u,v*); v*(r) = v(r—t), r € R and v the path forward associated with w.

(3.56)
This collection of mappings define on the paths (R8;)>0 of the stochastic process
a map R and it will be

the process R(LL), (3.57)

to which we apply our theorem on the generalized branching property. However
since this is a bijection we do mot loose any information we coded in the state
description initially, but have it in a technically more convenient form.

The UP" -valued process arises as a functional (namely (3.57)), which also solves
a well-posed martingale problem in its own right. Here the wellposedness follows
from the fact that R is one-to-one and the wellposedness of the basic martingale
problem on Dt mentioned above.

From the construction of the process (since the martingale problem is well-posed)

we have
+—*,anc

§ = R, (3.58)

Remark 3.13. With the choice of test functions as in (3.40) we would get the

generator actions: replace “Axgk” by Axﬁk where this new operator A acts as
follows on one test function as in (3.40):

. X x() 0
ALy =" XX ) [_ / 05 Fr(s)1e,, (u(s)) ds + Fpn(0)1e, ) (w(0))  (3.59)
m=1 """ -

+ / F(s)dzs A(x = L¢, ) () le=u(0) |-
0



Branching Processes — A General Concept 667

Step 3: The framework: Truncation, concatenation, subfamily decompo-
sition and generalized branching property on the spatial level. We have to
define now the concatenation and the truncation for V-marked ultrametric measure
spaces, denoted UV for complete separable metric V space (recall (3.21) and se-
quel). This means we have to extend the concepts in (3.3) - (3.15) from the previous
subsection now to the marked case. Here we have to distinguish the marked case
with marks being the current location from the one marked with ancestral path.
Case 1. Look first at V = E. Let vy denote the projection of v on U. We first
define UY (h) as the elements [U x V,r,v] of UV with (U,r) having vy-essential
diameter strictly less than h, similarly (UY (h))" with less than or equal to h. In
order to form a concatenation of (UY (h))Y-elements u; = [Uy x V,ry, ® ry,v1]
and up = [Uy x V, 1y, ® 7y, v2] define, recall U abbreviates U", and (3.5)-(3.7)) for
TUuU, "
U Uug = [(Ul (] UQ) XV, (TUlLJUz) KTy, v+ DQ] (360)

where ;1 (A) =1 (Aﬂ(Ul X V)), ;2(14) = V2(Am(U2 X V)) for A € B((Ul H‘JUQ) X V)

Next we need the truncation. The truncation affects only the distances and acts
as before, hence we get again by lifting the operation from U to U x V:

[u) (h), ut™ o/, Ty (u). (3.61)
Case 2. In the second case V = D(R, E) (respectively R x D(R, E) as we will pass
later to the time-homogeneous formulation) the marks contain themselves some
information from the past in particular they contain information about genealogies.
We therefore have to extend the h-truncation to the marks so that the marks contain
only the information about the ancestral path for some time h back analogue to
the genealogy which we include till depth h.

. . \ ’
H H N L h
H H A s h-top
; : [ - - - ¥
: : H H
LK I I ) »
Ny ' \ .
h N v
Ay ' A B
——————— by H
\ ’ ’ H
N ’ :
t—h \\,/ / ‘ ’ ®
\\ ,' \ ’ ’
N \ . ’
N N )
Y Y A t—h
\ ’
AN h-trunk

FIGURE 3.1. Example of path marked h-top and h-trunk, cut at
height t — h. The --- mark the constant parts of the path and —
the parts where different values might be assumed!
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Fix a time horizon T. We define a collection of mark spaces (V;);~¢ with V; C
Vs CVif T >t > s where for a process evolved till time T we consider the path
fluctuating only between time ¢ and T

V" = {v € D(R,E), v(u) = v(0),u < 0; v(u) = v(t),u < t;v(u) = v(T),u > T},
Vi i=Veo
(3.62)

In our time-homogeneous system with marks in R x V| the first mark component
is preserved and we have to act only on the second, then where at time 7" we have
ancestral path constant before time 0 and after time 7', we would truncate the mark
as follows:

Set foru e R, T'>t >0,

Y Ve — VT (T (0)(u) = v() Lt o) () + 0(t)Ljus (u)- (3.63)

Note that truncation means here truncations of the fluctuations not the path as
such and we look from the bottom up rather than from the top down keeping only
randomness in the path beyond time ¢t.

Next define the h—truncated V —marked objects. Begin with the {— truncation
map 7}V. The truncation map 7} of [U x V,r ® ry,v] is defined considering first
amap TV on the genealogical part [U,r, u]. Define TV acting on [U,r, u] as before
T;. The resulting space we have to equip with the truncated marks, i.e. each point
in U now is marked with T (v) instead of v € V. Finally we pass to the image
measure of v under this combined mapping on [U x V.7 @ ry, v].

We define UV (h) as a marked ultra-metric measure space where all distances are
strictly less than h and the mark kernel x satisfies

k(u, V\ViE ) =0,Vuecl. (3.64)

Next UV (h)" has distances < h and the mark kernel » satisfies again (3.64).

Step 4: The setup for the generator criterion and results on the spatial
level. The next task is to apply our criterion which is without problems if V = FE
but the situation is more subtle for V = D(R, E).

The result for E-marked super random walk. This will be a consequence
of our more general (and more complicated to formulate) result on ancestral path
marked UY-valued super random walk, see Corollary 3.19, later on for that.

Theorem 3.14 (Uf-valued super random walk). The process 4*¥ has the gener-
alized branching property.

Result for path-valued process. We now treat V = DT and V = D*, which
needs more efforts.

(1) The path-valued results: Introduction The situation is more subtle in
the path-valued situation on which we have to focus here next. We first explain the
idea.

Remark 3.15 (Basic idea of truncation with marks in D*). The needed truncation
can be understood best as follows using a measure R-tree representation of the state
in UP” even though in our proofs this viewpoint is not used.

Recall that for every ultrametric measure space of diameter 2t there is a unique
(diameter 2t) R—tree such that the points in the ultrametric space (better the
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support of the sampling measure) are the leafs of the R—tree. Consider this repre-
sentations for the states of our evolving genealogy. If in addition these R—trees, see
Example 2.2 for explanation and more references, for varying ¢ are all embedded in
an weighted R-tree of all individuals alive at some time before time ¢, a property
of the dynamics (which we have in our case and which we will discuss more in
Depperschmidt and Greven, 2019 and we sketch some of it in part (ii) of the next
subsection) allowing that we can define a E-valued ancestral path in this object.
Then the ancestral path can be used to mark the points in the R—tree such that
the F-marked geodesic between founding father and the current individuals of a
maximal subfamily (i.e. a current leaf descending from the founding father) is a
copy of the ancestral path. Then the point on the geodesic starting from a leaf
carries the current position of the ancestor at depth h in distance h of the tagged
leaf.

In this picture based as the associated weighted R-tree we want for h-truncation
to cut the tree at depth s = t — h and then use the cut marked geodesic as the
ancestral path we associate with the leaf in the truncated state. This leads to a
replacement of the ancestral path by one which we continue beyond the piece back
time h constant, so that we still have an R-indezxed path but no information from
the past before time ¢ — h is retained. Note that this means introducing the one
root at depth h via the truncated and now depth-h R—tree and at this root we have
a mark-kernel (even if we had before a mark function). Note that this new path if
evaluated at time positions gives different numbers then the one where we restrict
to path which are constant before time ¢ — h. Note that the latter procedure would
include information on the past before time t — h.

We may go further and shift the obtained path by ¢ to the left to obtain for
every t always a path from D_, ¢ which is in fact for the used initial state in D_; ¢
then for ¢ > 0 also in D_;( and after truncation in D_; o and is for all ¢ > h > 0
independent of ¢. This fact is the reason why we get for 2R(Ll) the generalized
branching property.

(2) A problem in the case of path-valued marks and its solution This
construction above however does not quite fit our setup in Theorem 2.11 yet since
we now do not have images under truncation in the right set since in (3.62)-(3.64)
we have still T around (but recall our R—indexed path have started evolving at time

0 up to the current time T"). This time dependence we have to remove. However we
+*,anc

have already introduced a system with reduced information namely , since we
are interested in the ancestral path looked backward from the present time. This
means if we code the present time in the state we are only interested in the element
in D* we get! We set therefore for ¢ > 0:

V,=Df =D_,, C D". (3.65)

Remark 3.16. We may use as marks now D* rather than Dt but we note that we do
not loose information this way if we know that we start in initial conditions at time
0 as specified, namely constant before time 0, since then by piecing that constant
piece together with the piece from D* shifted by ¢ beyond time 0 we reconstruct
uniquely the original state at time ¢.

We saw above that we may pass via the map R to the mark space V = D* if
we take the time-space process. This induces also a map on the truncated objects
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where we now get with ¢-truncations elements in V;* = Df. The same relations
hold then for the truncated marked ultrametric measure spaces induced by Dy, D*
as we required for S; and S.

Then we can now define the full truncation:

Ty (U x Vyry @ v, v)) = (S x Df, (ry A 2) @ 1=, (id @ TP ) (v),  (3.66)

which induces the map on the of the D*-marked ultrametric spaces as well, corre-
spondingly the Sy are defined by:

D{
((U(t))u) > 0. (3.67)
The h—concatenation of two D*—marked forests is now defined by:
in (3.60) we replace V' by D*. (3.68)

This means for the corresponding set of polynomials we obtain the new elements

ﬁ and ﬁﬁ (3.69)

and in order to get the corresponding elements we replace x by x* where we specify
the time points where we evaluate path now in points of the left half axis. These
objects again satisfy the conditions of Assumption 2.1.

Summarizing we have the setup of our Theorem 2.11 The semigroups (S, L"),
h > 0, of Assumption 2.1 are as follows:

S=1UP"", 8§, =UP, (3.70)
For the definition of the mark spaces see (3.50).

Truncation is defined via the pull-back mappings. Therefore let u = [U X D*,r ®
ry,v] € UY" and h > 0. Define the truncated space Thu as

Tyu=[U x D*,(r A2h) @1y, (id @ T}) V], (3.71)

where Ty : D* — D} via

. Ju(=t), s<—t,
Trv = {v(s), e (3.72)

Concatenation follows the same definition as (3.60).

(3) Results on (Adjusted path-)marked genealogical super random walk
Having completed these preparations we state a key fact about the martingale
problem. Recall from above truncation and hA—concatenation. The truncation T}
at depth h now cuts the genealogical distance at 2h and the mark, i.e. the path
is set constant up to a piece of length h and lies in D_j g. Therefore the map T,
now cuts of the h-top of the F-marked weighted R-tree associated with 4 and if we

«*,anc
work with the process (4,  );>o our approach fits and Theorem 2.11 will apply
and give the following.

Theorem 3.17 (Functional of 4;"*"° has generalised branching property). The
adjusted ancestral path marked UP” -valued super random walk satisfies:

+ *,anc
<(£1t >) has the generalized branching property. (3.73)
>0

If we make a strong assumption we can obtain the branching property of a
functional.
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Corollary 3.18 (Generalization). Suppose we have a separable, complete, metric
space E for which our process is solution of a well-posed martingale problem on UV
with V = E as in (3.25), then the above theorem holds as well.

Since it is known form the literature that the assumption above holds we get:

Corollary 3.19 (UFf-valued super random walk). The process (UE);>¢ has the
generalized branching property.

There is another case where we know that the strong assumption of the well-
posedness of the martingale problem through existing deep work (Dawson and
Perkins, 1991) and we obtain:

Corollary 3.20 (Historical process of super random walk). The historical pro-
cess associated with (3.29) has the property that (v)i>o0 of (3.20) satisfies that
(Re(vf))i>0, the historical process of adjusted path, has the generalized branching
property.

Why does this all follow from our Theorem 3.17 7 The answer comes in two
remarks.

Remark 3.21. (a) For the E-marked genealogy-valued process where we record only
the present location , i.e. V = FE the corresponding truncation map will not change
the mark. The concatenation operation is now as before (with the different V). A
measurable function of 4*#"¢ projecting the mark on the value of the path at time
t gives us a process which is a Markov process in its own right solving a well-posed
martingale problem with the operator in (3.37), thus having the branching property.
In other words, we may use Theorem 2.11 since those multiplicative functions we
need to check for the generator criterion were already considered by the ancestral
path marked genealogy-valued super random walk.

