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Abstract. Forman et al. (2020+) constructed (α, θ)-interval partition evolutions for α ∈ (0, 1) and
θ ≥ 0, in which the total sums of interval lengths (“total mass”) evolve as squared Bessel processes
of dimension 2θ, where θ ≥ 0 acts as an immigration parameter. These evolutions have pseudo-
stationary distributions related to regenerative Poisson–Dirichlet interval partitions. In this paper
we study symmetry properties of (α, θ)-interval partition evolutions. Furthermore, we introduce a
three-parameter family SSIP(α)(θ1, θ2) of self-similar interval partition evolutions that have separate
left and right immigration parameters θ1 ≥ 0 and θ2 ≥ 0. They also have squared Bessel total
mass processes of dimension 2θ, where θ = θ1 + θ2 − α ≥ −α includes the usual parameter range
of the two-parameter Poisson–Dirichlet distribution – negative θ can be interpreted as an overall
emigration. Under the constraint max{θ1, θ2} ≥ α, we prove that an SSIP(α)(θ1, θ2)-evolution is
pseudo-stationary for a new distribution on interval partitions, whose ranked sequence of lengths has
Poisson–Dirichlet distribution with parameters α and θ, but we are unable to cover all parameters
without developing a limit theory for composition-valued Markov chains, which we do in a sequel
paper.

1. Introduction.

In this paper, we construct a three-parameter family of interval partition evolutions that gener-
alises a two-parameter family recently introduced by Forman et al. (2020c). When projected onto
ranked interval lengths (Forman et al., 2023), their evolutions yield Poisson–Dirichlet(α, θ) diffu-
sions in the cases when θ ≥ 0 (Petrov, 2009). Members of the two-parameter family were used in
Forman et al. (2018) to construct the Aldous diffusion that has the Brownian continuum random
tree as its stationary distribution, solving a problem posed by Aldous (1999). The three-parameter
family is relevant since it captures for each α ∈ (0, 1) the full Poisson–Dirichlet parameter range
θ > −α. This extended range is crucial for potential generalisations of the Aldous diffusion to

Received by the editors July 4th, 2022; accepted March 10th, 2023.
2010 Mathematics Subject Classification. 60J80, 60J25, 60G18.
Key words and phrases. Poisson–Dirichlet distribution, interval partition, branching with immigration, emigration.
QS was partially supported by the National Key R&D Program of China (No. 2022YFA1006500), National Natural

Science Foundation of China (No. 12288201) and SNSF grant P2ZHP2_171955.
665

http://alea.impa.br/english/index_v20.htm
https://doi.org/10.30757/ALEA.v20-25


666 Quan Shi and Matthias Winkel

Figure 1.1. The rates at which new customers arrive in the ordered Chinese restau-
rant. In the setting of Rogers and Winkel (2022), θ2 = α.

continuum random trees that include multifurcating ones such as stable trees (Chen et al., 2009;
Curien and Kortchemski, 2014; Duplantier et al., 2021; Duquesne and Le Gall, 2002; Haas and
Miermont, 2004; Haas et al., 2009; Le Gall and Miermont, 2011). In the present paper, we focus on
the interval partition diffusions and their symmetry and stationarity properties. Before introducing
these processes, we provide some motivation in the related setting of composition-valued Markov
chains.

Rogers and Winkel (2022) introduced a family of continuous-time Markov chains with two param-
eters α ∈ (0, 1) and θ1 ≥ 0, taking values on the space C of vectors of natural numbers N = {1, 2, . . .}:

C = {(n1, n2, . . . , nk) : k ≥ 0, n1, n2, . . . , nk ∈ N}.

Each element in C is also known as an integer composition. Their model is in the framework of
Pitman’s two-parameter Chinese restaurant processes (Pitman (2006)) and their ordered variants
(James, 2006; Pitman and Winkel, 2009). In their language, we interpret the process (C(t), t ≥ 0)
as describing the fluctuating numbers of customers sitting at tables arranged in a line. At any time
t ≥ 0 with C(t) = (n1, n2, . . . , nk), we say there are k ∈ N occupied tables and for 1 ≤ i ≤ k the
i-th table enumerated from left to right has ni ∈ N customers. The transition rates of (C(t), t ≥ 0)
are, as follows – see also the illustration in Figure 1.1:

1. for each occupied table with ni customers, a new customer joins this table at rate ni − α;
2. at rate θ1, a new customer starts a new table to the left of the leftmost occupied table;
3. between each pair of two neighbouring occupied tables, a new customer starts a new table

there at rate α;
4. at rate α, a new customer starts a new table to the right of the rightmost occupied table;
5. each customer leaves at rate 1.

Without the departure rates in 5. and ignoring the order of tables, this model corresponds to Pit-
man’s two-parameter extension of the Dubins–Pitman Chinese restaurant process, with parameters
α ∈ (0, 1) and θ1 ≥ 0. It is worth noting that the original parameter constraint of Pitman’s model
is θ1 > −α, while ordered variants have been restricted to θ1 ≥ 0 in James (2006); Pitman and
Winkel (2009); Rogers and Winkel (2022).

It is natural to extend the model to a three-parameter version with α ∈ (0, 1), θ1, θ2 ≥ 0. Specif-
ically, we replace the transition rate in 4. by the following 4′.:

4′. at rate θ2, a new customer starts a new table to the right of the rightmost table.
The total departure rate of n for n = n1 +n2 + · · ·+nk customers is set against a total arrival rate
of n+θ, commonly interpreted as down and up-rates of a birth-and-death process with immigration
for θ > 0, but also including cases θ = θ1 + θ2 − α ∈ (−α, 0), which we interpret as emigration.

Rogers and Winkel (2022) conjectured that, for the ordered Chinese restaurant Markov chain
with parameter (α, θ1), if n−1C(0) converges to a limit, then the process (n−1C(2nt), t ≥ 0) has
a scaling limit, which is a so-called self-similar interval partition evolution with parameter (α, θ1)
introduced in Forman et al. (2021, 2020c). Naturally, we expect such convergence to also hold in the
generalised three-parameter (α, θ1, θ2) setting. Indeed, we establish this in a sequel paper (Shi and
Winkel, 2020), building in part on the constructions and study of the expected limiting diffusion in
the current work.
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1.1. Main results. For M ≥ 0, an interval partition β = {Ui, i ∈ I} of [0,M ] is a (countable)
collection of disjoint open intervals Ui = (ai, bi) ⊆ (0,M), such that the (compact) set of partition
points G(β) := [0,M ] \

⋃
i∈I Ui has zero Lebesgue measure. We refer to the intervals U ∈ β as

blocks and to their lengths |U | as their masses. We similarly refer to ‖β‖ := M =
∑

U∈β |U | as the
total mass of β. We denote by IH the set of all interval partitions of [0,M ] for all M ≥ 0. This
space is equipped with the metric dH that is obtained by applying the Hausdorff metric to the sets
of partition points: for every γ, γ′ ∈ IH ,

dH(γ, γ′) := inf

r ≥ 0: G(γ) ⊆
⋃

x∈G(γ′)

[x− r, x+ r], G(γ′) ⊆
⋃

x∈G(γ)

[x− r, x+ r]

 . (1.1)

The metric space (IH , dH) is not complete, but it generates a Polish topology (Forman et al., 2020b).
For c > 0, define a scaling map by

cβ := {(ca, cb) : (a, b) ∈ β}, β ∈ IH .

For β ∈ IH , we write rev(β) := {(‖β‖−b, ‖β‖−a) : (a, b) ∈ β} ∈ IH for the left-right reversal of
β. In Gnedin and Pitman (2005); Pitman and Winkel (2009), a two-parameter family of interval
partitions was introduced that places blocks of Poisson–Dirichlet masses PD(α)(θ) into a (right-
)regenerative random order, where a random interval partition β of [0, 1] is called “right-regenerative”
if for all s ∈ (0, 1), the remaining interval partition to the right of the first partition point Rs :=
inf(G(β) ∩ [s, 1]) to the right of s, is a scaled copy of β, in the sense that given Rs < 1, we have
(1 − Rs)−1{(a − Rs, b − Rs) : (a, b) ∈ β ∩ [Rs, 1]} d

= β. We denote the left-right reversals of these
right-regenerative Poisson–Dirichlet interval partitions by PDIP(α)(θ), α ∈ (0, 1), θ ≥ 0. They
inherit an analogous left-regenerative property at Ls = sup(G(β)∩ [0, s]), s ∈ (0, 1). For θ = α, this
is the distribution of the excursion intervals of a (squared) Bessel bridge (Pitman and Yor, 1997)
with dimension parameter 2α.

Let (βa)a∈A be a family of interval partitions indexed by a totally ordered countable set (A,�).
Let Sβ(a−) :=

∑
b≺a ‖βb‖. We define the natural concatenation of their blocks by

?
a∈A

βa :=
{(
x+ Sβ(a−), y + Sβ(a−)

)
: (x, y) ∈ βa, a ∈ A

}
.

When A = {1, 2}, we denote this by β1 ? β2.
Let us recall from Forman et al. (2020c) the transition kernels of the two-parameter family of

interval partition evolutions. The kernels have the branching property (with immigration) under
which each initial block of mass b > 0 contributes independently to time y with probability 1−e−b/2y.
Specifically, for r = 1/2y > 0 and b > 0, we consider independent G ∼ Gamma(α, r), β ∼ PDIP(α)(α),
and a (0,∞)-valued random variable L(α)

b,r with Laplace transform

E
[
e−λL

(α)
b,r

]
=

(
r + λ

r

)α ebr2/(r+λ) − 1

ebr − 1
. (1.2)

As can be read from Forman et al. (2021, Lemma 3.5) or verified directly, this is also equal to

E
[
exp
(
−λ

∑
1≤i≤N

Zi

) ∣∣∣ N > 0
]

for independent N ∼ Poisson(br), Z1 ∼ Gamma(1 − α, r) and Zn ∼ Exponential(r), n ≥ 2. Then
we define the distribution µ(α)

b,r of a random interval partition as

µ
(α)
b,r = e−brδ∅ + (1−e−br)P

(
{(0, L(α)

b,r )} ? Gβ ∈ ·
)
. (1.3)
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Definition 1.1 (SSIP(α)(θ)-evolution). Fix α ∈ (0, 1), θ ≥ 0. An SSIP(α)(θ)-evolution is an IH -
valued diffusion, whose transition semigroup (κα,θy , y ≥ 0) has the following form. Let β ∈ IH and
y > 0. Then κα,θy (β, · ) is defined to be the distribution of

Gyβ0 ? ?
U∈β

βyU (1.4)

for independent Gy ∼ Gamma(θ, 1/2y), β0 ∼ PDIP(α)(θ), and βyU ∼ µ
(α)
|U |,1/2y, U ∈ β, where |U |

denotes the length of the interval U .

Informally speaking, the description of the semigroup can be interpreted by analogy with the
Chinese restaurant Markov chains introduced above. Each βyU is the contribution of the initial table
U together with new tables added between U and any contributions of initial tables to the right of
U . And Gyβ0 represents “immigrating” tables to the far left.

While the semigroup property is not obvious from this definition, it was shown in Forman et al.
(2020c) that SSIP(α)(θ)-evolutions exist as self-similar path-continuous Hunt process in (IH , dH).
In Section A.1, we formally recall a construction from spectrally positive stable Lévy processes with
jumps marked by continuous paths derived from squared Bessel processes. We recall here that for
any m ≥ 0, δ ∈ R, there is a unique strong solution of the equation

Zt = m+ δt+ 2

∫ t

0

√
|Zs|dBs,

where (Bt, t ≥ 0) is a standard Brownian motion. The first hitting time of zero τ0(Z) := inf{t ≥ 0:
Zt = 0} is almost surely finite if and only if δ < 2. When δ < 2, the law of τ0(Z) is described in
(Göing-Jaeschke and Yor, 2003, Equation (13)) as the distribution of m/2G with G ∼ Gamma(1 −
δ/2, 1). Furthermore, we define the lifetime of Z by

ζ(Z) :=∞, if δ > 0, and ζ(Z) := τ0(Z), if δ ≤ 0. (1.5)

We write BESQm(δ) for the law of Z := (Zt∧ζ(Z), t ≥ 0), which we will refer to as a squared Bessel
process starting from m with dimension parameter δ. When δ ≤ 0, this process is absorbed at 0
at the end of its a.s. finite lifetime. We denote by BESQ

†
m(δ) the law of (Zt∧τ0(Z), t ≥ 0), which

differs from BESQm(δ) only for δ ∈ (0, 2). While BESQ(0), respectively BESQ(δ), is a continuous-
state branching process, with immigration at rate δ > 0, the case δ < 0 is naturally interpreted as
emigration at rate |δ|. We refer to Göing-Jaeschke and Yor (2003) for general properties of such
squared Bessel processes.