(b) The historical process is a functional of the V- marked genealogy, where now
V =D*(R,FE) i.e. we map

[U X Vyr,p] — (7v)pt (3.74)

where 7y is the projection from U x V' — V. This functional is again a Markov
process, namely a modification of the one known as the historical process introduced
in Dawson and Perkins (1991) but now using adjusted path i.e. the state space D*.
However there is a unique lifting to a V —marked case by shifting by ¢ the path
which are constant path before time 0, i.e. which "start" at 0 and end fluctuating at
the current time ¢. For the historical process we will have a truncation map which
is the map induced by the replacement of path with the path which is before depth
h kept constant and the concatenation LI” is the sum of the measures. Hence this
process inherits the generalized branching property for these choices of truncation
and concatenation.
Remark 3.22 (Infinite divisibility and Lévy -Khintchine formula). We can now use
*,anc
the result we obtained for the process ﬂ to show with results from Glode
et al. (2019) that the process has infinitely divisible marginal distributions if we
start in a fixed initial state. In particular do we then have a Lévy -Khintchine
presentation for the marginals and with it an inhomogeneous Poisson point process
representation of the state at time ¢t. For that we can generalize the definition and
the proofs of the Theorem 1.37,2.44, Corollary 1.40 in Glode et al. (2019) to the
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object [(St, LU")>0, (T%)¢>0] immediately, since we use only what we have postulated
as Assumption 2.1 and 2.6. This allows us to apply this representation in our path-
marked model and to study the subpopulations defined as individuals in maximal
distance say h for h € (0,t]. We can ask for the number of such families and
their structure, see here also Depperschmidt and Greven (2019) for details on these
objects, questions and results.

3.3. Outlook and perspectives: open questions for genealogies. We discuss here three
directions of extensions for genealogical processes with values in equivalence classes
of marked metric measure spaces which should be studied and resolved in the future:

e genealogies including the fossils,
e offspring laws with fat tails,
e genealogical processes in continuum geographical space.

The first point can be handled based on some work in progress the two others are
open problem here some approaches we investigated but nothing complete exists so
far.

(i) The genealogy including fossils and CRT

Another type of extension would be to consider the genealogy of all the individu-
als ever alive before the current time ¢. This is the population including the fossils.
Then with ¢ running through (0, 00) we obtain an evolving genealogy. This will be
a subset of the equivalence classes of treelike metric measure spaces. This gives us
an M-valued stochastic process. Here again we have the (generalized) branching
property, via the criterion. In fact we could consider ¢t — oo and take the complete
genealogical tree of all individuals ever alive if the population becomes extinct we
obtain a limit, see Depperschmidt and Greven (2019). This object has values in M
the space of equivalence classes of metric measure spaces. For the Feller branching
dynamic the equivalence class in M has a representation which is known as the
CRT, for the latter see Aldous (1990, 1991a,b, 1993), Le Gall (1993).

In that case we work with metric measure spaces of a specific form instead of
ultrametric ones, which requires some new elements. The topology on the state
space has been treated in this general form, but there is the issue of the dynamic.
First of all the corresponding processes have to be constructed with well-posed
martingale problems and then the concatenation and truncation structures have to
be introduced and then the criterion has to be checked.

The first point is treated in work in progress Greven et al. (2020) the state space
is contained in the rooted marked metric measure spaces, for the state at time ¢
with distance at most distance t from the root denoted M; and we comment here
on the second point.

The state of time ¢ is in M;. Now the h—truncation on M; removes all points
in distance less than ¢ — h from the root, and truncates distances at 2h. The S},
consist of subspaces with points which are in distance at least ¢ — h from the root
and have at most the distance h. Accordingly M;(h)" are now the metric measure
spaces with a root, points at most in distance t from the root but at least ¢t — h
from the root and other distances at most 2h, analog only further than ¢ — h from
the root and of the distances less than 2h for M;(h). The h— concatenation in
M, (h)" is defined as before. For the dynamic the branching property follows from
the criterion. This induces a generalized branching property on the t — oo limit
the M-valued version of the CRT.



Branching Processes — A General Concept 673

(ii) Branching with more general offspring distribution

A natural question is how we can treat the branching processes where we have
as basis branching processes for an offspring distribution without higher than first
moments.

In this case the total mass process does not have anymore all moments and we can
not work as before with a martingale problem where the test functions are mono-
mials, which was a key point in the proof of the previous results in Depperschmidt
and Greven (2019), so that we are lacking at the moment a characterization by a
well-posed martingale problem. Here we now have to work with local martingale
problems or work with Laplace functionals.

Another point is that now the resampling operator has to be replaced by an
operator where in a sample not only distances to one point in the sample change
but a whole random set of individuals arises now from one ancestor, the King-
man coalescence mechanism in the dual is replaced by a A—coalescent type dual
transition which would have to be identified, since in general this cannot be just a
A-coalescent. This means it requires very substantial work to rigorously construct
the U-valued process via a well-posed martingale problem, even though no principal
problems seem in the way.

(iii) Genealogical and historical processes in continuum space

In the literature (Dawson, 1977, 1993) one studies the continuum space analogue
and limit of the super random walk respectively its historical process version the
so called (historical) Dawson-Watanabe process. Here one would like to proceed
similarly and introduce the genealogy valued version of these processes. Here some
problems arise at the starting point, namely to establish the wellposedness of the
martingale problem. To show uniqueness the most powerful tool is duality respec-
tively Feynman-Kac duality as presented in Section of Ethier and Kurtz (1986),
which works with our approach only in the case of strongly recurrent migration,for
example in d = 1. Only in that case we can apply the technique of the Feynman-
Kac duality (a duality where an exponential functinal, as in equation (5.40) or
(7.17)-(7.20) appears in the dual expectation, see here Depperschmidt and Greven
(2019) for details) to obtain the needed uniqueness of the solutions of the martingale
problem. Furthermore due to the fact that the continuum space limits for the oc-
cupation measures are not given via SPDE’s since the states are singular measures
the existence problem is also more subtle since we cannot work with conditional
dualities so easily (see Depperschmidt and Greven, 2019 or Dawson and Greven,
2003 for this concept).

In d > 2 the necessary uniform integrability in passing to the continuum space
limit fails and the limit expression makes no sense since two path of the migration
do not have a joint occupation time. This is related to the fact that the population
is now supported by a set of Hausdorff dimension less than d (for d = 2, the picture
being a bit more subtle) and here one would have to work with an approzimate
duality. Hence we need here a different approach which remains to be developed.
However we can obtain from the historical Dawson-Watanabe process as a func-
tional an UY-valued process which then has the generalized branching property.
However it should be possible to get then directly via the UY-valued martingale
problem. This is a general problem with continuum spaces and is addressed in
forthcoming work in Greven et al. (2020).
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Outline of the proof section. In Section 4 we prove the criterion and then
prove in Section 6 that the example from Section 3.1 fits in our framework and
satisfies the criterion; this proof is based on some key facts derived beforehand in
Section 5.1- 5.3. In Section 7 we give the extensions of the proofs to the spatial
models.

4. Proof of basic criterion: Theorem 2.11

We prove separately the two parts of the Theorem 2.11.

ad (1): We saw in the introduction that the generalized branching property
implies that the relation (2.8) holds so we need only the other direction.

Let t > 0 and = x7 U® 29 € S. Let (X[, t)¢>0 be solutions to the martingale
problem for (A,D,(S(O’zi)), i =1,2and X* 1 X*. For f € D, ie. f(s,z) =
P(s)hs(x), s >0, z € S we will show that

(w(t)ht(Xfl Lt X7?) — (0)ho( Xyt L° X(?) — /0 jhﬁ(r)hr(Xfl L Xe2) dr)
t>0

(4.1)
defines a martingale and, thus, (X' U’ X2, ¢);>0 is a cadlag solution to the
(A, D, 6(z,1z,,0)) martingale problem. Due to the uniqueness assumption for the

martingale problem, this implies 7} X;*"*2 4 Ty (X7 U X7%). Then, we get the
branching property for any ¢ > 0, x1,22 € S:

s def U2 T x
Py(w1 U® w9, hy) = Elhy (XM 72)] = Elhy (X U° X7?))]
def
= (Pi(z1,) ** Pi(w2,-)) (he), he € Dy (4.2)
It remains therefore verify to (4.1). First set ¢» = 1. After the argument it will
become clear how to generalize. The proof follows that of Lemma 4.3.4 in Ethier
and Kurtz (1986): By independence of the two processes for to > t1 > 0:

to 5

E [(htz (XEH) = hey (XE) —/ AhT(Xﬁml)) dr) i, (Xf;)|]—"t1} =0 (4.3)
ty

ta

E Kth(ij) — hey (X)) — / flhr(Xﬁ“’))dr) htl(Xfll)|]-"t1] =0, (44)

t1

using the filtration (F;);>0, the joint filtration of X** and X*2. Combined we get
E [th (Xi?;l)htz (Xf;) - htl (thll)hh (ng) (45)

ta 5 5
- / htZ(Xff)AhT(XT(“))+htl(X,il)Ahr(X,Q”’Q))dr|]-'tl} =0. (4.6)

t1

Using a partition of [s,t], s =ty < t; < --- < t, =t we get

E [ he(X7 )he(XP?) — hy (X2 )hy(X22) (4.7)

S

t
= [ AR ) + (X A () drlfs] (49
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(he,(X72) = he(X22)) Ahy (XFY) (4.9)

n t;
+> / E
i=17ti-1

+ (he, (XP) = R (X2V)) ARy (X22)| F | dr = 0. (4.10)

Denote by Fi(r), Fy(r) the functions r — Elh,(X*2)Ah,(X71) | F,] respectively
with 21,z interchanged. We have here the expression h,(X;) — ht(X,), which is
evaluated for u = s and r = t and hence we need properties of the two compared
functions. Observe that for max |tx41 — tx| — 0 the continuity assumptions on
r + h, and r — X, imply that the last term vanishes leading to (4.1) via (2.8).
Namely we observe that for as maxy | tg+1 — tx |— 0 the functions F' F? are
approximated in L; by F*, F2 given by replacing h, by hy, in the interval [t;, t;11].
This follows from the continuous differentiability of r — h, we assumed and the
stochastic continuity of X, together with the conditional independence of X*! and
X*2 which allows to rewrite the first expression of the integral in the third term
now as: E[h(X}?) —h,.(X7?) | FoJE[Ah,(X7??) | Fs] and similar for the second term
making the claim immediate.
For general ) the argument proceeds starting in (4.3) replacing h. by ¥(-)h..

ad (2): This result is a corollary to (1) and it suffices to verify (2.8) having (2.9).
Drop in gy, the indices and calculate:

Ap(t)hy(zy Uzo) = o' () he (21 U 22) + () g(t, 21 Uzo)hy(21 U 29) (4.11)

= ' (t)he (21 U wa) + () (g(t, 21) 4 g(t, 22))he (1) he (22)
(4.12)

= ¢ (Hhe(@1)he(22) + (t) (Ahe (1) he(22) + he(21) ARy (22)) -
(4.13)

On the other hand having the branching property we set gy p, = (Ahy)/he - P(t) to
obtain a homomorphism using the multiplicity of h; the only point to check is that

the expression is well defined for a multiplicative function h;, which is the case for
h(-) > 0.

5. Formulation and proofs of key facts to be used in Section 6

In this section we formulate and prove the statements which give the key tools
used subsequently in our argument that the assumptions needed to apply the cri-
terion indeed do hold, see the next section. In the following proofs we will use the
notation z1 LI x5 to denote the generic 1 LI x5 which is required for the branching

property.

5.1. Formulation of the key tools. The key point is to verify the uniqueness prop-
erty of the martingale problem, to choose D and to calculate the g in our criterion
and show its L— additivity (Step 3). Everything is put together in Step 4. The
truncation necessary to define the branching properties raises some technical prob-
lems in applying stochastic analysis tools. Therefore before carrying out the proof
of Theorem 3.3 and working with the duality techniques in Section 5 to establish
that we have a well-posed martingale problem we need some preparations (Step 1
and 2).
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Step 1: Preparations. To prepare the proof of Theorem 3.3 we state some results

which are proven later in Section 5.2. We recall the notation D,, = {r € R(g) :0<
rik < 1rij + 1k, 1 <i<j <k <n} as the subset of mutual distances which can be
realized by n points in a metric space, n € N. By convention D, = {0}.