Specifically, in the construction of SSIP(α)(θ) from marked Lévy processes, jumps of height z are
marked by the squared Bessel bridges of dimension 4 + 2α from 0 to 0 and of length z, which are
also BESQ(−2α) excursions Pitman and Yor (1982). This construction reveals how block masses
evolve as independent BESQ(−2α)-processes, with further blocks created between existing blocks at
a dense set of times, each evolving as a BESQ(−2α)-excursion.

The contribution Gyβ0 in (1.4) can be interpreted as “immigration” at rate θ ≥ 0, on the left-
hand side. We note that the semigroup is left-right-reversible for θ = α. Specifically, we have the
following consequence of the symmetry properties of the semigroup of SSIP(α)(α)-evolutions.

Proposition 1.2. Let (βy, y ≥ 0) be an SSIP(α)(α)-evolution starting from β ∈ IH . Then the
left-right reversal (rev(βy), y ≥ 0) is an SSIP(α)(α)-evolution starting from rev(β).

Recall that the object of the paper is to generalise the SSIP(α)(θ1)-evolutions to the three-
parameter setting with α ∈ (0, 1), θ1, θ2 ≥ 0, obtaining the continuum analogues of the three-
parameter Chinese restaurant Markov chains. This symmetry property above suggests that the
rightmost copy of Gβ in (1.3) may similarly be interpreted as immigration at rate α. But with
positive probability, no initial block contributes to time y > 0, and modifying the two-parameter
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0

T1

T2

time

SSIP(α)(θ1) BESQ(−2α) rev(SSIP(α)(θ2))

SSIP(α)(θ1) BESQ(−2α) rev(SSIP(α)(θ2))

Figure 1.2. We illustrate an SSIP
(α)
† (θ1, θ2)-evolution. At time zero, the initial

interval partition is decomposed into three parts: the “middle" block coloured in red
and the interval partitions formed by the blocks to the left and the right of the red
block respectively. As time increases (the vertical direction), the size of the middle
block evolves according to BESQ(−2α), the left part is an SSIP(α)(θ1)-evolution, and
the right part is the left-right reversal of an SSIP(α)(θ2)-evolution, until the time
T1 when the middle block is absorbed at zero. Then we decompose the value at T1

around its longest block, which is coloured in red and regarded as the new middle
block. We next continue in a similar way.

model at the level of semigroups to include left-hand immigration at rate θ1 ≥ 0 and right-hand
immigration at rate θ2 ≥ 0 is a challenge. We propose two approaches.

Our first approach to the desired three-parameter process is motivated from properties of the
discrete model. Observe from Figure 1.1 that we can split at any occupied table in the middle, then
before the time when the last customer leaves this table, the part to its left evolves according to a
Chinese restaurant chain with parameter (α, θ1) and the part to its right is a left-right-reversed Chi-
nese restaurant chain with parameter (α, θ2). By analogy, for the continuum model, we construct
a three-parameter family of SSIP

(α)
† (θ1, θ2)-evolutions from SSIP(α)(θ1)-evolutions, BESQ(−2α) pro-

cesses and left-right reversals of SSIP(α)(θ2)-evolutions by repeatedly decomposing around a “middle”
block, as made precise in the following definition and illustrated in Figure 1.2.

Definition 1.3. Fix α ∈ (0, 1) and θ1, θ2 ≥ 0. Let β ∈ IH and set T0 := 0, β0 := β. Inductively,
for any n ≥ 0, conditionally given (βy, 0 ≤ y ≤ Tn), proceed as follows.

• If βTn = ∅, set Ti := Tn, i ≥ n+ 1, and βy := ∅, y ≥ Tn.
• If βTn 6= ∅, denote by U (n) the longest interval in βTn , taking the leftmost of these if it is
not unique. Let β(n)

1 := βTn∩[0, inf U (n)]∈IH be the partition to the left of U (n) and record
the remainder to the right of U (n) in β(n)

2 ∈IH such that

βTn = β
(n)
1 ? {(0, |U (n)|)} ? β(n)

2 .

Build three independent processes: SSIP(α)(θj)-evolutions γ
(n)
j = (γ

(n)
j (r), r ≥ 0) started

from β
(n)
1 and rev(β

(n)
2 ) respectively, f (n) ∼ BESQ(−2α) started from |U (n)| and absorbed at

ζ(f (n)) := inf{z ≥ 0: f (n)(z) = 0}. Set Tn+1 := Tn + ζ(f (n)) and

βTn+s := γ
(n)
1 (s) ? {(0, f (n)(s))} ? rev(γ

(n)
2 (s)), 0 ≤ s ≤ ζ(f (n)).

If Tn ↑ T∞ <∞, set βy := ∅, y ≥ T∞. We refer to β = (βy, y ≥ 0) as an SSIP
(α)
† (θ1, θ2)-evolution,

a self-similar interval partition evolution, to θ1 and θ2 as left and right immigration parameters, and
to (‖βy‖, y ≥ 0) as the total mass process.
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The choice of the longest interval is not essential, but is one way to achieve, as we will show,
that this process either continues forever without hitting ∅ or reaches ∅ continuously in finite time.
Another natural choice would be a size-biased block.

The subscript † in SSIP
(α)
† (θ1, θ2) acknowledges that these processes are absorbed (“killed”) when

they reach ∅. When θ > 0, this is not the case for SSIP(α)(θ)-evolutions. While almost surely
neither process visits ∅ when θ ≥ 1, the state ∅ is an instantaneously reflecting boundary state
of SSIP(α)(θ)-evolutions when θ ∈ (0, 1). This relates to the well-known boundary behaviour of
squared Bessel processes, which are the total mass evolutions of SSIP(α)(θ)-evolutions (Forman
et al., 2020c, Proposition 1.3(iii)).

We will check carefully that SSIP
(α)
† (θ1, θ2)-evolutions are well-defined as path-continuous pro-

cesses in (IH , dH) and establish the following properties.

Theorem 1.4. For each α ∈ (0, 1), θ1 ≥ 0 and θ2 ≥ 0, an SSIP
(α)
† (θ1, θ2)-evolution (βy, y ≥ 0) has

the following properties:

(i) it is a path-continuous Hunt process in (IH , dH);
(ii) the total mass process (‖βy‖, y ≥ 0) is BESQ†‖β0‖(2θ), where θ = θ1 + θ2 − α ≥ −α;
(iii) it is self-similar with index 1 in the sense that, for each c > 0, (cβy/c, y ≥ 0) is an

SSIP
(α)
† (θ1, θ2)-evolution starting from cβ0;

(iv) when θ2 = α, an SSIP
(α)
† (θ1, α)-evolution is an SSIP(α)(θ1)-evolution killed at its first hitting

time of ∅.

The items (i)–(iii) of Theorem 1.4 are analogues of Forman et al. (2020c, Proposition 1.3(i)–
(iii)) and (iv) is suggested by the discrete Chinese restaurant model illustrated in Figure 1.1, as
we have explained above Definition 1.3. A key part of the proof is to show that SSIP

(α)
† (θ1, θ2)-

evolutions reach ∅ continuously. We will obtain the Markov property by applying Dynkin’s criterion
to the triple-valued process whose components are the mass of the “middle” block and the interval
partitions on either side. This process inherits the Markov property from SSIP(α)(θj)-evolutions,
j = 1, 2, and BESQ(−2α) via standard results (Meyer, 1975; Bect, 2007) about suitably restarting
Markov processes at stopping times.

Our second approach aims to address a number of questions that arise in the first approach.
One is to construct SSIP(α)(θ1, θ2)-evolutions that have ∅ as a reflecting boundary when θ ∈ (0, 1).
A second question is whether, like SSIP(α)(θ1)-evolutions, these processes have pseudo-stationarity
properties in the sense that for an initial distribution to be determined, the marginal distribution
at all times is not the same, but the same as for an independent random multiple of the initial
interval partition. Specifically, we restrict our attention to parameters θ1 ≥ α and θ2 ≥ 0 consider
the left-right reversal of an SSIP(α)(θ2)-evolution. Morally (e.g. in the ordered Chinese restaurant
setting of Figure 1.1), this process has left-hand immigration parameter α instead of θ1. Therefore,
we have to find a way to add further immigration at rate θ1−α in between the existing immigration
at rate α. To make this precise, we use SSIP(α)(0)-excursions away from ∅ that we recall from
Forman et al. (2020c) in Section 4.1 and study Poissonian constructions. See Definition 4.3 for a
formal definition of SSIP(α)(θ1, θ2)-evolutions.

Theorem 1.5. Let θ1 ≥ α and θ2 ≥ 0. Set θ = θ1 + θ2 − α. Then any SSIP
(α)
† (θ1, θ2)-evolution

with θ ∈ (0, 1) starting from any initial distribution has a recurrent extension that we call an
SSIP(α)(θ1, θ2)-evolution, which has total mass evolution BESQ(2θ). In the case when θ ∈ (0, 1),
as well as for SSIP(α)(θ1, θ2) = SSIP

(α)
† (θ1, θ2) when θ ≥ 1 or θ = 0, the following holds. For

independent B ∼ Beta(θ1 − α, θ2), B′ ∼ Beta(1 − α, θ1) and βj ∼ PDIP(α)(θj), j = 1, 2, the
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distribution of the random interval partition of [0, 1]

γ̄ := B(1−B′)β1 ? {(0, BB′)} ? (1−B)rev(β2) (1.6)

is a pseudo-stationary distribution of an SSIP(α)(θ1, θ2)-evolution (βy, y ≥ 0) in the following sense:
if β0 = ‖β0‖γ̄ and ‖β0‖ is independent of γ̄, then, for every fixed y ≥ 0, βy d

= ‖βy‖γ̄. Here we use
the convention B = 1 when θ2 = 0, and B = 0 when θ2 > 0 and θ1 = α.

The way immigration on the left produces a multiple of β1 ∼ PDIP(α)(θ1) relates to the represen-
tation (Pitman, 2006, (5.26)) of PD(α)(θ1) as an (α, 0)-fragmentation of PD(0)(θ1), in which every part
of a PD(0)(θ1)-sequence is fragmented independently into PD(α)(0)-proportions. See also Pitman and
Yor (1997, Proposition 21). We noted in Forman et al. (2020c, Proposition 3.6 and its proof) that
this has a refinement to interval partitions where each block of PDIP(0)(θ1) is fragmented according
to PDIP(α)(0).

The two approaches and associated three-parameter models allow us to study further related
processes and properties that generalise straightforwardly from corresponding results for the two-
parameter family of Forman et al. (2020c), but they also leave several questions open, which merit
further exploration.

• The self-similarity of the construction allows us to de-Poissonize in the sense that we can
time-change an SSIP

(α)
† (θ1, θ2)- or equivalently an SSIP(α)(θ1, θ2)-evolution (βy, y ≥ 0) by

the time-change τ(u) := inf
{
y ≥ 0:

∫ y
0 ‖β

z‖−1dz > u
}
, u ≥ 0, and normalise to unit total

mass βτ(u)/‖βτ(u)‖, u ≥ 0. This yields a Hunt process, which, in the context of Theorem
1.5, will have the distribution of (1.6) as a stationary distribution.
• Q = (Qk, k ≥ 1) ∼ PD(α)(θ) is well-known to have an α-diversity

DQ := Γ(1− α) lim
h↓0

hα#{k ≥ 1: Qk > h} ∈ (0,∞) a.s..

For PDIP(α)(θ), this total diversity property was strengthened in Pitman and Winkel (2009,
Proposition 6(iv)) to the existence of diversities of β ∩ [0, t], t ≥ 0. With a bit of work to
control diversities when times Tn, n ≥ 1, accumulate in Definition 1.3, it can be deduced
from corresponding properties of SSIP(α)(θi), i = 1, 2, see Forman et al. (2020c, Theorem
1.4(i)), that SSIP

(α)
† (θ1, θ2)-, as well as SSIP(α)(θ1, θ2)-evolutions have continuously evolving

diversity processes y 7→ Dβy , where Dβ(t) := Γ(1 − α) limh↓0 h
α#{(a, b) ∈ β : |b − a| >

h, b ≤ t}, t ≥ 0.
• The second approach is subject to the restriction θ1 ≥ α, or max{θ1, θ2} ≥ α by left-right
reversal arguments. Recall θ := θ1 + θ2 − α. If we distinguish according to the absorbing,
reflecting and transient boundary behaviours of the BESQ(2θ) total mass process, when θ ≤ 0,
θ ∈ (0, 1) and θ ≥ 1, respectively, this restriction excludes all absorbing cases and some cases
in the reflecting regime, but the entire transient regime is already covered. We address the
remaining cases in a sequel paper (Shi and Winkel, 2020), where we take a third approach
to the three-parameter family. This involves establishing SSIP(α)(θ1, θ2) as scaling limits of
the Chinese restaurant Markov chain introduced at the beginning of this introduction. In
the two-parameter special case this scaling limit result was stated as a conjecture in Rogers
and Winkel (2022). See also Petrov (2009); Rivera-Lopez and Rizzolo (2023) for a different
approach to convergence results in the corresponding de-Poissonized setting.
• We show in Forman et al. (2023) that de-Poissonized SSIP(α)(θ1)-, SSIP(α)(θ1, θ2)- and

SSIP
(α)
† (θ1, θ2)-evolutions, are such that the associated process of projections onto ranked

block sizes are Petrov’s PD(α)(θ)-diffusions, where we note that SSIP(α)(θ1)-evolutions cover
only θ ≥ 0, while SSIP

(α)
† (θ1, θ2)-evolutions here cover Petrov’s full parameter range θ > −α,
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as θ := θ1 + θ2−α ≥ −α when α ∈ (0, 1), as well as the boundary case θ = −α of processes
that degenerate by absorption in {(0, 1)} ∈ IH or (1, 0, 0, . . .), respectively.

1.2. Organisation of the paper. The structure of this paper is as follows. We first recall in Section 2
the topology (Forman et al., 2020b) and main examples (Gnedin and Pitman, 2005; Pitman and
Winkel, 2009) of interval partitions, and we slightly develop results from Forman et al. (2020a, 2021),
here discussing symmetry properties of SSIP(α)(α)-evolutions including a proof of Proposition 1.2.
In Section 3, we introduce triple-valued SSIP

(α)
† (θ1, θ2)-evolutions, study their properties, and prove

Theorem 1.4. In Section 4, we make precise the construction of SSIP(α)(θ1, θ2)-evolutions when
θ1 ≥ α and prove Theorem 1.5. In the Appendix A we recall from Forman et al. (2020a, 2021,
2020c) the construction of SSIP(α)(θ)-evolutions from marked Lévy processes and Poisson random
measures, and we use it to prove two key technical lemmas needed in Section 3.

2. Preliminaries on the transition description of the two–parameter family SSIP(α)(θ),
α ∈ (0, 1), θ ≥ 0.

Throughout this paper, we fix a parameter α ∈ (0, 1). In this section, we recall and develop some
properties of SSIP(α)(θ)-evolutions for θ ≥ 0. Specifically, Section 2.1 briefly revisits the topology
on IH of Forman et al. (2020b). In Section 2.2, we discuss the two-parameter family PDIP(α)(θ) of
interval partitions (Gnedin and Pitman, 2005; Pitman and Winkel, 2009) that arise as stationary
distributions and in transition kernels. In Section 2.3, we discuss symmetry properties and include
a short proof of Proposition 1.2.

2.1. The topology generated by the metric space (IH , dH). Recall from the introduction that IH
is the space of interval partitions endowed with the metric dH of (1.1). We next endow IH with
another metric d′H introduced in Forman et al. (2020b). Let [n] := {1, 2, . . . , n}. For β, γ ∈ IH , a
correspondence from β to γ is a finite sequence of ordered pairs of intervals (U1, V1), . . . , (Un, Vn) ∈
β × γ, n ≥ 0, where the sequences (Uj)j∈[n] and (Vj)j∈[n] are each strictly increasing in the left-to-
right ordering of the interval partitions. The Hausdorff distortion of a correspondence (Uj , Vj)j∈[n]

from β to γ, denoted by disH(β, γ, (Uj , Vj)j∈[n]), is defined to be the maximum of the following two
quantities:

1.
∑

j∈[n]

∣∣∣|Uj | − |Vj |∣∣∣+ ‖β‖ −
∑

j∈[n] |Uj |,

2.
∑

j∈[n]

∣∣∣|Uj | − |Vj |∣∣∣+ ‖γ‖ −
∑

j∈[n] |Vj |,
For β, γ ∈ IH we define

d′H(β, γ) := inf
n≥0, (Uj ,Vj)j∈[n]

disH
(
β, γ, (Uj , Vj)j∈[n]

)
, (2.1)

where the infimum is over all correspondences from β to γ.

Lemma 2.1 (Theorems 2.3–2.4 of Forman et al. (2020b)). The metric spaces (IH , dH) and (IH , d′H)
generate the same separable topology. The space (IH , d′H) is complete, while (IH , dH) is not com-
plete. In particular, the topology is Polish.

2.2. Poisson–Dirichlet interval partitions PDIP(α)(θ).

Definition 2.2 (PDIP(α)(θ)). Fix α ∈ (0, 1) and θ ≥ 0. Let (Zα,θ(t), t ≥ 0) denote a subordinator
with Laplace exponent

Φα,θ(q) :=
qΓ(q + θ)Γ(1− α)

Γ(q + θ + 1− α)
if θ > 0, or Φα,0(q) :=

Γ(q + 1)Γ(1− α)

Γ(q + 1− α)
, q ≥ 0.
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Let (Zα,θ(t−), t ≥ 0) denote the left-continuous version of this subordinator. We write PDIP(α)(θ)
to denote the law of the random interval partition{(

e−Zα,θ(t), e−Zα,θ(t−)
)

: t ≥ 0, Zα,θ(t−) 6= Zα,θ(t)
}
.

This is referred to as a Poisson-Dirichlet (α, θ) interval partition.

We refer to Gnedin and Pitman (2005, Section 8) and Kyprianou and Pardo (2022, Chapter 4) for
applications of these “β-subordinators” to study respectively a two-parameter family of regenerative
composition structures and hypergeometric Lévy processes. They also contain further references.
A Poisson–Dirichlet (α, θ) interval partition is the reversal of a regenerative (α, θ) interval partition
studied in Gnedin and Pitman (2005) and Pitman and Winkel (2009). It also describes the limiting
proportions of customers at tables in the ordered Chinese restaurant process of Pitman and Winkel
(2009). The special case PDIP(α)(0) can be obtained from an α-stable subordinator (σ(t), t ≥ 0)
as the interval partition of [0, 1] obtained from the complement of the range of 1 − σ(t), t ≥ 0,
restricted to [0, 1], or equivalently as the left-right reversal of the interval partition formed by
the excursion intervals in [0,1] of a (squared) Bessel process of dimension 2 − 2α, including the
incomplete excursion stopped at time 1. In Forman et al. (2020c) we noted the following alternative
representation, which builds the general PDIP(α)(θ) from PDIP(α)(0), refining the PD(α)(θ) analogue
of Pitman (2006, (5.26)) and Pitman and Yor (1997, Proposition 21).

Lemma 2.3 (Proposition 3.6 and its proof in Forman et al. (2020c)). Let Bi ∼ Beta(θ, 1), βi ∼
PDIP(α)(0), i ≥ 1, be independent. Then

1

?
k=∞

(1−Bk)

(
k−1∏
i=1

Bi

)
βk ∼ PDIP(α)(θ),

where the indexation of the concatenation operator means that the (k + 1)st term is placed to the
left of the kth, k ≥ 1.

We also record here from Forman et al. (2021, Proposition 2.2(iv)) a decomposition for easier
reference: with independent B ∼ Beta(α, 1− α) and β̄ ∼ PDIP(α)(α), we have

{(0, 1−B)} ? Bβ̄ ∼ PDIP(α)(0). (2.2)

2.3. SSIP(α)(θ)-evolutions and their left-right reversals. Recall from the introduction the definition
of SSIP(α)(θ)-evolutions via their transition kernels and the terminology “total mass process” for
the process (‖βy‖, y ≥ 0) associated with any interval partition evolution (βy, y ≥ 0). In this
section we define left-right-reversed SSIP(α)(θ)-evolutions and also provide an (elementary) proof of
Proposition 1.2. Let β ∈ IH and recall that we denote its left-right reversal by

rev(β) := {(‖β‖ − b, ‖β‖ − a) : (a, b) ∈ β}.

Definition 2.4. Let α ∈ (0, 1), θ ≥ 0, and β0 ∈ IH . Let (βy, y ≥ 0) be an SSIP(α)(θ)-evolution
starting from rev(β0). Then we call the process (rev(βy), y ≥ 0) a (left-right-)reversed self-similar
interval partition evolution with parameters α and θ, abbreviated as RSSIP(α)(θ)-evolution, starting
from β0.

Proposition 2.5. SSIP(α)(θ)-evolutions and RSSIP(α)(θ)-evolutions are path-continuous Hunt pro-
cesses. Their total mass processes are BESQ(2θ)-processes.

Proof : The claims for RSSIP(α)(θ)-evolutions follow from the corresponding result for SSIP(α)(θ)-
evolutions, see Forman et al. (2020c, Theorem 1.4), since left-right reversal rev : (IH , dH) →
(IH , dH) is a total-mass-preserving homeomorphism. �
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Lemma 2.6 (Corollary 10.2 of Gnedin and Pitman (2005)). Let β ∼ PDIP(α)(α). Then rev(β) ∼
PDIP(α)(α).

Let (βy, y ≥ 0) be an SSIP(α)(α)-evolution starting from any β0 ∈ IH . Recall that Proposition
1.2 claims that left-right-reversing βy, y ≥ 0, yields another SSIP(α)(α)-evolution.

Proof of Proposition 1.2: Recall that (βy, y ≥ 0) is an SSIP(α)(α)-evolution starting from β ∈ IH .
Let (β̂z, z ≥ 0) be an SSIP(α)(α)-evolution starting from rev(β0). Fix any y > 0. We first show
that β̂y has the same law as rev(βy).

Using Definition 1.1 and notation therein, we can write βy = Gy0β
y
0 ??U∈β β

y
U for independent

Gy0 ∼ Gamma(α, 1/2y), βy0 ∼ PDIP(α)(α), and βyU ∼ µ
(α)
|U |,1/2y, U ∈ β0. By (1.3), we further have the

decomposition βyU = (0, LyU ) ? GyUβ
y
U for all U ∈ β0, where the independent random variables LyU

have distribution given by (1.2) (with parameter b = |U | and r = 1/2y), GyU ∼ Gamma(α, 1/2y), and
β
y
U ∼ PDIP(α)(α).
For each U = (a, b) ∈ β0, write U ′ = (‖β0‖− b, ‖β0‖− a) ∈ rev(β0) for the corresponding interval

in rev(β0). In particular, |U ′| = |U |. Using Definition 1.1 and noticing that the law of βyU depends
only on the length |U |, we deduce that

β̂y
d
= Gy0β

y
0 ? ?

U ′∈rev(β0)
βyU , (2.3)

where the right-hand side is the concatenation of the same interval partitions βyU but the order is
according to the corresponding U ′ in rev(β0). It remains to prove that the right-hand side of (2.3)
and rev(βy) have the same law.

We easily deduce from (1.3) that a.s. only a finite number of those (βyU , U ∈ β0) are non-empty.
Let us now break things down according to indices of the non-empty ones. Take any {U1, . . . , Uk} ⊆
β0. We henceforth constrain our discussion to the event that exactly those interval partitions
βyU1

, . . . , βyUk are non-empty. Conditionally on this event, we have

βy = Gy0β
y
0 ? (0, Ly1) ? GyU1

β
y
U1
? · · · ? (0, Lyk) ? G

y
Uk
β
y
Uk
.

Then we have the identity

rev(βy) = GyUkrev(β
y
Uk

) ? (0, Lyk) ? · · · ? G
y
U1

rev(β
y
U1

) ? (0, Ly1) ? Gy0rev(β
y
0).