We will need in the sequel a function, ¢ : R x [JD,, — R, which generates a

sliding window of truncation which filters out the infgrmation in the cut out pieces,
like the truncation operator, but which has smoothness properties which allow for
the calculus of martingale problems. We use the notation g,(r) = o™ (t,7), t € R,
reD, neN. N N

Lemma 5.1. Assume that o € CY(R x D,,,[0,1]), n € N. The process (t,4;)¢>0
with (U)e>0 from Definition 3.2 is a solution to the (2, Dyun) martingale problem,
where
Q=0+, (5.1)
D = {(t,u) = »()@™ % (u) : ¢ € Cy(R,R), ¢ € Gy }. (5.2)
Note that Dy, depends on o, but we do not explicitly state that dependence.

The lemma will be proved in Section 5.2. The next lemma shows that another
domain of the operator can be chosen giving an equivalent martingale problem.
Lemma 5.2. The following are equivalent:

(1) (t,4;)s>0 solves the (Q, Dyy,)-MGP
(2) (t,4;)s>0 solves the (Q, D)-MGP, where

D= {(t,u) — (t) exp(—=D™? (1)) : o € CL(R), ¢ € CL(D,), n € N}.  (5.3)
Note that D depends on o, but we do not explicitly state that dependence.

This lemma is important since it allows to work with multiplicative functions as
required in Theorem 2.11.
Step 2: Sliding window of functions. Return to the functions g from above
and specialize to the present context.

We define the t—truncated polynomial:

P (u) = @™ (u), where ci(r) = [ 10y < 2t) (5.4)

1<i<j<n
for ®™¢ ¢ II. Truncated polynomials are additive on U(#)" (see Theorem 2.27 in
Glode et al., 2019) which makes D a set of multiplicative functions on U(t)". Unfor-
tunately, truncated polynomials (I>?’¢ do not have C'-functions ¢c; and that is why

we use an approzimation argument which makes use of the following assumptions
on o.

Assumption 5.3. The functions o™ : R x D,, — [0,1] are in C* and of the form
that for t € R,z € Dy:

0™ (t,r) = 0 if and only if there is 1 < i < j < n with r;; > 2t.  (5.5)
Moreover, we require that o™ (t,-) is non-increasing in any coordinate for any ¢ > 0.

Recall the notation ¢ = (t)1§i<j§n € D, for an array with the constant entry ¢

in all (Z) coordinates. We will not specify the dimension of the array in order not
to overload notation.
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Assumption 5.4. Foranyn € N, ¢ >0 Q(”)(Lg) = Q(”)(t—l—c,g—i—@)7 teR,r €Dy,
n € N.

Under these assumptions we get the approximation property below.

Lemma 5.5. Let t > 0. Suppose Assumptions 5.3 and 5./ hold for functions
o= 0" R x RG) - [0,1], n € N. Then for any truncated polynomial @?’¢ €
I(CY(D,)), we can find a sequence of polynomials ®™*N in the family of polyno-
mials {@™%¢ : ¢ € C}(D,),n € N} such that for all u € U:

PN (y) A DM (u), as N — oo. (5.6)
Proof of Lemma 5.5: Recall that (¢ - 0;)(r) = ¢(r) - 0(r — 2t) by Assumption 5.4.

Let gy € C1(R,R) with IN|[~o0,0) = 0 and gn|[n-1,00) = 1. Define

on(r) = L) IT onet—ry). (5.7)

= ofr) 1<i<j<n

Clearly, ¢ € CF(D,,) for any N € N. This is the case since o™ (¢, -) is decreasing
by Assumption 5.3. With a similar argument as that of Lemma .12 in Glode et al.
(2019) we can see that ®™?N 2 (1) — d™¢he (y) as N — o). O

This completes our technical preparations and we have to check later the basic
assumptions to work with our approach in this model.

Proposition 5.6 (Feynman-Kac duality and uniqueness, Depperschmidt and
Greven, 2019). Under Assumptions 5.5 and 5./ there is a dual process for the
process (t,44)i>0 with a Feynman-Kac duality relation. If the initial condition
Py € -] is deterministic, then uniqueness holds for the (Q, D) martingale problem

in the sense that for any other solution (LU}, t);>0 we have U, (t) 4 W (t), for every
t>0.

This means that any two solutions at time ¢ have the same t-top. One can see
that as a one-dimensional uniqueness result. It is not surprising that we do not
obtain a finer result: Assumption 5.3 cuts off information beyond that level. The
uniqueness result also holds more general if we require moment bounds on the initial
conditions.

Next, the formula for g and the important property of Li*-additivity is stated in
the next proposition. This is the key for the proof of Theorem 3.3.

Proposition 5.7 (Key formula for U-valued branching). For f = ye~® € D of
Lemma 5.2 with o satisfying Assumptions 5.5 and 5./:

Qf(tu) = ¢ (e 0 + (1) gy (8, we ™, (5.8)
where
g¢(t,u) — QTerow pn.der (u) + Z%@va(¢9t)x(¢9t)ogl,n,+l(u) (5.9)

is U-additive. Moreover, under Assumption 5.5 the function U(t)” — R, u
@m0 (1) is additive for any ¢ € C(R()), n € N.

The proofs of all the previous results and in particular the calculation of g4 are
contained in Subsection 5.2 and 5.3.
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5.2. Proof of tools: Lemma 5.1, 5.2 and Proposition 5.7.

Proof of Lemma 5.1: The proof checks the conditions of Lemma 4.3.4 in Ethier
and Kurtz (1986) giving the claim. Define the following functions in our case not
depending on w, but we use the notation of the reference).

J0,00) xUxQ —R
v { t,u,w) = () D0 (1) (5.10)
J[0,00) xUxQ —R
| {@’ ) o (B0 () 4 ()0 ), (41
[0,00) X [0,00) x UxQ —R
rf S s

_|_% Zl§k<l§n PrPetobi1 (11)) .

The following Assumptions (4.3.10) and (4.3.11) of the reference are by the con-
struction of the process (note we vary here either only in the explicit time coordinate
or in the state of the genealogy) satisfied for s < ¢:

E {u(t,ﬂt) —u(s, ;) — /Stv(r,i,lt) dr|]—'s] =0, (5.13)

E {u(s,ﬂt) —u(s, ;) — /Stw(s,r,ilr) dr|]-'s] =0. (5.14)

Additionally, 4l is right-continuous by construction and u +— v(t, u,w) is continuous
for fixed t,w, since ¢o; and ¢0;0; are continuous and so the terms involved in v are
classical polynomials. The left-continuity of ¢t — w(¢, s,u,w) is clear by continuity
of t — Vo, and t — ;.

Note that our functions are not bounded as required in Ethier and Kurtz (1986).
However, to obtain convergence in their equation (4.3.17), the necessary integrabil-
ity criteria follow by a dominated convergence argument with moment conditions
on sup,, s and the bounds on [[v[|, ||¢']|, |¢], |0: 0t ||V el|, etc. More concrete:
boundedness of v can be replaced by E[sup e, 1,1 [v(s,4s)]] < oo and similarly for
w. This is a consequence of properties of the total mass process, the Feller diffusion,
where all moments exist for all ¢ starting in a fixed point and the total mass process
is a semi-martingale.

We now calculate the generator action of the Markov process which was intro-
duced in Lemma 5.1, namely for f = ¢® € Dy,:

b
QT () d™ 0 (1) = o (t) (anq)""”‘ W+= Y emlerhiy) (5.15)
Yy chsi<n
+ en2(Ve)e: (u) + q,m%(vat)(u)) ,
Db (1) ™72 (u) = o' (1) D™ P2 (u) + (1) @™ (u). (5.16)
combining (5.10)-(5.16) gives the claim of the lemma. O

Proof of Lemma 5.2: We start with showing (2). Before we start we have to use
the definition of {2 on D to obtain now the action of the operator which is induced
on other functions, namely {2 acting on D. This will give us then the compensator
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for the process exp(—®™?(4;)), allowing us to show that the following process
(M} ’¢)t20 is a martingale (here ¢ x ¢ refers to the function ¢ evaluating two
independent samples) if we set for ¢ > 0:

M"? = exp(—®™?(8l;)) — exp(—®™% (Lho) (5.17)
t
_ / exp(_q)n,¢(ut)) [QT,growq)n,¢<uS) + %@2",¢X¢001,n+1 (us>:| ds.
0 s
(5.18)
Therefore, we obtain the operator Q=0+ % on D by calculating:
QT(t) exp(—@™ %) (1) = (1) exp(— ™ (u)) (QT’g“’W@”’% (u) (5.19)
b

+ %@27L7¢X¢091,n+1 (u))’ (520)
Qup(t) exp(—@™ %) (u) = ' (t) exp(— "2 ) (u) (5.21)

(1) exp(—™ P2 (u)) - PP (y)
(5.22)

Arguing as in the proof of Lemma 5.1 one gets then indeed,

NP i (0) exp(~ 892 (1)) - (0) exp(—@"*2(11,)

- /t QT (t) exp(—D™92) (8, + Opap(t) exp(—D™?2) (U, ) ds, t > 0
’ (5.23)

defines a martingale. This is (2).

We therefore have to verify (5.19) and (5.21). The second is simply calculus.
Next to the first. A standard calculation as in Corollary 2.13 of Greven et al. (2013)
shows this via the Ité6-formula. Namely we expand the exponential and calculate
the compensator of ®(4;) and the quadratic variation of (®(;))i>0, where the
latter requires to calculate the compensator of (®2(8l;));>0. Follow here Greven
et al. (2013) equation (8.1) and (8.3) to get this.

Now (1) follows by differentiation of NY'* w.r.t. A at A = 0. O
Proof of Proposition 5.7: To get the action of Q on D we need to add up terms

in (5.19) and (5.21). Using Assumption 5.4 as before this allows to eliminate the
terms with Vo, and 0;0; to obtain:

i (t) exp(—@™¢) (u) = (1) exp(— ™) (u) (m’gmw""’“’t (5.24)
+ %@2"’% $0eo0nin () ) + 9 (1) exp(— @™ ) (1)
(5.25)

Using the notation of the lemma we need to show that the expression below is
Lit-additive:
b
g(t, u) — QTagrOW(bn,¢Qt (U) + %@2%((1’91) X (¢0t)001,ni1 (U) =g (t, u) +go (t, u). (526)
We see that the expressions are truncated polynomials. It is elementary using
Assumption 5.3 and Proposition 3.8 in Glode et al. (2019) to establish that g; (¢, -) is
Lit-additive. Similar reasoning applies for go. Again by Proposition 3.8 in the same
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reference we see with Assumption 5.3 that u +— exp(—®™%2 (u)) is multiplicative
on U(t)" and note here that the operator of our process relates via (3.13) to the
operator of Fleming-Viot in the reference via uQ" — Id. ]

5.3. Proof of duality: Proposition 5.0. Here we will derive a duality related for
the operator (€, Dyiy,). This allows to deduce uniqueness for the (Q, D) martingale
problem.

It is easy to verify the following preparatory lemma.

Lemma 5.8. Under Assumption 5.5 and 5./ the function o™ € C*(Ry xD,, [0,1])
is of the form

o™ (t,r) =" (r—2t), t >0,r € Dy,n €N, (5.27)
for a function o € C'(D,,[0,1]) with @(")|Dn\(0’oo)(;> = 0 and positive on

(0, OO)(;l) Moreover (9; + 2V)o™ (t,r)=0.

Using the two assumptions we can thus derive simpler expression statement for
the action of €:

Qu(t) @™ (u) = 1h(t) (bn@"@@t (u) + g > emPeolh(y) (5.28)
1<k<i<n
+ AT () ) 4 ()"0 u)
(5.29)

This makes the function of the two assumptions clear .
We restrict ourselves to the case that a = 0, i.e. there is no drift; all calculations
can be done without that restriction, see Section 5.1, Step 2 in Depperschmidt and
ireven (2019) for details. All this is done for a fixed function (™) as in Lemma, 5.8,
i.e. Assumptions 5.3 and 5.4 are fulfilled and (5.28) can be used.
Define the following set of functions:

(Ux Rso) x (S x RG) x Rsg) — R
H?Y o 4 ((u,t), (p,1', 5)) =t +s) [p€#P(de,) ¢ (P (z,) + 1)
0(2(t+5) —rP(z,) — 1)
(5.30)

Define for p(n) = {{1},...,{n—1},{n,n+1,...}} the following sets of functions:

N
2

H={H*(,): ¢ CLRE)) with finite support, 1 € CL(Rs0)},  (5.31)
G" = {H*¥(0,(p(n),0)) : n €N, € CL(Rso),d € C}(RE)) with finite support}
(5.32)
and
Gb = {H*¥((t,u),)): ueU,t>0,¢ec CLRE)) with finite support,  (5.33)
¥ € Cy(Rx0)}
Then Dy, = G7.



Branching Processes — A General Concept 681

Next turn to the dual process. For a function G : K x R>¢y — R depending on
only finitely many coordinates define

LYEVG(s,p,r') = 0,G(s,p,r +WZJ - (s,p,1") and (5.34)
Ll, CO&IG S p7 — b Z S /’ip T 7T) 2/) — G(S’p’g/))’ (535)
T, Ep

N
forpesS, r'e R(2) and s > 0. Here Xp(m, ') is the partition where 7 and 7" are
replaced by their union.
The coalescent operator is now:

LHE = pherow 4 pheoal, (5.36)
One obtains readily for the Kingman coalescent a marked ultrametric measure space

which gives a solution to a martingale problem related to that operator.

Lemma 5.9. Let n € N and let (s,ks)s>0 be the time-space genealogy-valued
Kingman coalescent started in (0,p(n),0) defined on page 809 of Greven et al.
(2013). Then the process (s,ks)s>0 is a solution of the martingale problem for
(O0.p(n). 0> L7+ GY)-

Proof: Follow Lemma 4.3.4 in Ethier and Kurtz (1986). Let for any fixed (¢t,u) €
RZO x U:
.. 0,00) x S x RG) x 0 5> R

(s (o), w) = (t+ 5) [ u®#P(da,) 6 (07 (ay) + 1) 020t + ) — rP(z,) — 1),

(5.37)
[O,OO)XSXR(I;]) x Q=R
(s (p.2)),w) = W' (t+ 5) [ p®#P(day) ¢ (2P (z,) + 1)
v o(2(t +s) —rP(z,) —1') (5.38)
+ip(t + ) [ pE#P(dz,) ¢ (P (z,) +1')
Os0(2(t+ ) —rP(z,) — ')
[10,00) x [0,00) x § x R() x @ 5 R
{(8,19, (p,r)w) = (Lheo 437, a, ) H((t,u), (s,p,17)).

To check (4.3.10) and (4.3.11) in Ethier and Kurtz (1986) use calculations as in
Section 4 in Greven et al. (2013).

(5.39)

Additionally, (ks)s>0 = (Ps, Q; )s>0 is right-continuous by construction and (p,r’) —
v(s,p,r’,w) is continuous for fixed s,w: Continuity in p is obvious, since S is a
discrete space. Continuity in 7’ is true, (r',r) = oz + 1ot —5) —r —1') is
continuous and bounded. This allows to apply dominated convergence to get the
continuity in 7’.

The left-continuity of s — w(s, ¥, p,r’,w) is clear by continuity of s Vo, and
s — ps. Note that now our functions involved are not bounded as required in Ethier
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and Kurtz (1986). However, (#ps)s>0 is decreasing and so for any initial state the
convergence in (4.3.17) can be shown. O

Lemma 5.10 (Feynman-Kac Duality). Let k = (s,ks)s>0 be a solution of the
(5(071,(”))9),L¢*K,-,g¢) martingale problem. Let (t,4;)i>0 be a solution of the

(A, Dyiy) martingale problem started in Po@8y € M1(UxR). Then for all H*% € H
the following Feynman-Kac duality holds:

Ep, [H((t,44), (0.9,0))] = Eqop0) [H* (s (t,pr )l (E) %] (5.40)

Proof: We show the generator criterion for duality relations namely (4.4.41) in
Ethier and Kurtz (1986):
(LYE 4+ 9 HOV (1 u), (s,p,17)) = (VY + 8) HO((tu), (s,p,17), (5.41)

(L%bfa“ + (#;;;)) H*Y((t,u), (s,p, 1)) = QPP HOY (¢, u), (s,p,17)). (5.42)

The latter line holds as in the case without marks. To prove the first statement
is the same as without marks. Note that the exponential term is bounded and no
integrability problems arise. O

Proof of Proposition 5.6: Let (8;,t);>0 and (40, 1)¢>0 be two solutions of the (€2, D)

martingale problem. By Lemma 5.2 it is then also a solution to the (€, Dyy)
martingale problem. Fix ¢ € C}(D,,). Then, by duality in Lemma 5.10 we have for

p={{1},....,{m -1} ,{m,m+1,...}} and p = 1:
Ep, [H (£, 4), (0.,0))] = Eguo0) [H* (u, (L pr,r)))els (F) 4] (5.43)

=Ep, [H"'((t,£1), (0,p,0))] . (5.44)
Hence
Ep, [®™92 (8;)] = Ep, [@™ 92 (1})] . (5.45)
Above holds for any ¢ € C}(D,). By Lemma 5.5 and monotone convergence this
implies
Ep, |07 (th)] = Ep, [@]"*(30)] - (5.46)
But ®"?(4;) < [|¢]lootl* and the bound E[H}"] < ¢(t)(Po[7"] + 1) holds by the
classical estimates for the Feller diffusion for some function ¢ — ¢(¢) < oo. There-
fore we continue with the following statement following the standard argument
combining Proposition 2.6. in Greven et al. (2009), Proposition 4.4.6. (page 115)
in Ethier and Kurtz (1986) and the discussion after equation 4.4.21. therein:

Lemma 5.11. The algebra generated by 11 is separating on

K—oo

1/K
~ 1

M= {P € M;(U) : limsup 74 (/ﬁ"K P(du)) <ooVn e N} . (547
The algebra generated by II is convergence determining, whenever the limit point is

mn M.

We conclude with this Lemma that:
d

8] (8) = [L4() - (5.48)

This means that the t-tops of the both processes coincide in law at each time
t>0. O
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6. Verification of the criterion in our models: Theorem 3.3

The application of our criterion requires to check whether the list of assumptions
in Theorem 2.11 can be verified in a given situation. We first give a detailed proof
for the U-valued Feller diffusion and then later provide the needed modifications
for the spatial case the U¥ — valued super random walk in Section 7.

6.1. Verification of criterion for U-valued Feller: Theorem 5.5.

Step 1: Why the setup applies. Due to Lemma 5.5 we make use of truncated
polynomials in the martingale problem of Lemma 5.2, to get a multiplicative do-
main. Two things are missing for the application of Theorem 2.11: a uniqueness
result and the linearity of the generator. Both these facts are provided by Propo-
sition 5.6 and Proposition 5.7.

Step 2 Proof of Theorem 5.3: We want to use Theorem 2.11. Fix a function p
as in Lemma 5.1 which satisfies Assumptions 5.3 and 5.4. We have S; = U(¢)",
which is a semigroup by Proposition 2.13 in Glode et al. (2019). For s < ¢ we have
that Sy C S trivially and the embedding is topologically consistent. Therefore we
are in the setting of Section 2. Moreover, Proposition 5.7 says that D; = {u —
exp(—®™%% (1)) : ¢ € C’(R(g)), n € N} is a ¢t-multiplicative family on S;. The
uniqueness of the martingale problem (fl, D), where uniqueness is understood in
the sense specified in Theorem 2.11 and D is defined as in (5.3), was shown in
Proposition 5.6. It remains to establish the additivity of the generator in (2.9) with
respect to the multiplicative functions in D;. But this is Proposition 5.7. O

6.2. Proof of Theorem 3./. We work here with the truncated martingale problem.
First some preparations.

Assumption 6.1. There is a function p € C1(R x R, R) such that for all n € N:
o) = [[ otris)- (6.1)
1<i<j<n
The following lemma is easy to verify.

Lemma 6.2. Under Assumptions 5.3, 5./ and 6.1 there is a function o € C*(R,R)
with 0,00y = 0 and

o™ (t,r) = H o(rij —2t), forallt,r,n. (6.2)
1<i<j<n

Proof of Theorem 5./: We will use Assumptions 5.3, 5.4 and 6.1 for the truncation
functions o™ . Using Assumption 5.4 and consider ¢y = 1, ¢ = 1 by (5.28)

(B2 (u) = and™ 2 (u) + © 3 St (y). (6.3)
Yy ch<i<n

Under Assumption 6.1 then we can make the following elementary calculation for
1<k<ili<n:

oot = T 2(@ra@)iy—2) o

1<i<j<n

= H o(rij —2t) - H 0(Tknivi — 21) . (6.5)
il

1<i<j<n,i#l j#l
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This is a function which is independent of 7;; where either 7 = [ or j = [. Thus,
2 D i<k<i<n 09,1 (1) is a polynomial of degree n — 1. Using Proposition 5.6 we
know that

n

t
O™ (81,) — O™ (8ly) f/ b(2>q>”1»T<Qs>(us) + na®™es (Uy) ds (6.6)
0

is a martingale, where T'(gs) is the transformation outlined in (6.4). More precisely

3 @”a@toekﬂ(u):(Z)a / ) o ) [T a0ra — 2008(-21) .

1<k<i<n 2<i<m—1
In particular for n = 2 the following is a a martingale o7
D20 (1) — B (1) — /0 t bo(—2s)d1e" (81,) + 20225 (41,) ds. (6.8)
Note that &2t (u) = 6(—2t)ii.
Thus, we obtain the following ODE:
O[> (8,)] = bo(—2t)o(~21)E[LL] + 2aE[®>¢” (44) 69)

= b(8(—21))% iy + 2aE[Ze (31,)].

Let m(n,t) = ®»1(ri<2t Vi<i) (§(,) be the sum of the n-th power of the 2¢-families
at time ¢. Claiming that m(2,0) = 0 (which holds since 9(0) = 0 and ¢ is a
continuous function by Assumption 5.3) we obtain from (6.9) that

m(2,1) = e aii, /0 =95 (5(—25))? ds. (6.10)

Now take a sequence of ¢ such that the limit 9  1g, holds point-wise. The integral
on the right hand side of (6.10) converges to a=1(1 — e~%). The expectation of
the left hand side convergences by monotone convergence. Thus, we obtain for the
expected sum of the squares of the subfamily sizes

E[(I)Z,H(T12<2t) (ut)} — bﬁol (e2at — eat) . (611)
a

In fact the second moment of the branching process satisfies (6.9) with g(—2t) =1
as well. 0

7. Extensions to the marked case: Proofs of Theorem 3.14, 3.17 and
their Tools

We have already in Section 3.2 generalized the basic concepts of the present
work to the marked case, so that we now work with objects in the framework for
our criterion. Next in Section 7.1 we show how to formulate some further concepts
needed for the proofs, as truncated polynomials or smooth truncation and then
make up a list of things still to be proven, in order to be able to apply the criterion
to the extensions to the spatial case. This will conclude the proof of the main
results. This involves to have the tools we used in the non-marked case available
in a suitably modified form.

Later in Section 7.2 we have to show the tools can indeed be generalized to
spatial versions as well and provide the necessary extensions of the tools lemma by
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lemma, proposition by proposition. Then we can continue along the path of proof
taken for the non-spatial model. Then in Section 7.3 we prove as the key element,
namely the properties of the martingale problem, which is the spatial version of
Proposition 5.6 (FK-duality) and Proposition 3.9 (wellposedness).