On the other hand, on this event we have

Gy0β
y
0 ? ?

U ′∈rev(β0)
βyU = Gy0β

y
0 ? (0, Lyk) ? G

y
Uk
β
y
Uk
? · · · ? (0, Ly1) ? GyU1

β
y
U1
.

Since βyUi ∼ PDIP(α)(α) are i.i.d., by Lemma 2.6 we have i.i.d. rev(β
y
Ui) ∼ PDIP(α)(α). Combining

with the two representations above, we deduce that rev(βy) and Gy0β
y
0 ??U ′∈rev(β0) β

y
U have the

same conditional distribution. This leads to the conclusion that β̂y and rev(βy) have the same
(unconditional) law.

As the initial state β0 was arbitrary and because of the Markov property and the identity of the
marginal distributions, we identify the finite-dimensional distributions. Finally, we note that the
left-right-reversed SSIP(α)(α)-evolution (rev(βy), y ≥ 0) is also path-continuous, and this completes
the identification as an SSIP(α)(α)-evolution. �

Corollary 2.7. An SSIP(α)(α)- and an RSSIP(α)(α)-evolution starting from the same initial state
have the same distribution.

Proof : For any β0 ∈ IH , let β := (βy, y ≥ 0) be an SSIP(α)(α)-evolution starting from rev(β0).
By definition, (rev(βy), y ≥ 0) is a RSSIP(α)(α)-evolution starting from β0. At the same time, it
follows from Proposition 1.2 that (rev(βy), y ≥ 0) is an SSIP(α)(α)-evolution starting from β0. �
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We also recall the following relationship between SSIP(α)(0)- and SSIP(α)(α)-evolutions, which we
will apply as it stands and in combination with Definition 2.4 as a relationship between RSSIP(α)(0)-
and RSSIP(α)(α)-evolutions. Let L : IH → [0,∞) be the map from an interval partition to the mass
of its leftmost interval, or zero if none exists (i.e. if either the interval partition is empty or has an
accumulation of blocks at its left end).

Lemma 2.8 (Proposition 3.15 of Forman et al. (2021)). For m > 0 and γ ∈ IH , consider an
SSIP(α)(0)-evolution (β̃y, y ≥ 0) starting from {(0,m)} ? γ, consider f ∼ BESQm(−2α) and an
SSIP(α)(α)-evolution (βy, y ≥ 0) starting from γ, independent of each other. Write Y = inf{y >
0: L(β̃y−) = 0} for the lifetime of the original leftmost interval of (β̃y, y ≥ 0). Then(

β̃y, y ∈ [0, Y )
)

d
=
(
{(0, f(y))} ? βy, y ∈ [0, ζ(f))

)
.

Note that the total masses exhibit the extended additivity of BESQ(−2α) and BESQ(2α) to give
BESQ(0) up to time Y , as studied in Pitman and Winkel (2018). Finally, we recall the following
consequence of the form of the semigroups of SSIP(α)(θ)-evolutions.

Proposition 2.9. Consider an independent pair consisting of an SSIP(α)(θ)-evolution (βy1 , y ≥ 0)

starting from β0
1 ∈ IH and an SSIP(α)(0)-evolution (βy2 , y ≥ 0) starting from β0

2 ∈ IH . Then
(βy1 ? β

y
2 , y ≥ 0) is an SSIP(α)(θ)-evolution starting from β0

1 ? β
0
2 .

3. SSIP
(α)
† (θ1, θ2)-evolutions for θ1, θ2 ≥ 0, and the proof of Theorem 1.4.

3.1. Triple-valued SSIP
(α)
† (θ1, θ2)-evolutions. Fix α ∈ (0, 1). Let J :=

(
IH×(0,∞)×IH

)
∪{(∅, 0, ∅)}

and equip J with the metric

dJ ((β1,m, β2), (β′1,m
′, β′2)) := dH(β1, β

′
1) + |m−m′|+ dH(β2, β

′
2).

The space (J , dJ ) is a Borel subset of a Polish space, since (IH , dH) is a Polish space by Lemma 2.1.
We define a function φ : IH → J , as follows. Let β ∈ IH . For the purpose of defining φ(β),

let U be the longest interval in β; if the longest interval is not unique, then we take U to be the
leftmost longest interval. Then we set

φ(β) := (β ∩ (0, inf U), |U |, β ∩ (supU, ‖β‖)− supU). (3.1)

By convention, φ(∅) := (∅, 0, ∅).

Definition 3.1 (Triple-valued SSIP
(α)
† (θ1, θ2)-evolution). Let θ1, θ2 ≥ 0 and (β0

1 ,m
0, β0

2) ∈ J . We

define a J -valued SSIP
(α)
† (θ1, θ2)-evolution ((βy1 ,m

y, βy2 ), y ≥ 0) starting from (β0
1 ,m

0, β0
2) by the

following construction.
Set T0 := 0. For n ≥ 0, suppose by induction that we have constructed the process for the time

interval [0, Tn].
• If (βTn1 ,mTn , βTn2 ) = (∅, 0, ∅), then we set Ti := Tn for every i ≥ n + 1, and (βy1 ,m

y, βy2 ) :=
(∅, 0, ∅), y ≥ Tn.
• If (βTn1 ,mTn , βTn2 ) 6= (∅, 0, ∅), then conditionally given (γ

(k)
1 , f (k),γ

(k)
2 ), 0 ≤ k ≤ n − 1,

consider, independently, an SSIP(α)(θ1)-evolution γ
(n)
1 starting from βTn1 , an RSSIP(α)(θ2)-

evolution γ
(n)
2 starting from βTn2 , and f (n) ∼ BESQmTn (−2α). Set Tn+1 := Tn + ζ(f (n))

and (
βTn+y

1 ,mTn+y, βTn+y
2

)
:=
(
γ

(n)
1 (y), f (n)(y), γ

(n)
2 (y)

)
, 0 ≤ y < ζ(f (n)).

Furthermore, with φ the function defined in (3.1), we set(
β
Tn+1

1 ,mTn+1 , β
Tn+1

2

)
:= φ

(
β
Tn+1−
1 ? β

Tn+1−
2

)
.
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We refer to Tn, n ≥ 1, as the renaissance times and T∞ := supn≥1 Tn ∈ [0,∞] as the degeneration
time. If T∞ <∞, then by convention we set (βy1 ,m

y, βy2 ) := (∅, 0, ∅) for all y ≥ T∞.

By construction, the process (βy := βy1 ? {(0,my)} ? βy2 , y ≥ 0) satisfies the Definition 1.3 of an
IH-valued SSIP

(α)
† (θ1, θ2)-evolution starting from β0 := β0

1 ? {(0,m0)} ? β0
2 .

The following observation is a direct consequence of the construction.

Proposition 3.2 (Left-right reversal). For θ1, θ2 ≥ 0, let ((βy1 ,m
y, βy2 ), y ≥ 0) be a J -valued

SSIP
(α)
† (θ1, θ2)-evolution and (βy, y ≥ 0) its associated IH-valued process. Then

(rev(βy2 ),my, rev(βy1 )), y ≥ 0

is a J -valued SSIP
(α)
† (θ2, θ1)-evolution, and its associated IH-valued process is (rev(βy), y ≥ 0).

Proof : By the construction in Definition 3.1, we have the identity, for every n ≥ 0 and y ∈ [Tn, Tn+1),

(rev(βy2 ),my, rev(βy1 )) =
(

rev
(
γ

(n)
2 (y−Tn)

)
, f (n)(y−Tn), rev

(
γ

(n)
1 (y−Tn)

))
.

Since the distributions that determine block sizes in the transition kernels of Definition 1.1 are
diffuse and by the independence properties of (ζ(f (n)),γ

(n)
1 ,γ

(n)
2 ),

the longest interval in βTn+1−= β
Tn+1−
1 ? β

Tn+1−
2 is a.s. unique.

Therefore,(
rev(β

Tn+1

2 ),mTn+1 , rev(β
Tn+1

1 )
)

= φ
(
rev(βTn+1−)

)
= φ

(
rev(β

Tn+1−
2 ) ? rev(β

Tn+1−
1 )

)
a.s..

These observations show that
(
(rev(βy2 ),my, rev(βy1 )), y ≥ 0

)
satisfies the definition of a J -valued

SSIP
(α)
† (θ2, θ1)-evolution. �

3.2. The IH-valued process. The aim of this section is to prove Theorem 1.4. Let us begin by
identifying the total mass process of SSIP

(α)
† (θ1, θ2).

Theorem 3.3 (Total mass of an SSIP
(α)
† (θ1, θ2)-evolution). For α ∈ (0, 1) and θ1, θ2 ≥ 0, let

(βy, y ≥ 0) be an SSIP
(α)
† (θ1, θ2)-evolution. Then (‖βy‖, y ≥ 0) ∼ BESQ

†
‖β0‖(2θ) with θ := θ1+θ2−α,

i.e. a BESQ‖β0‖(2θ) killed at its first hitting time of zero.

To prove Theorem 3.3, we need two lemmas. The first addresses the problem that it is possible
that the renaissance times Tn accumulate, i.e. T∞ <∞; we would like to understand the behaviour
near the degeneration time T∞.

Lemma 3.4. Let θ1, θ2 ≥ 0. Let (βy, y ≥ 0) be an IH-valued SSIP
(α)
† (θ1, θ2)-evolution with re-

naissance times Tn, n ≥ 1, and degeneration time T∞. If P(T∞ < ∞) > 0, then conditionally on
T∞ <∞, the total mass ‖βTn‖ converges almost surely to zero as n→∞.

Indeed, we will see in Corollary 3.6 that P(T∞ < ∞) is either 0 or 1, depending on the value of
θ only. We prove this lemma in Appendix A.4. Second, recall from Pitman and Winkel (2018) a
generalised additivity property of squared Bessel processes, with the dimension parameters possibly
being negative.

Lemma 3.5 (Pitman and Winkel (2018, Proposition 1)). For any δ1, δ2 ∈ R, and b1, b2 ≥ 0, let
Z1 ∼ BESQb1(δ1) and Z2 ∼ BESQb2(δ2) be independent. Let T be a stopping time relative to the
filtration (Ft, t ≥ 0) generated by the pair of processes (Z1, Z2), with T ≤ ζ(Z1)∧ζ(Z2), where the
lifetime ζ is defined as in (1.5). Given FT , let Z3 ∼ BESQZ1(T )+Z2(T )(δ1+δ2). Then the process Z
defined as follows is a BESQb1+b2(δ1+δ2):
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Z(t) =

{
Z1(t) + Z2(t), if 0 ≤ t ≤ T,
Z3(t− T ), if t > T.

Proof of Theorem 3.3: Let W ∼ BESQ
†
1(2θ) be independent of everything else. Recall the construc-

tion described in Definition 3.1. With notation therein, define for every i ≥ 1 a process Zi by

Zi(x) =

{
‖βx‖, if 0 ≤ x ≤ Ti,
1{‖βTi‖ 6=0}‖βTi‖W

(
(x−Ti)/‖βTi‖

)
, if x > Ti.

(3.2)

These processes are constructed on the same (large enough) probability space. We first prove by
induction that each Zi is a BESQ

†
‖β0‖(2θ). Conditionally on (‖βx‖, x ≤ Ti),(

1{‖βTi‖ 6=0}‖βTi‖W
(
(x−Ti)/‖βTi‖

)
, x ≥ 0

)
has distribution BESQ

†
‖βTi‖(2θ),

by the scaling property of BESQ†(2θ). Note that by Definition 1.1 and independence, ‖βTi‖ = 0 only
happens with positive probability when θ1 = θ2 = 0, and then there is Tj = Ti and Zj ≡ Zi for
all j ≥ i; in this case 2θ = −2α < 0 and BESQ

†
0(−2α) and BESQ0(−2α) are the distribution of the

constant zero process.
Let γ

(0)
1 and γ

(0)
2 be as in Definition 3.1. By Proposition 2.5, the total mass evolutions of

γ
(0)
1 and γ

(0)
2 are independent BESQ‖β0

1‖(2θ1) and BESQ‖β0
2‖(2θ2) respectively, also independent of

f (0) ∼ BESQ‖m0‖(−2α). Noticing that ‖βx‖ = ‖γ(0)
1 (x)‖+f (0)(x)+‖γ(0)

2 (x)‖ for all x ≤ T1, we deduce
from Lemma 3.5 that Z1 ∼ BESQ

†
‖β0‖(2θ), since we have 2θ1 − 2α+ 2θ2 = 2θ.

Suppose by induction that for some i ≥ 1, for each SSIP
(α)
† (θ1, θ2)-evolution starting from any

state in J , its corresponding process Z ′j as in (3.2) is a BESQ†(2θ) for each j ≤ i. By the construction

in Definition 3.1, conditionally on (γ
(0)
1 , f (0),γ

(0)
2 ), the process

(β̃y1 , m̃
y, β̃y2 ) := (βT1+y

1 ,mT1+y, βT1+y
2 ), y ≥ 0,

is an SSIP
(α)
† (θ1, θ2)-evolution starting from (βT11 ,mT1 , βT12 ). Define

Z̃i(x) =

{∥∥βTi+x∥∥ , if 0 ≤ x ≤ Ti+1 − T1,

1
{
‖βTi+1‖ 6=0

}∥∥βTi+1
∥∥W (

(x−Ti+1)/‖βTi+1‖
)
, if x > Ti+1 − T1.

Then there is the identity

Zi+1(x) =

{
‖βx‖, if 0 ≤ x ≤ Ti,
Z̃i(x− Ti), if x > Ti.

Given the triple (γ
(0)
1 , f (0),γ

(0)
2 ), by the inductive hypothesis Z̃i has conditional distribution

BESQ
†
‖βT1‖(2θ). Consequently, by the i = 1 case, we have Zi+1 ∼ BESQ

†
‖β0‖(2θ). This completes

the induction step. We conclude that (Zn)n≥1 is a sequence of processes, in which each Zn is a
BESQ

†
‖β0‖(2θ), and (Zn(y), y ≤ Tn) = (‖βy‖, y ≤ Tn).

We now prove the theorem for the case θ = θ1 +θ2−α < 1. For each n ≥ 1, let τ0(Zn) be the
first hitting time of zero by Zn. Then Tn ≤ τ0(Zn) and τ0(Zn)−Tn = ‖βTn‖τ0(W ), where τ0(W ) is
the first hitting time of zero by W and has the law of 1/2G with G ∼ Gamma(1−θ, 1). We deduce
that the distribution of the degeneration time T∞ is stochastically dominated by ‖β0‖/2G and is
thus a.s. finite. Then it follows from Lemma 3.4 that a.s. limn→∞ ‖βTn‖ = 0. Therefore, τ0(Zn)
converges to T∞ a.s., as n→∞. We conclude that (Zn(y∧ τ0(Zn)), y ≥ 0) converges a.s. uniformly
to (‖βy∧T∞‖, y ≥ 0), and the limiting process is BESQ†‖β0‖(2θ).



678 Quan Shi and Matthias Winkel

We finally study the case θ = θ1+θ2−α ≥ 1. By the connection between ‖β‖ and the processes
(Zn)n≥1, it suffices to prove that, for every a > 0, P(T∞ < a) = 0. On the event {T∞ < a},
Lemma 3.4 leads to limn→∞ Zn(Tn) = limn→∞ ‖βTn‖ = 0. Therefore, for any δ > 0, we have

{T∞ < a} ⊆
⋃
n∈N
{Zn(Tn) < δ, T∞ < a}.

Note that {Zn(Tn) < δ, T∞ < a} = {‖βTn‖ < δ, T∞ < a} ⊆ {infy∈[0,Tn] ‖βy‖ < δ, T∞ < a} =: An.
The sequence of events (An, n ∈ N) is increasing. By monotone convergence, we have

P

(⋃
n∈N

{
Zn(Tn)<δ, T∞<a

})
≤ lim

n→∞
P(An) ≤ lim sup

n→∞
P
(

inf
t∈[0,a]

Zn(t) < δ

)
= P

(
inf

t∈[0,a]
Z1(t) < δ

)
,

using the fact that Zn ∼ BESQ
†
‖β0‖(2θ) = BESQ‖β0‖(2θ). As 2θ ≥ 2, limδ↓0 P

(
inft∈[0,a] Z1(t) < δ

)
= 0.

As a result, we have P(T∞ < a) = 0. This completes the proof. �

We have obtained the following dichotomy in the preceding proof.

Corollary 3.6. For θ1, θ2 ≥ 0, let (βy, y ≥ 0) be an IH-valued SSIP
(α)
† (θ1, θ2)-evolution starting

from β0 6= ∅, with renaissance times Tn, n ≥ 0, and degeneration time T∞. Set θ = θ1 + θ2 − α.
(i) If θ ≥ 1, then a.s. T∞ =∞ and βy 6= ∅ for every y ≥ 0.

(ii) If θ < 1, then a.s. T∞ <∞ and limy↑T∞ ‖βy‖ = 0.

Proposition 3.7. For θ1, θ2 ≥ 0, a J -valued SSIP
(α)
† (θ1, θ2)-evolution is Borel right Markov on

(J , dJ ), but not Hunt.

Here, we use Sharpe’s definition of Borel right Markov and Hunt processes, see e.g. Li (2011,
Definition A.18): a Borel right Markov process is a Markov process on a Radon space (such as a
Borel subset of a Polish space) with a transition semigroup that is Borel measurable in the initial
state, with right-continuous sample paths and with the strong Markov property under a right-
continuous filtration. A Hunt process is furthermore quasi-left-continuous, i.e. left-continuous along
strictly increasing sequences of stopping times.

Proof : The J -valued process takes values in J , which is a Borel subset of a Polish space. It
has càdlàg paths, as a consequence of the path-continuity of the SSIP(α)(θ1)- and RSSIP(α)(θ2)-
evolutions used in the construction, and from Corollary 3.6.

We know that squared Bessel processes, SSIP(α)(θ1)- and RSSIP(α)(θ2)-evolutions are Borel right
Markov processes. In the construction of a J -valued process, we kill a Borel right Markov process
with finite lifetime, and at the end of the lifetime, give birth to a new one according to a (degenerate)
probability kernel. This entails that the J -valued process is itself a Borel right Markov process; see
e.g. Meyer (1975, Théorème 1) or Bect (2007, Théorème II 3.18).

Finally, the J -valued process is not Hunt. To see this, we consider the increasing sequence of
stopping times τn := inf{y ≥ 0: my < 1/n}, n ≥ 1. Then τn convergences to the first renaissance
time T1 as n → ∞. But the J -valued process has a jump at T1 with strictly positive probability;
so it is not quasi-left continuous. �

The J -valued SSIP
(α)
† (θ1, θ2)-evolution is only of secondary importance to us, as we are more

interested in its associated IH -valued process. However, the definition of the IH -valued process
a priori depends on the initial choice of the “middle” block. Even with the natural choice of the
longest block, the size of this block is typically exceeded by other blocks during the evolution. To
establish the Markov property of the IH -valued processes, we will view them as projections of J -
valued processes. Indeed, we will show that two IH -valued SSIP

(α)
† (θ1, θ2)-evolutions started from
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different choices of middle block indeed have the same law. The following lemma, whose proof is
postponed to Appendix A.4, deals with this problem.
Lemma 3.8. Let θ1, θ2 ≥ 0. Let ((βy1 ,m

y, βy2 ), y ≥ 0) and ((β̃y1 , m̃
y, β̃y2 ), y ≥ 0) be two J -

valued SSIP
(α)
† (θ1, θ2)-evolutions, with (βy, y ≥ 0) and (β̃y, y ≥ 0) being their associated IH-valued

evolutions. Suppose that
β0

1 ? (0,m0) ? β0
2 = β̃0

1 ? (0, m̃0) ? β̃0
2 ,

then we can couple these two processes such that their associated IH-valued evolutions are almost
surely equal.

Proof of Theorem 1.4: (i) The space (IH , dH) is Polish by Lemma 2.1. The path-continuity for the
IH -valued process between renaissance times follows from the path-continuity of any SSIP(α)(θi)-
evolutions, i = 1, 2. The path-continuity at times Tn, n ≥ 1, holds by construction since the parts of
φ(β) in (3.1) have concatenation β. By Corollary 3.6, the path-continuity at time T∞ holds almost
surely whenever T∞ <∞.

We have proved in Proposition 3.7 that the corresponding J -valued process is a Borel right
Markov process. The IH -valued process is a projection of the J -valued process. Since functions
of Markov processes are not always Markov processes, we apply Dynkin’s criterion (Dynkin, 1965,
Theorem 10.13) as a sufficient condition for when they are. Specifically, we have to check that for
any two initial states in J that map to the same state in IH , projecting the time-y states of the two
J -valued evolutions gives identically distributed random variables in IH . By Lemma 3.8, the two
random variables in question can be coupled to be equal, so indeed they have the same distribution.
By Dynkin (1965, Theorem 10.13), the projected process, i.e. SSIP

(α)
† (θ1, θ2) is also a Borel right

Markov process. The Hunt property then follows from the path-continuity.
(ii) The claimed total mass process was established in Theorem 3.3.
(iii) The same scaling property holds for BESQ(−2α), by Göing-Jaeschke and Yor (2003, A.3),

and for SSIP(α)(θi) evolutions, i = 1, 2, by Forman et al. (2020c, Theorem 1.4) and hence also for
RSSIP(α)(θ2). Keeping track of Definition 3.1, we easily check the self-similarity for a J -valued
SSIP

(α)
† (θ1, θ2)-evolution. Using Lemma 3.8, we deduce the self-similarity of IH -valued processes.

(iv) For the final claim, we may assume that the SSIP
(α)
† (θ1, α)-evolution (βy, y ≥ 0) is associated

with a J -valued process ((βy1 ,m
y, βy2 ), y ≥ 0). In the notation of Definition 3.1, we have

βy = γ
(n)
1 (y) ?

{(
0, f (n)(y)

)}
? γ

(n)
2 (y), 0 ≤ y ≤ Tn+1 − Tn, n ≥ 0.

Conditionally on (βTn1 ,mTn , βTn2 ), the RHS is an SSIP(α)(θ1)-evolution starting from βTn , by Lemma
2.8 and Proposition 2.9. Using this fact and Lemma 3.4, the remainder of this proof is analogous
to the proof of Theorem 3.3; details are left to the reader. �

4. Construction of SSIP(θ1, θ2)-evolutions for θ1 ≥ α, θ2 ≥ 0, and the proof of Theo-
rem 1.5.

In this section we make precise the construction of SSIP(α)(θ1, θ2)-evolutions in the case θ1 ≥ α.
The approach does not depend on the construction of SSIP

(α)
† (θ1, θ2)-evolutions nor indeed on any

developments in Section 3, except when we establish the connections between the two processes in
Section 4.5.

4.1. Distributional properties of SSIP(α)(θ)-evolutions. Let us now recall a Poissonian construction
of SSIP(α)(θ)-evolutions from Forman et al. (2020c). Let EI be the space of continuous excursions
(βy, y ≥ 0) on (IH , dH) away from ∅, with lifetime ζ := inf{y > 0: βy = ∅} and βy = ∅ for y ≥ ζ.
The following two statements are straightforward consequences of results in Forman et al. (2020c).



680 Quan Shi and Matthias Winkel

For the reader’s convenience, in the Appendix A we will recall relevant materials from Forman et al.
(2020c) and prove Propositions 4.1 and 4.2.

Proposition 4.1. There exists a sigma-finite measure Λ(α) on EI , that is specified by the following:
(i) Λ(α)(ζ > y) = α/y, y > 0;
(ii) Under Λ(α)(· | ζ > y), βy ∼ Exponential(1/2y) · PDIP(α, 0) and, given (βz, z ≤ y), the

conditional law of the process (βy+z, z ≥ 0) is an SSIP(α)(0)-evolution starting from βy.
Moreover, Λ(α) has the self-similarity: for c > 0, define a mapping Φc : EI → EI by (βy, y ≥ 0) 7→
(cβy/c, y ≥ 0). Then the image of Λ(α) via Φc is cΛ(α).

In the sense of Pitman and Yor (1982), Λ(α) is an excursion measure of the diffusion process
SSIP(α)(0)-evolution, though ∅ is not an entrance boundary.

Proposition 4.2. Let
↼

Z be a Poisson random measure with intensity (θ/α)Leb⊗Λ(α) on (−∞, 0)×
EI .