7.1. Verification criterion for UF-valued super random walk: Theorem 3.1/ and
3.17. Now we are ready to check the generator criterion for the branching property
of the UP" -marked genealogy-valued super random walk. Note that the F—marked
case does not pose problems since then the marks are not truncated. The work
has to be done to include historical information on ancestral path so that we can
lift the argument we gave before to the spatial process with marks which are paths.
This lifting we address in the sequel. The key concepts we need are truncated and
smoothly truncated polynomials.
Truncation. To study the truncated states we have introduced in Section 3.2 we
need truncated polynomials. This means we first have to introduce the truncated
monomials in the spatial context, recall here (3.31), by proceeding analog to (5.4)
and adding now the indicator on distances as before and another truncation map
acting on the mark variables. We begin by looking at the time-inhomogeneous
situation, before we pass to the time-space process and then to the adjusted paths.
Consider now polynomials based on the function x of the mark which evaluates
the path at a tuple of time points 0 < ¢; < ---t; < co. For these polynomials we
have to define now truncated polynomials which do not contain information about
times before ¢, for some ¢t > 0. Recall we have (recall (3.62), (3.63)) a truncation
operation which has two components which separately act on the distances and
on the marks. Therefore we will in the definition of truncated polynomials use
polynomials build on ¢ and x on which we can then let the truncation act separately
on ¢ and namely of product form. This means the truncation has the form that
the t—truncated polynomials @f X given via (¢, x) is truncated by switching to a
polynomial given by (¢®), x(9):

(¢.) = (@ x1), with ¢ = ¢ 1, < 20y (7.1)
and the transformation of x is as follows.
In the mark function we "truncate" the monomial by replacing the x by taking
X applied to the truncated pathi.e. x®(v) = x(v®) (recall (3.63) and the comment
afterwards. This is again a polynomial, but now with a different y, which we call
x®), for a t—truncation.
Summarized this means that for marks we now consider:

Ot 0) =Xt 0D), v = (v3)iz1,..m, v given by (3.63) . (7.2)

Remark 7.1. This function x*) is not of the form y - ¢ as with ¢ and the truncation
there. The reason is that this would not fit with the truncation extended to UY
according to the reasoning we explained in Remark 3.15. Note also we have indi-
viduals with small distances associated with the tree top which corresponds to the
innovation part of the evolution, while for the path this is an increment. What we
need is to just remove the information on the complementary part.

We have to lift this truncation now to the case of D* marks and deal with the
time-shift operation. Here of course we do this by just shifting the truncated path
by —t to obtain the truncated adjusted path, so that we need no new notation.
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Smooth truncation. The truncation map on path x — x* involves in general a
change in value since the values evaluated before time ¢ are replaced by the ones
derived from wv(t) instead of v(ty) for t;, < t. This means if we vary ¢ we get a
change in t — x(!)(v) in fact typically a jump at ¢ if ¢ is a jump point of the path
v or a limit point of such jump points. Furthermore recall that these polynomials
based on evaluation functionals at time points are not continuous on D(R, E).

We note that the path process generator involves a derivative w.r.t. the explicit
time only so that we might think we need not smooth this part as in the case of
¢. However we use this by using the truncation level t being equal to current time,
so that we need the total differential so that we have for X smoothness in both
variables, explicit time and location. Note that for the case V' = FE there is no need
for truncation of the mark, this is different for V.= D(R, E).

Ezplanation Fix a function X, i.e. we fix the sequence of the (f)1,.. m where
paths are evaluated. Note that these are numbers in R with —oco < t; <to <--- <
tm < 400. Therefore if ¢ increases we keep evaluating path which satisfy that we
evaluate for ¢ > 0, points which observe for t; with t; < ¢ only values which after
t-truncation are all equal to v(t) for the truncated object. However before we might
have had other positions. Therefore all positions change to the position at ¢, hence
we get here a jump at the truncation time if the path at ¢ is different from the
position at the ¢, < ¢ and this change jumps with a varying t if there are jumps
at time t or close to it. This jump we have to dampen in a differentiable way in
time, if v is such that such a jump occurs, i.e. if the vy are not such that they are
constant for s < ¢.

In this spirit above we have to define the smooth truncation operator, i.e. we have
to extend now the map g : RxD,, — [0,1] to amap ¢ : Rx (D, x V™) — [0,1] x V}
of the form (s,7,v) — (5,7 o}, 0?(v?))) and then formulate the analogues of the
Assumptions 5.3, 5.4. How to choose ¢??

We note that o? must then provide a sliding window of the ancestral path with

a window defined w.r.t. the current time. As function of the distances we want to
preserve the properties in the non spatial case and add properties as a function of
the mark.
(1). Return to the martingale problem and the needed modification of Assump-
tion 5.3. Here we have removed every information on the ancestral path time h or
more back and this cutoff we now approach smoothly from the top. What smooth-
ness properties do we have to impose now?

We adapt the smoothness property to the special form we have for the test
functions of the mark. The function is in C! as function of the explicit time variable.
As a function of the marks we have to dampen the jump explained above. We
therefore have to interpolate here between the two values. We consider the convex
combination of x*) with s > t. We generate this convex combination by taking a
function g7 (s), s > ¢ which takes values in [0, 1] is in C}}, monotone decreasing with

[ 02(s)ds = 1. Therefore we now have that x(*) is a function of (v(*)),>; which we
t

denote by 0?(x) so that now

(@.x) = (607, 6f (X))- (7.3)

This is easily lifted to the time-space process replacing x by ¥, with X(s,:) =
P(s)x(-)-
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We have to pass now to functions of the adjusted paths. We achieve this by just
considering for current time 7', the (—7')-shifted function g7(-). This now gives us
the modification needed in Assumption 5.3.

(2). In order to get the marked version of Assumption 5.4 we proceed as follows.
If we want to (¢t 4 ¢)-truncate instead of ¢-truncation, hence the basic function g (-)
is shifted by —c, i.e.

0t(8) = 0t—5(0) = 0o(t — s). (7.4)

Test-functions for martingale problems. Consider the smoothly truncated test
function on U(¢)" of the forms:

he(u) = exp (—@™%2¢(X) with ¢,y > 0, (7.5)

F(t,u) = U(t) exp (—d™ el (7.6)

We have to calculate the generator now for a function for n € N, ¢, x > 0 and
¢ € C} (R(g),R) and X € bB(R x V,R) of the form as constructed in (3.41), which
are built from functions x* € bB(E,R) and functions ¥;, € C} (R, R), furthermore
U € C}(R,R) and p; satisfies for all ¢ > 0 respectively o.(-) the path-marked version
of the Assumption 5.3 and 5.4. This will be given in Section 7.2.

We can now define Dy;,, for the spatial case as the set of truncated polynomials
again, but now we have to include also the spatial test function in the specification
(compare (3.31)).

The first task is to verify that we can choose the set D as the set of all functions
of the form above, and as the set D; the set of t—multiplicative functions on S; the
functions in (7.6).

This has to be lifted to D* now. We see that we can lift the expression above
easily by replacing ¥ respectively o7 (X) by their associated function of the adjusted
path, i.e. (Y)* resp. (07(X))* shifted by —7T if T is the current time to obtain finally
the truncated function:

F*. (7.7)

Remaining tasks. As we pointed out in order to lift the argument in Section 4, 5
to the spatial case we have given the recipe how to lift test functions which are
truncated. What remains to be done? The function F* has to be shown to be t—
multiplicative and then we need to verify the properties w.r.t. to the wellposedness
of the martingale problem. We formulate these two points and the other needed
extensions next to prepare the conclusion of the proof as given earlier with the con-
cepts introduced in this Section 7.1, which amounts to carrying out the arguments
for the claims we used above to verify the criterion in the sequel.

(i) This is again the t—additivity of the truncated polynomials, which also holds
including now polynomials as function of the mark, which is truncated as well, but
it will turn out that the point is that we still never sample points from different
2t—balls which contribute since we work with ¢ - x.

(ii) We need that with D as test function we get a solution of the (Q2¢, D)-
martingale problem and that we have uniquely determined laws of the t—tops of
the solutions.

For (ii) the ideas are as follows. For the first point we need the spatial version of
Lemma 5.2 in combination with a version of Lemma 5.1. The uniqueness property
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follows again if we establish the marked version of Proposition 5.6. This means we
have to define the dual process first.

Here we replace the coalescent by the spatial coalescent which is a F—marked
partition valued process equipped with a distance matriz and a vector recording
the path of the "individuals”, which are the initial partition elements containing one
element. In the Feynman-Kac term we have the joint occupation time of partition
elements sitting in the same sites of F.

The final point is to show the {— multiplicativity of h;, here we need the spatial
version of Theorem (2.27) in Glode et al. (2019). Finally we have to calculate g
and show its t—additive, i.e. the spatial analog of Proposition 5.7.

All these extensions to the spatial case of statements given in Section 0.1 to the
non-spatial genealogy-valued Feller diffusion will be given in Section 7.2 and 7.5.
Once we have the generalized statements the argument given above is closed.

7.2. Verifying the key Lemmata, Propositions in their spatial version. We recall
Section 7.1 where we saw how to apply our criterion requires to verify the spatial
versions of the Lemmata and Propositions of Section 6.1. Start with some prepa-
rations needed involving some important observations concerning the form of the
action of the generator on smoothly truncated polynomials, which is basic. Then
it remains to show why the spatial versions of the key Lemmata and Propositions
hold, and then we have to explain why the flow of arguments given in the sub-
sections above can be modified appropriately. We also need to show the ancestral
path-marked process exists and is unique characterized by a well-posed martingale
problem both which we defer to the next subsection.
Generator action on truncated polynomials. The key point was to oper-
ate with the generator action on truncated polynomials and we had to develop
a smoothed version of this operation to be able to apply stochastic calculus. We
consider first the time-inhomogeneous version, i.e. marks V = DT, and then pass
to V. = D*.

(i) If we counsider a polynomial it observes the state on a geographically finite
window. Therefore the measure restricted to this set is a finite measure and two
of the operators, the operators 187w, Qg’bm" act as before on a polynomial and

also for exp(—®™%X) we have the same expressions we dealt with in the previous
sections and therefore we can work with the smoothed truncation as before after
carrying out the lifting of the functions to ones on UY. The only point is to control
the total mass in the window of observation depending of course on the potentially
infinite mass on all of E (on finite E or with finite initial mass nothing changes).
Therefore we focus below mainly on the new operator Q7™ or QT22¢ in particular
if they are acting on truncated polynomials and on the behaviour of the total masses
in the spatial finite window of observation.

This latter point however is a feature of the total mass process which in itself is
a Markov process, namely the super random walk for which these issues are by now
well understood and we refer here to the needed facts in the literature, see Liggett
and Spitzer (1981), Greven et al. (2005) for details of such arguments which we
don’t copy here. Hence it remains the first issue.

The generator is acting on truncated polynomials as follows. Here the reader
should recall the actions in the case without truncation, the point 2 below (3.38).
The new element in the generator calculations compared to Section 5.2 is now the
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fact that we want to work with truncated polynomials, truncated in addition in
the mark rather than the truncated polynomials we had before. Since we have
smoothed the truncation via the o; we can again use calculus and obtain now as
additional terms the ones which arise from the operator % on the level of the
explicit time coordinate with which the UV —valued process was augmented as well
as % which is part of the generator of the path process which was also augmented
with an explicit time coordinate. Now we get:

Q*,anc(pn’aﬁ@%vgf()?) (t,u) — (7'8)

b n 1 2/ o
Yo D = Hummuy (@) @0ee@0 1y
§EE 1<k<i<n

+ @2(V19)e; .0} (%) (t,u)
+ dmo(Fre) i (0 (¢, y) + Qane grideroi (R (¢ yy),

where V; is w.r.t. to the distance variables. It remains to write out the last term
explicitly.

Since we have now the g? smooth truncation this leads to a convex combination of
such product functions resulting after the action of Q#2¢ in a convex combination
of product functions. We also have to take into account the contribution to the
generator of the time change due to the weight function leading to the operator we
call B and which is again resulting in a polynomial. We have to write this out now
in formulas.

We note that ¢?(Y) is a function which is an integral over functions which
are a product of factors of evaluations at specific times of the path. Through
s—truncation some of these factors are now evaluated at different times. This con-
cerns factors to be evaluated at times ¢ A s which are replaced effectively by the
path at the truncation level if ¢, lies before the truncation time. Nevertheless this
is a new function of the same type. Now the same operator Aj, acts on this new
function Y. We saw in (3.44) how the operator acts on functions of the path.

Similarly the time evolution leads to a change in ¢?(x) by changing the applied
weight function which results in a change of the mixing measure of the truncations
of ¥ leading to an integral with weights (97)’, defining an operator B. Define (o7)’
as the operation where the weight function g7 is replaced by %@% We get then for
the last term in (7.8):

= Z(q)n@@i"‘li(gf()?)) + el B (recall (3.44)). (7.9)
k=1

(ii) From this expressions above we have to pass now to the one with marks in
D* and identify the action of the operator of the mark evolution. This action arises
from evolving the path on Dy and then shifting it back by ¢.

This means after evolving for time ¢ replacing 07(Y) by (07(X))* (recall here
(7.3),(7.4)) where we introduce for a function xy on D(R,E) a map * : x — x*
where the value of x* on D(R, E)* is the number obtained on D_; (R, E) as value
after shifting the path by —t.