(i) Set
↼

βy = ?
points (s,βs) of

↼
Z : s∈[0,y]↓

βy−ss , y ≥ 0, (4.1)

where ↓ indicates that the concatenation is by decreasing order of s. Then (
↼

βy, y ≥ 0) is an
SSIP(α)(θ)-evolution starting from ∅.

(ii) Fix b > 0. Set
↼

βy(b) = ?
points (s,βs) of

↼
Z : s∈[0,b∧y]↓

βy−ss , y ≥ 0. (4.2)

Then (
↼

βy(b), y ∈ [0, b]) is an SSIP(α)(θ)-evolution starting from ∅. Moreover, conditionally on

(
↼

βy(b), y ∈ [0, b]), the process (
↼

βb+z(b) , z ≥ 0) is an SSIP(α)(0)-evolution starting from
↼

βb(b).

Intuitively, each atom (s, (βzs , z ≥ 0)) of
↼

Z represents immigration at time s to the left of the
current population. Then the state of an SSIP(α)(θ)-evolution at time y is the concatenation of all
immigrants and their descendants alive at time y from left to right.

Fix θ > 0. Consider an SSIP(α)(θ)-evolution (
↼

βy, y ≥ 0) starting from ∅, constructed as in
(4.1). Fix y > 0. Let Gy ∼ Gamma(θ, (2y)−1) and β0 ∼ PDIP(α)(θ) be independent and denote the
law of Gyβ0 by Gamma(θ, (2y)−1) · PDIP(α)(θ). Then we know from the semigroup description in
Definition 1.1 that

↼

βy ∼ Gamma(θ, (2y)−1) · PDIP(α)(θ). (4.3)

For future usage, we explore in more detail the components of
↼

βy. By Proposition 4.1, the atoms of
↼

Z that survive to time y, can be listed as
(
sk(y), (βzk(y), z ≥ 0)

)
k≥1

, with immigration times sk(y)

listed in increasing order and∑
k≥1

δ(sk(y)) is a Poisson random measure on [0, y) with intensity θ(y − s)−1ds. (4.4)

Note that limk→∞ ↑ sk(y) = y. In the sequel, we fix y and omit the parameter that indicates the
dependence of sk = sk(y) on y for simplicity. Then, as in (4.1),

↼

βy is the concatenation of βy−sksk ,
k ≥ 1, in deceasing order of k. Moreover, using the Poisson property and Beta-Gamma algebra,
see Forman et al. (2020c, proof of Proposition 3.6) for details, we can express these components in
terms of families of independent identically distributed (i.i.d.) random variables, as follows:(

βy−sksk
, k ≥ 1

)
d
=
(
Ek

k∏
i=1

Biβ̄k, k ≥ 1
)

d
=
(
G(1−Bk)

k−1∏
i=1

Biβ̄k, k ≥ 1
)
, (4.5)
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where (β̄i)i≥1 are i.i.d. PDIP(α)(0), (Bi)i≥1 are i.i.d. Beta(θ − α, 1), (Ei)i≥1 are i.i.d. Exp((2y)−1)
and G ∼ Gamma(θ, (2y)−1), independent of each other. Fix any j ≥ 1. Let G′ ∼ Gamma(θ, (2y)−1)

and γ̄ ∼ PDIP(α)(θ) be independent, further independent of (Ek, Bk, β̄k)k≤j . It follows that(
j+1

?
k=∞

βy−sksk
,
(
βy−sksk

)
k≤j

)

d
=

 j∏
i=1

Bi
1

?
`=∞

Ej+`
∏̀
i=1

Bj+iβ̄j+`,

(
Ek

k∏
i=1

Biβ̄k

)
k≤j


d
=

G′ j∏
i=1

Biγ̄,

(
Ek

k∏
i=1

Biβ̄k

)
k≤j

 , (4.6)

where the second equality is from the observation that ?1
k=∞Ej+k

∏k
i=1Bj+iβ̄j+k is independent

of (Ek, Bk, β̄k)k≤j and has distribution Gamma(θ, (2y)−1) · PDIP(α)(θ) by (4.5) and (4.3).
It will be useful to also describe the distribution of (4.5) conditionally given (sk, k ≥ 1). Specifi-

cally, we know from (2.2) and Forman et al. (2020c, Lemma 3.5) that, given (sk, k ≥ 1), the interval
partitions βy−skk , k ≥ 1, are conditionally independent, with

βy−skk
d
= {(0, Hy

k )} ? γyk , k ≥ 1, (4.7)

whereHy
k ∼ Gamma(1−α, (2(y−sk))−1) and γyk ∼ Gamma(α, (2y−sk)−1)·PDIP(α)(α) are independent,

k ≥ 1. In particular, we note that the dependence on θ > 0 is only via the sequence of immigration
times (sk, k ≥ 1), of clades surviving to time y.

4.2. Definition, Markov property and path-continuity of SSIP(α)(θ1, θ2)-evolutions with θ1 ≥ α. Fix
θ1 ≥ α and let

↼

Z be a Poisson random measure on [0,∞)×EI with intensity (θ1/α − 1)Leb⊗Λ(α).
Rather than using (4.1), we modify this construction and define (

↼

βy, y ≥ 0) by left-right-reversing
each immigrating interval partition excursion βs = (βzs , z ≥ 0):

↼

βy := ?
points (s,βs) of

↼
Z : s∈[0,y]↓

rev
(
βy−ss

)
, y ≥ 0. (4.8)

Definition 4.3 (SSIP(α)(θ1, θ2)-evolution with min(θ1, θ2) ≥ α).
(i) For θ1 ≥ α, θ2 ≥ 0, and γ ∈ IH . Let (

⇀

βy, y ≥ 0) be an RSSIP(α)(θ2)-evolution starting from
γ, and define (

↼

βy, y ≥ 0) as in (4.8), based on a Poisson random measure
↼

Z on [0,∞)× EI
with intensity (θ1/α − 1)Leb⊗ Λ(α). Set

βy :=
↼

βy ?
⇀

βy, y ≥ 0.

Then the IH -valued process (βy, y ≥ 0) is called an SSIP(α)(θ1, θ2)-evolution starting from
γ.

(ii) For θ1 ≥ 0 and θ2 ≥ α, an IH -valued process (βy, y ≥ 0) is called an SSIP(α)(θ1, θ2)-
evolution, if its left-right reversal (rev(βy), y ≥ 0) is an SSIP(α)(θ2, θ1)-evolution.

When θ1, θ2 ≥ α, an SSIP(α)(θ1, θ2)-evolution can be defined by both parts in Definition 4.3. We
still have to justify that there is no ambiguity in this definition, as there is no obvious left-right-
symmetry in the construction.

Proposition 4.4. For θ1, θ2 ≥ α, the left-right reversal of an SSIP(α)(θ1, θ2)-evolution is an
SSIP(α)(θ2, θ1)-evolution starting from the left-right-reversed initial state.
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The proof of Proposition 4.4 is postponed to Section 4.3.
In what follows, we will always implicitly restrict ourselves to SSIP(α)(θ1, θ2)-evolutions with

θ1 ≥ α. The corresponding results for the other case, with θ2 ≥ α, follow straightforwardly.

Proposition 4.5 (Total mass). The total mass of an SSIP(α)(θ1, θ2)-evolution is a BESQ(2θ) with
θ := θ1 + θ2 − α.

Proof : (
↼

βy, y ≥ 0) has the same total mass as an SSIP(α)(θ1−α)-evolution, which is a BESQ(2(θ1−
α)) starting from zero. Then we conclude by the additivity of squared Bessel processes. �

Proposition 4.6 (Self-similarity). Let (βy, y ≥ 0) be an SSIP(α)(θ1, θ2)-evolution starting from γ.
Then for every c > 0, the process (cβy/c, y ≥ 0) is an SSIP(α)(θ1, θ2)-evolution starting from cγ.

Proof : Since an RSSIP(α)(θ2)-evolution possesses the self-similarity property (Forman et al., 2020c,
Theorem 1.4(ii)), it suffices to prove that

(
↼

βy, y ≥ 0)
d
= (c

↼

βy/c, y ≥ 0) (4.9)

with (
↼

βy, y ≥ 0) defined as in (4.8) associated with the Poisson random measure
↼

Z.

Map each atom (s, (βzs , z ≥ 0)) of
↼

Z to (cs, (cβ
z/c
s , z ≥ 0)). Then the image

↼

Z
′
is a Poisson random

measure with intensity c−1(θ1/α−1)Leb⊗(Φc)∗Λ
(α) = (θ1/α−1)Leb⊗Λ(α), where (Φc)∗Λ

(α) is the
pushforward measure, due to the self-similarity of Λ(α) given in Proposition 4.1. That is

↼

Z
′ d

=
↼

Z.
Note that we have the identity

?
points (r,γr) of

↼
Z
′
: r∈[0,y]↓

rev
(
γy−rr

)
= ?

points (s,βs) of
↼
Z : s∈[0,y/c]↓

rev
(
c βy/c−ss

)
= c

↼

βy/c, y ≥ 0.

This leads to (4.9). �

Proposition 4.7 (Markov property). Let (βy, y ≥ 0) be an SSIP(α)(θ1, θ2)-evolution starting from
γ. For any y ≥ 0, conditionally on (βx, x ≤ y) the process (βy+z, z ≥ 0) is an SSIP(α)(θ1, θ2)-
evolution starting from βy.

Proof : Recall that βr :=
↼

βr ?
⇀

βr, r ≥ 0. Fix y ≥ 0, we have the decomposition βy+z =
↼

βz
y
?βz

y
?
⇀

βy+z,

where
↼

βz
y

:= ?
points (s,βs) of

↼
Z : s∈(y,y+z]↓

rev
(
βy+z−s
s

)
, z ≥ 0,

and
βz
y

:= ?
points (s,βs) of

↼
Z : s∈[0,y]↓

rev
(
βy+z−s
s

)
, z ≥ 0.

Conditionally on ((
↼

βx,
⇀

βx), x ≤ y), it follows from Proposition 4.2(ii) that (βz
y
, z ≥ 0) is an

RSSIP(α)(0)-evolution starting from
↼

βy and from the Markov property of SSIP(α)(θ2)-evolutions
that

⇀

βy+z, z ≥ 0 is an RSSIP(α)(θ2)-evolution starting from
⇀

βy. Then, by Proposition 2.9, condi-
tionally on (βx, x ≤ y), the concatenation (βz

y
?
⇀

βy+z, z ≥ 0) is an RSSIP(α)(θ2)-evolution starting

from βy =
↼

βy ?
⇀

βy. Furthermore, the Poisson property shows that (
↼

βz
y
, z ≥ 0) is independent

of (βz
y
?
⇀

βy+z, z ≥ 0) and has the same law as (
↼

βz, z ≥ 0). By Definition 4.3 we deduce that

(βy+z, z ≥ 0) is an RSSIP(α)(θ1, θ2)-evolution starting from βy. �

Proposition 4.8 (Path-continuity). An SSIP(α)(θ1, θ2)-evolution a.s. has continuous paths.
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Proof : It follows from the same arguments as in Forman et al. (2020c, proof of Proposition 3.2)
that (

↼

βy, y ≥ 0) defined as in (4.8) a.s. has continuous paths in (IH , dH). Let us only give a sketch
here. Fix y0 ≥ 0 and ε > 0. For each z < y0, recall that

↼

βz is the concatenation of rev(βz−ss ), where
(s, (βrs , r ≥ 0)) is an atom of

↼

Z. For a suitably chosen δ > 0, we will separate the atoms into two
parts: those with s ∈ (z− δ, z) and those with s ≤ z− δ. For the first part, by Forman et al. (2020c,
Lemma 3.7), a.s. we can choose δ > 0 small enough such that

sup
z∈[0,y0)

∑
s∈((z−δ)∧0,z)

‖βz−ss ‖ < ε.

For the second part, only a finite number k(δ) ≥ 0 of atoms (si, (β
z
si , z ≥ 0))i≤k(δ) with si < y0 have

lifetime longer than δ and it is known that each process (βzsi , z ≥ 0) is continuous. So there exists
δ > δ′ > 0 such that for each i ≤ k(δ) we have

sup
y,z∈[0,y0),|y−z|<δ′

dH(βzsi , β
y
si) < ε/k(δ).