To clarify this we need to explain especially the action of Q72"¢ on truncated
polynomials. Our goal is now to write out the formula for (dealing with the explicit
time variable in the path process):

anc
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(hanc—sh (ém,qbg%,gf()?*)) — (fanc ((I)m,¢g%,gf()?)) ) (710)

Now we have to adapt the expressions and act on elements of D*. Observe
however that the expression in the quoted equation gives the evolution of a function
from Dy, truncated at the present time. This action is now shifted back by ¢ onto
elements of D_ .

We can write the generator of the mark evolution as (7.10) plus shift in the form
(note in the time-space process Aj does not explicitly depend on ¢ and furthermore
the operators B and * commute):

= Z(@%ML(AZ(Q?(?)))* + q>m¢@i,(Baf>?)*)  qhife ((I)m,wi,g?()?)) (7.11)
k=1
(recall (3.44,3.53)),

where A} arises from transitions at the k—th sampled individual including actions
of migration, recall that g¢; depends on both distances and marks as written out
explicitly. Note at this point we see already that the term is a polynomial, however
for its properties we need the following explicit formula:

(Ax (e ()" = (A" = A7"(R), - Boi(Y) = (01)' (V) (7.12)

We need now that the rhs. of (7.12) "is a truncation", i.e. is zero if two sampled

points are from different t—balls. This is the case since the smoothly truncated case

contains in each term the factor which is zero for distances above the truncation
level and note that this is not affected by the —¢ shift.

Note that the form of the generator implies that acting on polynomials we have
a polynomial again with a new function ¢, x.

Remark 7.2. Recall the approach given in Remarks 3.8, 3.13. Then we would get
the following. The truncated marked monomial is defined via

(I)?,@X(u) — Pdcex it (u), ue [UD*, (7.13)

for t > 0 and D* as in (3.51). Here, ¢; as in (5.4) and i; : V" — R via
it(v1,...,0n) = H 1(v;(s) = v;(—t) Vs < —t). (7.14)
j=1

It is easy to see that monomials of the form (7.13) are additive on S; = UP: .

Spatial version of Lemma 5.1. Reviewing the proof in the non-spatial case,
we see that we have to explain how to modify the function w from (5.2). Here
the new element is the term arising via the generator of the mark evolution for
which we have to give the argument. However this term is again a drift term i.e. a
first order operator. Hence we get an additional term appearing in the expression,
which however gives in the expression for w just another truncated polynomial of
the order n as we saw above in (7.11) and (7.12).

Next we have to replace the moment calculations for the Feller diffusion by
those for the super random walk to account for the fact that polynomials are not
bounded. We have to obtain bounds on the expectations of polynomials of order n
to conclude they remain finite after finite time and to show that they still determine
laws in spatial models. These calculations are well known in the literature, see
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Dawson (1993). If we want moments of all orders for positive times which are law
determining we need stronger restrictions then just requiring a finite Liggett-Spitzer

norm , namely sup ((n!)_1 > (ﬁi)"'yi) < oo (recall here (3.30)), or we have to pass
n 1€EQ

to local martingale problems on the Liggett-Spitzer space. Then the argument
proceeds as before, we omit the standard details.

Therefore the argument goes through again in the spatial case.

Spatial wversion of Lemma 5.2. We deal now with test functions
W(t) exp(—®m0et (@7 (y € C}(R,R)) incorporating now the time derivate op-
erator as well, recall (5.15) and (5.16). The only change is that on the rhs. of (5.17)
now the generator of the mark motion appears as well besides Q187w QT:bran apq
% which give the contribution exhibited in (7.8) and (7.11), (7.12).

The calculation from (5.15) - (5.23) carries over once we understand the new
term namely the operator Q127¢ since the other terms are truncated polynomials
and are t— additive.

Now the new term, which as a first order operator lowers the order by one, but
since we have coefficients which are linear, i.e. first order monomials, we get a
polynomial of the same order back again, where coefficients are given via the a(-, ),
see here formula (7.11) combined with (7.12) where this term is analyzed in detail.
Then the argument works as before.

Spatial version of Lemma 5.5.

Lemma 7.3 (Polynomials: approximation by truncated polynomials). Let ¢ > 0.
Suppose Assumptions 5.5 and 5./ hold for functions o = o™ : RG) = [0,1], n € N.
Then for any truncated polynomial ®7¢ € II(CY(D,)), we can find a sequence of
polynomials (‘IJ”’djNgt’(gf'NX)*)NeN n the family of polynomials {<I>”’¢9“(93’NX)* :
¢ € CH(D,,,RT), x € Cp(V*,RT),n € N} such that for all u € U:

¢,n,¢N9m(9?’NX)*(u) S OMPX ()| as N — oo. (7.15)

For a proof we have to deal only with the marked part, i.e. the approximation

of the function y by its smooth truncations. This is standard and follows from the
right continuity of the path.
Spatial version of Proposition 5.7. Recall the formula for the homomorphism
gy of our criterion in the non-spatial case in (5.7),(5.8). The change we need to
provide is the new form of the g; of the criterion which is now a g4 ¢ and of which
we have to show that it is t—additive. We have here (recall that this object here
depends on (¢}, (07(X))*)), but we suppose this in the formula:

g(t,u) = QT @moen(ei(R)” 4 ghancgnder. (i) where OF = Qherow 4 ot bran,
(7.16)
We have to see here still that the second term on the rhs., which is the new term,
is t—additive. Additivity follows however, since Qhancgnier (e (X" is a mizture of
truncated polynomials. Namely in detail we show:
(i) we have again that truncated polynomials are additive and
(ii) we can wright out the second term explicitly to see it is a truncated polynomial.
This has been proved in Glode et al. (2019) in Theorem 2.27 for the case without
marks. The point is that a sample only contributes if all sampled points are in the
same open 2h—ball, which still holds with marks since the monomial is defined by

¢ X
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7.3. Basic properties of the martingale problem: Proof Proposition 5.9, spatial ver-
sion of Proposition 5.6 (FK-duality). Crucial for our criterion is the characteri-
zation of the process via an operator specifying a well-posed martingale problem.
One issue which we treat first is the uniqueness for the solution of the martingale
problem using duality, then we discuss the existence of a solution and prove Propo-
sition 3.9, which in particular requires proving the spatial version of Proposition 5.6
establishing the Feynman-Kac duality.

For the required uniqueness we have to start as first point by introducing the
dual process and proving a duality relation in the spatial and path marked context,
which requires to pass to a spatial coalescent on E and to augment it for the path
valued case by a vector describing the paths of the sampled individuals taken up
to the present backward time.

The second point we have to deal with the question of the existence of a solution
for the martingale problem which is well known (see Depperschmidt and Greven,
2019) except for the path marked case which we therefore discuss in more detail
below. Existence follows via approzimation by individual based models as we point
out below however it is not standard for marks from D(R, F) and that is why we
give more details for this point.

Step 1: Uniqueness and FK-duality We shall now argue that we have again
a duality relation and the analog of Proposition 5.6 holds in the marked case. A
first important observation is that since migration and branching occur indepen-
dently and the generator consists therefore of a sum of three operators growth and
branching we had before already and each allowing a duality and in addition the
evolution of the mark for which we will establish duality below. If we now take as
test functions polynomials which are based on test functions on D,, and V™ in prod-
uct form and we get nice expressions for the generator such that for each of these
operators we can establish duality. For that reason we get again a Feynman-Kac
duality relation for this spatial model. Here are the details.

We give now first explicitly the dual process, then the duality function for first the
FE— marked and then the path-valued case and finally verify that the duality holds.
All is based on the generator criterion for duality again. Recall the notation and
setup for duality in Section 5.3, where the duality is derived for the case without
marks. We distinguish two cases V = F and V = D or D*.

(i) Case V = E.

Begin with the dual process which is based on an E-marked partition valued
process enriched by a distance matriz. Here the partition elements are each marked
by an element of E.

We specify the initial state as follows. Start the dual process with m individuals.
The initial distance matrix between these individuals is v’ = 0. Furthermore by
fixing a set of m initial locations, which might be assigned in multiplicity, ¢ =
(€L,---  €m) € Q™ we determine a function x for the location-marked case, as in
(3.32)-(3.33). Furthermore choose ¢ € Cy(D,,, R).

Then the dynamic is as follows, partition elements migrate with the kernel a from
(3.29) and coalesce if they share a site. The elements of the distance matrix grow
at rate 2 as long as the two respective elements are in different partition elements.
This specifies the dual process

(€05 € = (pr,1,€,) for V =FE. (7.17)
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The duality function is given as

H N, ) = [ o+ N @n ), (119
(UxV)™

where r((u,v)) = (r(ui, uj)1<icj<n) and €(u,v) = v.

Finally we need the Feynman-Kac potential suitably modified in the spatial case.
Here we count the occupation time of partition elements at the same site. Denote
by #ps.¢ the number of partition elements at time s in £. Then the Feynman-Kac
potential on the time interval [s, t] is

ﬂst—/ STE) (7.19)

{EE

Then we have the following FK-duality relation:

Eu, [Hn,dnx (ﬂn (p, 2/’@)} = E, [H"@X (uo7 (pt,réét)) exp(ﬁo7t)} (7.20)

To determine the f.d.d. via the dual, we get an expression based on the time-
space dual giving the f.d.d. formula of the F-marked process based on the Markov
property following Fleischmann and Greven (1994), Greven et al. (2016) page 13
which we formulate next.

We consider now the time-space process of UF-valued super random walk and
consider the so called time-space coalescent on E to derive the following duality
formula determining the f.d.d. of the original process.

Consider time points 0 < t; <ty < --- <ty =t ,f € N. Then consider the
following functional of the forward process:

y4
((Ue)e>0) H k(U ) (7.21)

where &, € [[ ,k=1,---,¢
Next consider the spatial coalescent with frozen partition elements, (ﬁS)SG[O o0
Here we start with partition elements in the time-space points
((tkvii)jzlw'w&)kzl and the partition elements in ii,j = 1,--,4 wil

ey

be frozen for the dual evolution till times ¢ — tg, for k =1,--- L. (Precisely: the
unfrozen, called active partition elements, evolve as before as spatial coalescent.
Similarly the Feynman-Kac potential at time s of the backward evolution does
include only the active partition elements at that time, i.e. #ps ¢ is the number of
active partition elements.

Similarly the distances between frozen particles is zero and between a frozen and
active one is initially zero and grow at speed 1 till they are both active and the
growth is 2.)

Define now

4
o) = [ or ((rig)esttens<icictrtiee) (7.22)

)4
x (&™) = [T gr(te,v™),
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which characterizes the polynomial ® in (7.21). We see that ®(4;) = H (8, Ro)
with H based on Ky and ® as before for the classical objects.

Now following the argument for the Fleming-Viot case in Fleischmann and
Greven (1994), Greven et al. (2016) we obtain the formula relating the time-space
forward and the time-space dual process namely we get with expectation on the
Lh.s. with respect to 4l on the rhs. will respect to &:

Duality formula for f.d.d.

E [‘5 ((ﬂt)te[oﬂ)] = E[H ((Us)s<T, Ro)] = E [H(Uo, &) exp(Bo,r)] . (7.23)

Since we have here a FK-duality we have to argue here that the Feynman-Kac term
behaves as claimed. However the argument works with the Markov property and
applying the duality relation to the time pieces between the (¢x)k=1...¢ so that
this can be imitated with the FK-duality the result follows from the fact that the
Feynman-Kac term is an additive functional.

(ii) Case V = D(|0,00), E) and V = D*.
For the path-valued case we have the path marked spatial respectively time-space
coalescent which is the following modification of the above. Ounly the mark and
their evolution is different compared to the dual process in case (i) above. We
let t be the time horizon for the duality relation. This means the original process
started at time s < t will evolve till time ¢. The dual process will evolve from time
t backwards till time s, its time of evolution runs therefore for time ¢ — s.

We focus on the time-space coalescent including the "simple" one. We enrich
the coalescent analog to the V = E case. In addition to the distance matriz r’ we

record now the vector of the paths of locations § = ((51 (W)uer, - - - ,(fm(u))ueR)

¢
of all initial individuals recall here the description around (7.21), with m = >_ ¢,
1

which also enters the duality relation the same way as in the forward evolution.
The coalescent is denoted € and the time-space coalescent is denoted (Rs)s>0-

Note that here we keep the path of descent of every of the initial individuals,
even though they may be piecewise joint path beyond some backward time. Note
that the dual path evolves backwards from ¢ to s, rather than forward from s to ¢.
On the other hand the input in the duality function is, as we shall see, the same
over the full interval [s, t].