Therefore,
sup

y,z∈[0,y0),|y−z|<δ′
dH(

↼

βz,
↼

βy) < 3ε.

We conclude that (
↼

βy, y ≥ 0) is continuous. Combining this with the path-continuity of an
RSSIP(α)(θ2)-evolution, we deduce the claim. �

4.3. Identification of the two-parameter family of SSIP(α)(θ)-evolutions, α ∈ (0, 1), θ ≥ 0.

Proposition 4.9. An SSIP(α)(θ1, α)-evolution starting from γ is an SSIP(α)(θ1)-evolution starting
from γ.

As a consequence of Proposition 4.9, we can address the apparent lack of left-right-symmetry in
Definition 4.3. Proposition 4.4 follows immediately from the following statement.

Proposition 4.10. For θ1, θ2 ≥ α and γ ∈ IH , consider three independent processes, an SSIP(α)(α)-
evolution (β̂y, y ≥ 0) starting from γ, and SSIP(α)(θj , 0)-evolutions (βyj , y ≥ 0), j = 1, 2, starting
from ∅. Then βy := βy1 ? β̂

y ? rev(βy2 ), y ≥ 0 is an SSIP(α)(θ1, θ2)-evolution starting from γ.

Proof of Proposition 4.10: First note that (βy1 , y ≥ 0) has the same distribution as (
↼

βy, y ≥ 0) in
(4.8), by Definition 4.3. Hence, we need to show that (β̂y ? rev(βy2 ) y ≥ 0) is an RSSIP(α)(θ2)-
evolution starting from γ, which we defined as the left-right reversal of SSIP(α)(θ2) starting from
rev(γ). By Proposition 4.9, it suffices to show that (βy2 ? rev(β̂y), y ≥ 0) is an SSIP(α)(θ2, α)-
evolution starting from rev(γ). This follows straight from Definition 4.3 and Proposition 1.2. The
final claim follows from the representation in the first part and Proposition 1.2 since rev(βy) =

βy2 ? rev(β̂y) ? rev(βy1 ). �

In preparation of proving Proposition 4.9, we consider a Poisson random measure
↼

Z(r) on [0,∞)×
EI with intensity (θ1/α−1)Leb⊗Λ(α), whose atoms consisting of immigration times and excursions
we label as red, and an independent Poisson random measure

↼

Z(b) on [0,∞) × EI with intensity
Leb⊗ Λ(α), whose atoms we label as blue. Let

↼

βz = ?
(s,βs) points of

↼
Z(r)+

↼
Z(b) : s∈[0,z]↓

βz−ss , z ≥ 0.

Then (
↼

βz, z ≥ 0) is an SSIP(α)(θ1)-evolution, by Proposition A.5. We seek to compare this process
with an SSIP(α)(θ1, α)-evolution; to this end, let us explore this two-colour model in more detail.
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Figure 4.3. We illustrate the state of an SSIP(α)(θ1) at time y > 0. The contribu-
tion of each surviving red excursion contains a leftmost block of mass Hy

i and the
remaining (red-shaded) part γyi . To the right of each surviving red excursion, there
is a finite number (possibly zero) of blue excursions that form µyi . Excursions not
surviving to time y are omitted.

Fix any y ≥ 0. Denote by (sk,βsk)k≥1 the red atoms of
↼

Z(r) whose excursions surviving to time
y i.e. βy−sksk 6= ∅, with sk in increasing order. The distribution of (sk, k ≥ 1) is given in (4.4), with
θ = θ1 − α. We also read from (4.7) the conditional distribution given (sk, k ≥ 1) of the interval
partition βy−sksk

d
= {(0, Hy

k )} ? γyk .
Given the immigration times (sk, k ≥ 1) of the red excursions and s0 := 0, let µyk be the

contribution at time y of the blue excursions that are immigrating at times in the interval [sk−1, sk),
i.e.

µyk := ?
(s,βs) points of

↼
Z(b) : s∈[sk−1,sk)↓

βy−ss , k ≥ 1.

Note that µyk may be empty. Then we have a decomposition of
↼

βy, as illustrated in Figure 4.3:

↼

βy =
1

?
k=∞

(
{(0, Hy

k )} ? γyk ? µ
y
k

)
. (4.10)

Given (sk, k ≥ 1), these Hy
k , γ

y
k , µ

y
k, k ≥ 1, are conditionally independent. To identify the

conditional distribution of γyk ? µ
y
k given (syk, k ≥ 1), note that display (4.3) yields that

?
(s,βs) points of

↼
Z(b) : s∈[sk,y]↓

βy−ss ∼ Gamma
(
α, (2(y − sk))−1

)
· PDIP(α)(α),

which coincides with the conditional distribution of γyk given in (4.7), and this interval partition is
conditionally independent of µyk. As a result, given (sk, k ≥ 1) and writing s0 = 0, the interval
partitions γyk ? µ

y
k, k ≥ 1, are conditionally independent, and using (4.3) again, we obtain

γyk ? µ
y
k
d
= ?

(s,βs) points of
↼
Z(b) : s∈[sk−1,y]↓

βy−ss ∼ Gamma
(
α, (2(y − sk−1))−1

)
· PDIP(α)(α).

Next, define an SSIP(α)(θ1, α)-evolution by β̃y =
↼

βy ?
⇀

βy, y ≥ 0, where (
↼

β, y ≥ 0) is given by (4.8)
and (

⇀

βy, y ≥ 0) is an RSSIP(α)(α)-evolution starting from ∅. Since (4.8) is only left-right-reversing
within surviving clades, the distribution of the increasing sequence of immigration times is again
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y

γ̃y3 γ̃y2 γ̃y1 γ̃y0

(0, H̃y
1 )(0, H̃y

2 )(0, H̃y
3 )

s̃1

s̃2

s̃3

Figure 4.4. The value of an SSIP(α)(θ1, α) at time y > 0. The surviving immigra-
tion of

↼

βθ1−α to time y are coloured in green, with each one composed by a rightmost
interval and the remaining part (green-shaded).

given by (4.4), with θ = θ1 − α, now based on
↼

Z. We denote these by (s̃k, k ≥ 1) and also write
s̃0 := 0. We further read from (4.7) and (4.8) that

(
↼

βy,
⇀

βy)
d
=

(
1

?
k=∞

γ̃yk ? {(0, H̃
y
k )}, γ̃y0

)
, (4.11)

where, given (s̃k, k ≥ 1), we have conditionally independent H̃y
k ∼ Gamma(1 − α, (2(y − s̃yk))

−1),
k ≥ 1, and γ̃yk ∼ Gamma(α, (2(y − s̃k))−1) · PDIP(α)(α), k ≥ 0. See Figure 4.4.

Summarizing, we have the following statement.

Lemma 4.11. Fix any y ≥ 0. With notation as above, we have (sk, k ≥ 1)
d
= (s̃k, k ≥ 1).

Moreover, the conditional distribution of
(
(Hy

k , γ
y
k ? µ

y
k), k ≥ 1

)
given (sk, k ≥ 1) is the same as the

conditional distribution of
(
(H̃y

k , γ̃
y
k−1), k ≥ 1

)
given (s̃k, k ≥ 1).

Proof of Proposition 4.9: For fixed y ≥ 0, using Lemma 4.11 and its notation, we have the identity
in law(

1

?
i=k

(
{(0, Hy

i )} ? γyi ? µ
y
i

))
? β̂y

d
= {(0, H̃y

k )} ?

(
1

?
i=k−1

(
γ̃yi ? {(0, H̃

y
i )}
))

? γ̃y0 ? β̂
y, k ≥ 1,

where (β̂z, z ≥ 0) is an SSIP(α)(0)-evolution starting from γ, independent of everything else. In
the limit k → ∞, the LHS has the law at time y of an SSIP(α)(θ1)-evolution starting from γ. For
the RHS, since it follows from Corollary 2.7 that γ̃y0 ? β̂

y has the law of a RSSIP(α)(α)-evolution at
time y starting from γ, the RHS has, in the limit k → ∞, the law of an SSIP(α)(θ1, α)-evolution
at time y, starting from γ. So we have identified the one-dimensional marginals. It follows from
this observation above and the Markov properties of both processes that they have the same finite-
dimensional distributions. The claim follows from the path-continuity. �

We end this section by deriving two decompositions of Poisson–Dirichlet interval partitions from
the correspondence in Lemma 4.11. They have a similar flavour to Pitman and Winkel (2009,
Corollary 8), but are different.
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Corollary 4.12. For θ > α, ρ > 0, let (β̄n)n≥1 be i.i.d. PDIP(α)(0), (Bn)n≥1 be i.i.d. Beta(θ−α, 1),
(En)n≥1 be i.i.d. Exp(ρ), and γ ∼ Gamma(α, ρ) · PDIP(α)(α). Then we have the identity(

1

?
n=∞

(
En

n∏
i=1

Bi

)
rev(β̄n)

)
? γ

d
= Gamma(θ, ρ) · PDIP(α)(θ). (4.12)

Proof : Consider β̃y d
= ?1

k=∞

(
γ̃yk ? {(0, H̃

y
k )}
)
? γ̃y0 given in (4.11), i.e. a decomposition of an

SSIP(α)(θ, α)-evolution at time y. With y = 1/2ρ, by (4.5) and (2.2) we have(
γ̃1/2ρ
n ?

{
(0, H̃1/2ρ

n )
}
, n ≥ 1

)
d
=

((
En

n∏
i=1

Bi

)
rev(β̄n), n ≥ 1

)
.

Then β̃1/2ρ can be written as the LHS of (4.12). On the other hand, β̃1/2ρ ∼ Gamma(θ, ρ) ·PDIP(α)(θ)
by Proposition 4.9 and (4.3). �

Corollary 4.13. For θ > α and ρ > 0, let (β̄n)n≥1 be i.i.d. PDIP(α)(0), (Bn)n≥1 i.i.d. Beta(θ, 1),
(En)n≥1 i.i.d. Exp(ρ), G ∼ Gamma(α, ρ), γ̄ ∼ PDIP(α)(α), and K have geometric distribution on N
with success probability 1− α/θ. Then we have the identity(

G

K∏
i=1

Bi

)
γ̄ ?

(
1

?
n=K−1

(
En

n∏
i=1

Bi

)
rev(β̄n)

)
d
= Gamma(α, ρ) · PDIP(α)(α).

Proof : Using the decomposition of
↼

β1/2ρ given in (4.10) and Lemma 4.11, and notation therein, we
look at the interval partition to the right of the rightmost red interval, i.e. γ1/2ρ

1 ?µ
1/2ρ
1 . The Poisson

property shows that the first (from the right) red excursion is the K-th one among all points of
↼

Z(r) +
↼

Z(b) surviving to time 1/2ρ. Using (4.5) and (2.2), we have the representation of the left-hand
side. By Lemma 4.11, γ1/2ρ

1 ? µ
1/2ρ
1 has the same law as γ̃1/2ρ

0 ∼ Gamma(α, ρ) · PDIP(α)(α). �

4.4. Pseudo-stationarity of SSIP(α)(θ1, θ2)-evolutions, and the proof of Theorem 1.5. Recall from the
introduction that we call a distribution µ on unit-mass interval partitions in IH pseudo-stationary
for an interval partition evolution if starting the evolution from an independently scaled multiple
of a µ-distributed interval partition, the marginal distributions at all positive times have the same
form. In other words, the evolution only changes the distribution of the total mass, but keeps the
distribution of the interval partition normalised to unit total mass invariant. Let us first study
SSIP(α)(θ1, θ2)-evolutions starting from ∅.

Proposition 4.14. For θ1 ≥ α and θ2 ≥ 0, let (βy, y ≥ 0) be an SSIP(α)(θ1, θ2)-evolution starting
from ∅. Then at any fixed time y ≥ 0 we have

βy
d
= V Gy1β̄1 ? {(0, V Gy0)} ? Gy2β̄2,

where (V, β̄1, β̄2, G
y
1, G

y
0, G

y
2) is a family of independent random variables with V ∼ Beta(θ1 − α, 1),

β̄1 ∼ PDIP(α)(θ1), rev(β̄2) ∼ PDIP(α)(θ2), Gy1 ∼ Gamma(θ1, 1/2y), Gy0 ∼ Gamma(1 − α, 1/2y), and
Gy2 ∼ Gamma(θ2, 1/2y). By convention V = 0 when θ1 = α and Gy2 = 0 when θ2 = 0.