Next we come to the duality function. To write down the duality function we
need the sampling measure restricted to the population at a site, called p; and
given by

(i (A) = v(A x {i}), A € BU). (7.24)

Now we can define for ¢ > s > 0 the time-space duality function for that path
marked case for the situation where we are starting in s in constant path and
distance matrix r.

For the duality function we chose again a number of individuals m in the dual
process, the vector & of their initial path determined by an m-tuple of locations
¢, a function ¥ € Cy(R%,R) with W(t,s) = U(t — s) with ¥ € Co(R,R),¥ €
B(R x D(R, E™),R) and then a function ¢ € Cp(Dy,, R).
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Then set for u € U and s,t € R with s < ¢t and Et = (p,g’,f’,t):

HOVER ((u’ s), (p.r'. €, t)) - (7.25)

Y(s,t) / d ((é H*Ei(s)> (dl“)) ¢[(Tp($iaxj))1<i<j§n+(r/(ivj))1§i<j§"}

(UxV)™
X (5, (€(u)s<ust) -

This amount to having a y-function with two factors one as in (7.18) generating
the locations where we sample with the sampling measures the individuals from the
population and a second factor to explore the corresponding path at different time
points.

Then the Feynman-Kac duality relation reads (with s = 0):

Lemma 7.4 (FK-duality:path process). We start the process il in a state with
constant path. Then:

E[H?"EX((W,1), (po. 70, €, 0))] = BIH*VEX((8o, 0), (pr, 741, €, 1)) exp(o,¢))7.26)

However in order to obtain above duality later via the generator relation some
additional concepts are needed, due to the time inhomogeneity. These operators
corresponding to the processes above involve the explicit time coordinate and there-
fore we will need a generator relation for all times s between 0 and the time horizon
t and hence we have as state of the forward process path which already evolved for
some time u and are not in the constant state, which we assumed writing down
H(-,-) in a specific way. In fact we have to be more careful writing down the duality
function, so that we can use it for the intermediate times s between 0 and the time
horizon t. In fact we just saw that we have to generalize this a bit now.

Consider the following objects. For two path ¢T and &+ one from D, ,, one from
D, + we introduce, for those ones with &T(u) = &¥(u) the glued path €% = &1 1 ¢+
from D, arising by setting

"y T for r<u
¢i(r) = { é for r>u. (7.27)

This is used to generalize the duality as follows. Now the duality function be-
tween time s and ¢ given by replacing the path £ in the formula (7.25) by £*° from
above.

We need above relation also for the t—truncated process, including the smoothed
versions. For this purpose the duality function has to be changed by replacing in
(7.25) the function ¢ and Y as follows.

For the truncated case we replace ¢ by the truncated ¢ which is ¢l gn re-
spectively its smooth version. The function X is replaced by the function of the
truncated path respectively the smoothly truncated one. We have to see to it be-
low that the duality still holds on these truncated test functions by approximation
(spatial version of Lemma 5.5 see (7.15)).

Proof of Lemma 7./: We have established the needed generator relation for the
FK-duality for the non-spatial and time-homogeneous case. We note that passing
to the time-space process is fine since % and —% are operators in duality with our
condition on .
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Consider next the F-marked case. Then the argument for growth and branching
operator is easily lifted from U to U x V. Therefore it remains to verify the duality
criterion now only for the migration operator. Hence we have to show that the
generator of the mark evolution is in duality with the one for the dual process, the
spatial coalescent enriched with the distance matrix and the mark vector which is
a vector of locations. But this is in the literature. For details for the mark part of
the operator note that this is the same as in the case of the Fleming-Viot process,
see therefore Remark 1.19 in Greven et al. (2016).

Similarly in order to now establish the Feynman-Kac duality for the path marked
case we have to show that the mass flow on path is dual to the migration in the
path in the a(-,-)-spatial coalescent. Namely in order to check the duality in that
case one uses the generator criterion and as test functions polynomials of the form
as given in (7.25) with the mentioned restriction.

Here one might wonder whether this is not just the duality of the time-space
processes from above. That is unfortunately a bit more tricky as we explain next.

Remark 7.5 (Time-space process for E-marked versus D-marked process). If we
observe the state at time t of the path valued process il and evaluate the specified
polynomial on the one hand and compare it with the functional of the path of the
E-marked process with the specified test-functions are similar if in the latter we
consider the time-space process but there is the following difference.

We must observe that in the E-marked time-space process we sample from the
population at times t1,...,t,,,t and observe the position at this time say t; only,
while for the path marked case such positions appear also for individuals sampled
at later time ¢;. In particular in the path marked case we sample from the popu-
lation at time t¢;, so that we prune individuals at those time ¢; which do not have
descendants at time ¢;. Note however that the pruning is independent of path and
genealogy up to time t;. This means that the ones sampled at a time ¢; but whose
path is evaluated at positions t; < ¢; must in the time-space coalescent in the
backward picture be activated at time ¢; and not t; that is in the backward time
at t —t; and not t — t;. Similarly the Feynman-Kac term changes.

O

Next we have to argue how to get the duality relation respectively the analogue

of (7.23) for the path-marked process, first in the time-inhomogeneous setting in (i)
then for D* in (ii).
(i). Denote coalescent and functional by R respectively Bo’t. We have to address
two points (1) How is duality transfered from the mass flow of locations to the mass
flow of the path process and (2) how this then is transfered to the measure-valued
historical process i.e. the process of measures on these path and even further from
here to UY-valued processes. How to prove the claim?

To get the duality we have to prove essentially first ((1) and the first part of (2))
that the mass flow induced by the historical process and a system of independent
random walk path processes are dual w.r.t. H(-,-) from (7.25) using the generator
criterion. Some care is needed here due to the time inhomogeneity as we will see
below.

To verify the generator criterion for duality, we note that the generator action
of QI'#1¢ (recall this is exclusive the action in the explicit time coordinate) is on
the polynomial via the function x. Here we have to recall the operators defined in



Branching Processes — A General Concept 697

(3.42) and (3.44). Namely for a polynomial of degree n, ™%X we have:
n
Qpanegnox = 3 o, (7.28)
k=1

where (recall here (3.44))
R = Ar X (7.29)

Note here that the rhs. involves s. This expression we have to compare with the
action of the dual process generator on a polynomial.

We now need the action of the mark evolution of the dual process on the duality
function for fixed first argument and how this acts on the test function. To see this
we have to calculate the action of the generator of the random walk path process
of one moving individual on H™%X(u;-). This latter process is a pure jump process
and the generator action we look for is the sum of the n one—individual generators
which is given in equation (3.42). We have to argue now what this formula implies
if we apply it to the function given via the duality function above. For that purpose
we have to view this function as a functional of the function X of the path on which
we can act directly with the generator. We claim this object we can write again as
a polynomial with a new Y-function.

To see this we need to analyze what type of function H(u,-) actually is. This
function is an integral over parameters, namely u € U which is derived from u, of
polynomials of the form (recall (3.24)):

/)A(du,;@”. (7.30)
Vn

In particular does it suffice to have the self-duality in terms of the operation
acting on ¥, on the function of one path. Here the dual random walk path goes in
the revers direction as the underlying motion hence we have the same a(-,-) as in
the mass flow term in the operator and we have here therefore the same coefficients
for the action on Y.

Hence the dual migration operator acts only on the function ¥ and through it on
the polynomial ®™%X and the operator Q%**¢ does this acting on the polynomial

Via
n

Qi,anc(l)n,qb,i — Z @n@a?;’i’ (731)
k=1
where
b= Ar R (7.32)

We see that X} = )?fﬁ which proves the duality of the mass flow.

This proves the Feynman-Kac duality relation for the path valued process. In
particular we get also a formula for the finite dimensional distributions i.e. using
instead of the mechanism and the functional Sy +(-) the one of the dual process R
and EO,t as specified above then the analog of (7.23) holds replacing &, 8 by 5~§, E in
the formulas .q.e.d.

Therefore the uniqueness result for the martingale problem carries over to the
D*-marked case.
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(ii). In the final step we have to lif¢ this FK-duality now to the marks given by the
adjusted path, shifted by ¢ to the left for the time ¢ duality i.e. we have to pass to
D*-marks.

Here we apply the shift by ¢ to the path of the dual process (which runs backward
and is shifted by ¢ further) i.e. in the duality relation we have to take for a dual
path ¢ running backwards from time ¢ the adjusted path (with a fixed choice of t):

() = CC+1) = (O)"H() (7.33)

in the duality relation. We need that this does not change the two sides of the
duality relation for the chosen function. This is true since we shift by ¢ the path
on both sides.

Altogether we have now verified the assumption needed to get the uniqueness of
the martingale problem, which is needed in the verification of our criterion for the
branching property.

Step 2: Existence Next we need existence of a solution. In order to prove
the existence of a solution to the martingale problems we proceed in principle in
two parts. One considers in the first part a solution to the martingale problem on
a finite geographic space with the "induced" dynamic from the larger space and
obtains then in the second part a solution for the possibly infinite space by approx-
imation via a sequence of processes constructed for embedded finite geographic
spaces namely for E, 1 E, with | E,, |< oo. Here we use a suitably chosen modi-
fied migration part of the dynamic. This approximation argument is standard for
measure-valued processes and carries over to the UV-valued setup making use of the
duality for the limit evolution for the latter, see Depperschmidt and Greven (2019),
where all details are spelled out. Hence it remains to show here the existence of a
solution on finite geographic space.

Here, on the finite geographic space (and finite total population size), one uses
the approximation with an individual based model. One takes per site a finite
number of individuals and then lets this number tend to infinity, see Greven et al.
(2009), Greven et al. (2016) where this is carried out for the Fleming-Viot model
and Glode (2012) where the branching model is treated in the non-spatial case, the
spatial case in Depperschmidt and Greven (2019). We refrain from giving details
in this paper except for the path-marked situation where a new point arises.

Namely we want to be able to approximate our process by a sequence of individ-
ual based branching models. In order to then show that limits of the approximating
models solve the martingale problem it is most convenient if we have continuous
test functions. This is here a problem with path-marked genealogies, the spatial
component in the polynomials is in that model not continuous for these polynomi-
als we use as test functions in the martingale problem, namely in the path-valued
case our polynomials are based on evaluations in fized time points and hence are
not continuous in the mark variable in the Skorohod space of path.

We can obtain continuous test functions by considering moving averages of the
functions y which we are using, more precisely choosing the time points there at
random on R, recall 3.8. (This we also use for the topology to define convergence.)
Because of the linearity of the operator A we can then obtain Q721 for these test
functions as well, but now the test functions are continuous. Furthermore solutions
to the martingale problem are also solutions to the one with these test functions,
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but not immediately the other way around. We must therefore directly work with
the given martingale problem.

We can use two known properties here. Namely for the convergence of the
projection of the sampling measure on the marks, which yields the historical process,
we can use the existence and uniqueness results of Section 7 in Dawson and Perkins
(1991). On the other hand projecting on U by projecting U x V on U gives for
finite space the U-valued Feller diffusion, where we can use Depperschmidt and
Greven (2019), Glode (2012). These two facts are given in detail below and can be
used below to establish the convergence of the genealogies of the subpopulations
descending from ancestors in some finite subset of geographic space and then it is
well known to lift this to the full population as explained above.

The tightness of the approximating individual based processes follows, since
tightness of genealogies and marks separately implies the tightness of the joint
law, Theorem 3 in Depperschmidt et al. (2011). However we gave the reference for
these two points above. Hence we need to prove only uniqueness of the limit points
to prove convergence. We know our martingale problem has a unique solution by
duality. Hence we get convergence if we show that the limit points of our tight
sequence must solve the martingale problem.

The convergence to solutions of the martingale problems which are well-posed are
known both for the projection on (v} );>¢ and for the projection on the genealogy.
Hence it only remains to deal with the coupling of the two components i.e. the joint
distribution of genealogy and marks to conclude convergence as we saw above.

The process has test functions which are polynomials induced by a product of a
function ¢ of the distances and X a function of the marks. We have by results on
the non-spatial case respectively the historical process (Glode, 2012, Dawson and
Perkins, 1991) the convergence of the compensators to the limit compensator if we
put either ¢ or X equal to a constant. We also know that the operators associated
with the genealogy and the mark evolution sum to the complete operator. The
branching operator acts on the function ¢ as well as the growth operator, the mark
evolution operator on x but the branching operator in the limit dynamic acts also
on x through the action of duplicating a path i.e. its action on the measure. The
latter is of course what connects the evolution of marks and of genealogies here in
this model which is for the path marked case not just affecting mass at the site.
Still this gives rise to technical problems.

We will circumvent this problem and first prove convergence to some limit with-
out using uniqueness of the martingale problem. We will see from the proof that
this limit point process is a Markov process. We also use that we have tightness
in the space D([0,00],U") so that it suffices to show f.d.d.-convergence, to have
convergence in the path-space for the process. Then we will have to show that this
process solves the given martingale problem using the way it is constructed. Since
we have the distribution of the genealogy part and the mark part converging we
obtain the joint distribution by giving a construction of the conditional distribution
of the marks given the genealogy. This we can do by using the so called trunks of
the state (recall Figurel) which we introduce below.

For a given 4 we denote by 4l the projection from the marked genealogy on the
genealogy, i.e. we consider the map 7 : UY — U given by [U x V,r ® ry,v] —
[U,r, p] with p(-) = v({-} x V) and set

= 7(8). (7.34)
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Then v = u ® m with m a kernel from U to V describing the mark configuration
given the genealogy, the latter means, we condition on the value of this functional
T to condition on the process of genealogies. Hence the object we have to focus on
is the U x Mg, (D(R, E))-transition kernel m.

Fix for the state at time ¢ an h € [0,t). We consider here the marked (t — h)-
trunks [u](t — h) of the states u at time ¢ to show that the marginal distribution at
times t converge, by showing that the law of the marked (¢ — h)-trunks conditioned
on the genealogy which is a law on the mark distribution converges for all h € [0, ?).
We recall next (resp. define here) (¢ — h)-trunks and marked (t — h)-trunks.

The (t — h)-trunk of an element u of U is an element of U(t — k)" (recall (3.3))
which complements the |[u](¢ — h)-top of the u, see (3.8) and as h 1 u the trunks
converge to u. Here is the definition.

For u € U(t)" consider the (¢t — h)-top denoted |u](t —h) and write |u](t—h) =
_I_Ilt‘h u;, the decomposition into open (t — h)-balls u; = [U;, i, ;] for @ € I. Then

1€
the (t — h)-trunk of u is defined:

[u](t —h) =[I,r*, p*], with r*(i,i") = inf (r(u,v) — 2(t — h) | u € U;,v € Uy)
(7.35)
and weights

w*({i}) = s (Us). (7.36)

Next the marked (t—h)-trunk. We decompose the (t—h)-top of the marked state
u in the elements of UP (¢t — h). Now we proceed as above but the measures v; are
now projected onto the set of path which are only non-constant in [0, k], i.e. v"(s) =
v($)110,1](s) +v(h)1[,00)(s). This gives us an element in UP. Furthermore we have
again that the marked (¢ — h)-trunk of u namely [u](¢ — h) satisfies [u](t —h) — u
as h Tt.

We begin by constructing the announced candidate for the limit dynamic.
Construction. We know the process for the genealogy exists (i.e. the state pro-
jected on U from UY), so we have to construct the conditional law of i given the
genealogy. We identify first the conditional law of the marks at time ¢ of the marked
(t — h)-trunk given the (t — h)-trunk. Note here that conditioning on the (¢ — h)-
trunk is here equal to conditioning on the genealogy up to time ¢ and then passing
to the (¢t — h)-trunks, because of the Markov property and the independent incre-
ments of the path process. For i < t the h-trunk can be represented by an R-tree
with finitely many leaves, so that the (U, r}') is a finite ultrametric space, where
the leaves carry also RT-valued weights namely the mass of the time ¢ descendants
(see Glode et al., 2019) so that we get an element of U,denoted [U}*,r?, u?]. The
corresponding R-tree is represented as a tree with finitely many vertices, binary
split points and edges and leaves carrying a weight. The R-tree has a finite num-
ber of founding fathers, Fy, F,---, Fx. The set of leaves with the distances and
weights determine an equivalence class of ultrametric measure spaces, [4(](t — h).
We represent conditional distribution of the marks of the trunk, by constructing a
version explicitly for every realization of Diﬂ (t — h) more generally for every finite
element in U(t — h)”. For the ¢ — h-trunk of a U-valued Feller diffusion and via
the backbone construction carried out in our framework, see Depperschmidt and
Greven (2019) for more details on the diffusion case, while in the particle case one
can use results of Chauvin, Rouault and Wakolbinger (Chauvin et al., 1991).
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We now generate the marked object as follows. We have a collection of indepen-
dent a-random walks starting in e € E:

(e}
{(Y; )t>0,eeE,keN}. (7.37)

We consider the length of the edges from the founding fathers to the first split point,
say T (F1), -+ , Tk (Fk). Then we take the random walks

(Y;fehl) ) (}/262,2) sy (738)
tE[O,Tl (Fl)] tE[O,Tz(FQ)]

where e, eo are the positions of the founding fathers in £. How to choose these
points. They are the value of the mark attained for ¢t < 0.

Then we continue with the split points replacing the founding fathers, where
their position is given as the end-point of the corresponding random walks above.
We continue until we reach the level h. Then we can associate with each path in
the R-tree from a founding father to a leave, parametrized via the length, a path
with values in E' generated by the random walk pieces. Continuing beyond h and
before level 0 as constant path, we have marked [4(];(h) with a path in D(R, E)
and we can assign the weight which we get from the weight of the leaf. This way
we have constructed for a fixed trunk of a given u € U a random marked trunk, i.e.
a random element in U(¢t — h)”. This way we have constructed my(u,-) a kernel
from U — Mg, (D(R, E)) based on the (¢ — h)-trunk of u, u an element of U. We
have now constructed a realization of the marked (¢ — h)-trunk of the element of
UP we look for.

From the (¢t — h)-trunks we obtain in the limit h 1 ¢, the U-valued state at time ¢
and we want to define the marks, i.e. we need m(u,-) as the limit h 1 ¢ of my,(u;-),
which exists because of the concrete construction.

Suppose next we have a random variable with values in UP. Observe that above
construction defines a random measure on path and its law defines a transition
kernel

Mj,(u, dv) from U(h)" into P (Mgn(D)). (7.39)

Hence we specified the law of the marked (¢ — h)-trunk of the stochastic process
we look for and this works for every h < ¢ and the arising laws are by construction
consistent, i.e. for i’ < h we have the law of the A’-truncation of the law for h. As
the limit h 1 ¢ is taken we obtain M (u, dv) from U into P(Mgy, (D)) the searched
for conditional law of the t-marginal.

Precisely we have now the information on the marks which we have to insert
in our formalism, namely suppose that we have an U-valued process (£;);>0, then
we focus on the measure v in {; = [U, 7 @ 1y, V], we write as p @ m, where m
is a kernel from U to (V,B(V)) which is read of from the state (U,r,u) and our
construction precisely as follows.

We need for given projection on the genealogy for the measure v the conditional
law given the first component, more precisely a regular version of the conditional
distribution of v*, which we called above m(u,-), which is a finite measure on
(V,B(V)). This measure is for us only relevant projected on the trunks that is we
keep the path constant beyond ¢ — h, equal to its value at this time. This projection
we read of from our construction by taking the realization of our random walks,
leading from the founders to a leaf in the trunk and the weight prescribed there
from the condition is their weight and gives my(u,-), as an atomic measure on
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D(R, E) and as h 1 t we obtain m(u,-) as we saw above and applying this to {; we
get m¢, M;. Finally we set therefore for our derived object: M;(u, ) = L]mq(u,-)]
which gives us averaging over u with the law of the U-valued process now the
UP-valued one namely L[4l;].

We claim and prove further below that this way we have constructed a realization
of the conditioned distribution of [t;](k) given l;, with (4 )¢>0 being the limit
process arising from the individual based models.

We need next the conditional law given the U-projection of the finite dimensional
distributions. We have for that purpose to carry out the construction for the states
at times 0 < t; <9 < --- < t, < tjointly. This means we consider the n-states and
the trunks formed at heights hi, hs,--- , h, of these states. Here we have hy < t
and we make the convention to consider the case where hy > t5_1, for all k.

We have now to construct the conditional distribution of the marks given the
states in U in the n-time points. We consider first the n trunks specified by the
(hi)i=1,... n 1.e. (t — h1)-trunks. We begin the construction as before for each time
t1,--- ,t, by using random walk increments for the time intervals [0, t1], [t1, 2], etc
by taking n independent copies of our random walk collection, the point then is to
match the pieces of the path by choosing the starting points of the random walks
consistently. However we observe that the (¢t — hy)-trunk of the state at time ¢ is
as ultrametric space embedded in the (¢t — ho)-trunk of the state at time to, there is
only pruning since some of the leaves of the first will have no descendants at time
to. But therefore there is no consistency problem, constructing the random walk
path.

Similarly we proceed with the rescaled approximating branching random walk
population and construct a representation as the one we used to define the infinite
population per site process.

We are now in the situation that we have constructed the finite dimensional dis-
tributions of an UP " -valued Markov process, the Markov property being a conse-
quence of the Markov property of the U-valued process we use and the independent
increments property of the random walks used in the construction of the paths
which are independent of the chosen genealogy. This process is the candidate for
the limit process arising from the sequence of individual based approximations.

A consequence of the construction above is that in order to establish the conver-
gence of the individual based approximations it will suffice to show convergence of
the marginal distributions for fixed time ¢, if we can establish the Feller property
for the involved processes.

Now we turn to the issue of the convergence of the approximations with indi-
vidual based processes. Now we claim that our conditional distributions converge
weakly, i.e. L[my(u,-)] converge to L[m(u,-)]. For the approximating individual
based models we have however the same m(u,-) and M (u,-) by construction. The
map u — M (u,-) is continuous.

We can use for the approximating system now the same random walk system
and we pick the same increments and obtain this way a coupling by matching the
starting positions cleverly. We also note that we can choose the genealogies all on
one probability space such that we have convergence in the sense of ultrametric
measure spaces for the trunks on which we condition (by conditioning on the state
at time of the genealogy process). Therefore the approximation by individual based
models converges to a limit law in the sense of convergence of the finite-dimensional
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marginals. This limit is given by our construction we have given based on the
realization of the U-valued process and the collection of random walks.

We have to show that this process we have constructed solves the martingale
problem based on the construction not its property as limit. The latter we would
know so far only if in our polynomial either ¢ or x is constant (recall the results
we quoted in the beginning).

We have to show that the branching operator (&7 4+ Q1:b'a) and the mark evo-
lution operator Q™™ act on a polynomial ®™ %X by changing ¢ resp. X separately
by replacing ¢ by a suitable ¢’ and X by a suitable Y’ as given in (3.34), (3.36).
Since the construction uses the U-valued process as given element the action of the
branching operator which is only lifted to U x V from U and the mark evolution
is constructed based on the collection of independent random walks which evolve
according to the path process dynamic replacing x by x* as calculated earlier and
which merge based on the underlying genealogy giving then the lifted, from V to
U xV, term.

Precisely we proceed as follows. We define again for o € UV, ~ (u,v) with
ucUandoe M(V)byw=[U xV,r@ry,v],u=[Ur u and v = v(U x -). We
define for QP2 the lifted version (QT-Prandm:¢:x)(y, v) = (QT-Prandmo:X(. v))(u, )
and similarly for Q8% On the other hand we have an operator describing the
evolution of the measures on path driven by the path process which is defined on
d™X to describe the evolution of the historical process and which we define on
$™%X now, to describe the mark evolution. To derive the expression we have to
use the construction we gave using the collection of random walks, which shows

P . —~ u o~k
that QT (X (1)) (1, 0) = QU (PO (1)) (u,0) = 3 &KX" (u, ), where

k=1
X is defined in (7.28).
Altogether we have now constructed a solution to the martingale problem which
concludes the Step 2 on the existence of the solution.
Both Step 1 and Step 2 together prove the wellposedness of the martingale pro-
cess as claimed in Proposition 3.9 q.e.d.
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