In other words,

βy
d
= Gy

(
V1(1− V2)β̄1 ? {(0, V1V2)} ? (1− V1)β̄2

)
,

where Gy ∼ Gamma(θ1+θ2−α, 1/2y), V1 ∼ Beta(θ1−α, θ2) and V2 ∼ Beta(1−α, θ1) are independent,
further independent of (β̄1, β̄2).
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Proof : We write βy =
↼

βy ?
⇀

βy, y ≥ 0 as in Definition 4.3. It is known from Forman et al. (2020c,

Proposition 3.6) that rev(
⇀

βy) ∼ Gamma(θ2, 1/2y) · PDIP(α)(θ2), i.e.
⇀

βy
d
= Gy2β̄2.

Using the two-colour correspondence described in Lemma 4.11 and its notation, we have
↼

βy
d
= γy?

{(0, Ay)}, where γy :=?2
i=∞ ({(0, Hy

i )} ? γyi ? µ
y
i ) is the concatenation of all interval partitions to

the left of the rightmost red one, and Ay := Hy
1 is the mass of the leftmost block of the rightmost red

interval partition. Let us enumerate all immigrants in
↼

Z(r) +
↼

Z(b) surviving to time y from right to
left and denote by K the index of the first red one (i.e. µy1 is the concatenation of contributions from
K − 1 blue ones). Then K clearly has a geometric distribution with success probability 1− α/θ1.

Applying (4.5) and (4.6) to the SSIP(α)(θ1)-evolution associated with
↼

Z(r) +
↼

Z(b) and using (2.2),
we deduce that, conditionally on {K = k}, we have (γy, Ay)

d
=
(
Gy1
(∏k

i=1Bi
)
β̄1, G

y
0

∏k
i=1Bi

)
,

where Gy1 ∼ Gamma(θ1, 1/2y), Gy0 ∼ Gamma(1 − α, 1/2y), β̄1 ∼ PDIP(α)(θ1), and (Bi)i≥1 is an i.i.d.
sequence of Beta(θ1, 1); they are all independent. So we complete the proof of the first statement
by checking that V :=

∏K
i=1Bi ∼ Beta(θ1 − α, 1), which follows from the calculation of moments:

for every r ∈ N, we have

E

[(
K∏
i=1

Bi

)r]
=
∞∑
k=1

(
θ1

θ1 + r

)k θ1 − α
θ1

(
α

θ1

)k−1

=
θ1 − α

θ1 − α+ r
.

Since (Gy1V,G
y
0V )

d
=
(
(1−V2)(Gy1 +Gy0)V, V2(Gy1 +Gy0)V

)
and

(
(Gy1 +Gy0)V,Gy2

) d
= Gy(V1, (1−V1)),

the second statement follows from the first one. �

Corollary 4.15. Let θ ≥ α, ρ > 0. Consider independent B ∼ Beta(θ−α, α), B′ ∼ Beta(1−α, θ),
γ̄1 ∼ PDIP(α)(θ), and γ̄2 ∼ PDIP(α)(α). Then we have

B(1−B′)γ̄1 ? {(0, BB′)} ? (1−B)γ̄2 ∼ PDIP(α)(θ).

Proof : This follows from the marginals of Proposition 4.14 with θ1 = θ, θ2 = α and y = 1/2ρ, and
from the marginals of an SSIP(α)(θ)-evolution recalled in (4.3), noting that they must be equal by
Proposition 4.9. �

By using very similar arguments as in Forman et al. (2020c, proof of Proposition 3.15), respec-
tively, we deduce from Proposition 4.14 the following consequence of Proposition 4.14, and we can
similarly prove Theorem 1.5.

Lemma 4.16. For θ1 ≥ α, θ2 ≥ 0 and ρ > 0, let (G,B,B′, γ̄1, γ̄2) be an independent quintuple
with G ∼ Gamma(θ1 + θ2 − α, ρ), B ∼ Beta(θ1 − α, θ2), B′ ∼ Beta(1− α, θ1), γ̄1 ∼ PDIP(α)(θ1), and
rev(γ̄2) ∼ PDIP(α)(θ2). Let (βy, y ≥ 0) be an SSIP(α)(θ1, θ2)-evolution starting from

γ := G
(
B(1−B′)γ̄1 ? {(0, BB′)} ? (1−B)γ̄2

)
.

Then at any y ≥ 0, the interval partition βy has the same distribution as (2yρ+ 1)γ.

Proof of Theorem 1.5: When θ > 0, the pseudo-stationarity claims for SSIP(α)(θ1, θ2)-evolutions
can be deduced from Lemma 4.16 by self-similarity and Laplace inversion, as in the corresponding
proof of Forman et al. (2020c, Proposition 1.3(iv)) for SSIP(α)(θ)-evolutions. Note, in particular,
that Theorem 1.4(ii) entails that ‖βy‖ is independent of γ̄, since the conditional distribution of the
total mass process given the initial interval partition only depends on the initial total mass ‖β0‖,
not on the independent unit-mass interval partition γ̄ = β0/‖β0‖.

When θ = 0, i.e. θ1 = α and θ2 = 0, then by definition the process is an RSSIP(α)(0). Then the
pseudo-stationary distribution is the reversal of PDIP(α)(0) by Forman et al. (2021, Theorem 1.5),
as desired.
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That these processes are recurrent for θ ∈ (0, 1) is a consequence of the recurrence of their
total mass processes BESQ(2θ). It remains to show that SSIP(α)(θ1, θ2)-evolutions are extensions of
SSIP

(α)
† (θ1, θ2)-evolutions. This is the achieved in Proposition 4.17. �

4.5. Identification of stopped SSIP(α)(θ1, θ2)-evolutions as SSIP
(α)
† (θ1, θ2)-evolutions. Finally, we

show that the two approaches to define a three-parameter family of interval partition evolutions
with left and right immigration lead to the same processes (when stopped upon first reaching ∅).

Proposition 4.17. An SSIP(α)(θ1, θ2)-evolution starting from γ and stopped when first hitting ∅,
is an SSIP

(α)
† (θ1, θ2)-evolution starting from γ.

Proof : Recall the construction of an SSIP
(α)
† (θ1, θ2)-evolution (βy, y ≥ 0) in Definition 1.3. By

Proposition 4.9, γ(0)
1 has the same distribution as the process

↼

βy
1
?
⇀

βy1 , y ≥ 0,

where (
↼

βy
1
, y ≥ 0) is as in (4.8) and (

⇀

βy1 , y ≥ 0) is an SSIP(α)(α)-evolution. Then we can write

βy =
↼

βy
1
?
⇀

βy+, where
⇀

βy+ =
⇀

βy1 ? {(0, f
(0)(y))} ? γ(0)

2 (y), 0 ≤ y ≤ ζ(f (0)),

is an RSSIP(α)(θ2)-evolution, by Lemma 2.8 and Proposition 2.9. Comparing with Definition 4.3, the
process (βy, 0 ≤ y ≤ ζ(f (0))) can be viewed as an SSIP(α)(θ1, θ2)-evolution stopped at the lifetime
of the block starting from the middle interval (‖β0

1‖, ‖β0
1‖+m0). Because of the Markov properties

of both processes, Theorem 1.4 and Proposition 4.7, we can continue using these arguments to
complete the proof inductively. �

Appendix A. Proofs of technical lemmas

We complete the proofs of Lemmas 3.4 and 3.8 in Appendix A.4. These proofs depend on the
marked Lévy process constructions of Forman et al. (2020a, 2022, 2020c) that we recall here. We
also explain how Propositions 4.1 and 4.2 can be deduced from these constructions.

A.1. Construction of SSIP(α)(0) from marked stable Lévy processes. Let E be the space of non-
negative càdlàg excursions away from zero, i.e.

E = {f : [0,∞)→ [0,∞) is càdlàg, and ∃z ≥ 0 s.t. f(y) = 0, ∀y ≥ z}
For any f ∈ E , let ζ(f) := sup{t ≥ 0: f(t) > 0}. Fix α ∈ (0, 1). Pitman and Yor (1982,
Section 3) construct a sigma-finite excursion measure associated with BESQ(−2α) on (the subspace
of continuous excursions in) the space E , which we scale to a measure ν(−2α)

BESQ such that

ν
(−2α)
BESQ (f : ζ(f) ≥ y) =

α

2αΓ(1− α)Γ(1 + α)
y−1−α, y > 0,

and under ν(−2α)
BESQ , conditional on ζ(f) = y for 0 < y <∞, the process f is the squared Bessel bridge

with dimension parameter 4 + 2α, from 0 to 0 over [0, y], see Revuz and Yor (1999, Section 11.3).
Following Forman et al. (2020a), let N be a Poisson random measure on [0,∞)×E with intensity

measure Leb⊗ν(−2α)
BESQ . Each atom of N, which is an excursion function in E , shall be referred to as a

spindle, in view of illustrations of N as in Figure A.5. Indeed, it will be useful to have a designated
name other than “excursion” in order to avoid confusion with excursions of Lévy processes that we
will also encounter. For t ≥ 0 the following limit exists (see Sato (1999, Theorem 19.2)):

ξN(t) := lim
z↓0

(∫
[0,t]×{g∈E : ζ(g)>z}

ζ(f)N(ds, df)− (1 + α)t

(2z)αΓ(1− α)Γ(1 + α)

)
. (A.1)
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t

y

(N,X)

X(t)

X(t−)

(ft(z), z ≥ 0)

ft(y −X(t−))

z

skewer(y,N,X)

Figure A.5. A (discrete analogue of a) scaffolding X with spindle marks: (N,X),
and the spindle ft at scaffolding time t. The skewer skewer(y,N,X) extracts from
each spindle that crosses level y the spindle width at that level and builds an interval
partition in which block sizes are spindle widths, placed in left-to-right order without
leaving gaps, as if on a skewer that is pushed through spindles from left to right.

The process ξN := (ξN(t), t ≥ 0), particularly its time parametrisation is not of direct relevance
to us, and we call it the scaffolding function of N so that we view the spindles associated with
its jumps as being placed onto this scaffolding. In the present setting, it is a spectrally positive
stable Lévy process of index 1 + α, with Lévy measure ν(−2α)

BESQ (ζ(f) ∈ dy) and Laplace exponent
q1+α/2αΓ(1 + α), q ≥ 0. We will also use the term scaffolding function for relevant concatenations
of stable processes below.

For x > 0, let f ∼ BESQx(−2α), independent of N. Then f is E-valued (actually taking values in
the subspace of excursions that are continuous after an initial positive jump). Write Cladex(α) for
the law of a clade of initial mass x, which is a random point measure on [0,∞)× E defined by

clade(f ,N) := δ(0, f) + N |(0,T−ζ(f)(N)]×E , where T−y(N) := inf{t ≥ 0: ξN(t) = −y}. (A.2)

We also write len(clade(f ,N)) := T−ζ(f)(N) for its length, which is a.s. finite. For γ ∈ IH , let
(NU , U ∈ γ) be a family of independent clades, with each NU ∼ Clade|U |(α). Then we define Nγ ,
a random point measure on [0,∞)× E , by the concatenation of (NU , U ∈ γ):

Nγ := ?
U∈γ

NU :=
∑
U∈γ

∫
δ(g(U) + t, f)NU (dt, df), where g(U) :=

∑
V ∈γ : supV≤inf U

len(NV ). (A.3)

We denote the distribution of Nγ by Pα,0
γ .

Definition A.1 (Skewer). Let N =
∑

i∈N δ(ti, fi) for some (ti, fi) ∈ [0, T ] × E and X : [0, T ] → R
càdlàg and such that ∑

t∈[0,T ] : ∆X(t)>0

δ(t,∆X(t)) =
∑
i∈N

δ(ti, ζ(fi)).

For y ≥ 0 and t ∈ [0, T ], set

My(t) =

∫
[0,t]×E

f
(
y −X(s−)

)
1{y ≥ X(s−)}N(ds, df) =

∑
i∈N : ti∈[0,t]

fi
(
y −X(ti−)1{y ≥ X(ti−)}

)
,

with the convention that My(0−) = 0. The skewer of the pair (N,X) at level y is the interval
partition

skewer(y,N,X) := {(My(t−),My(t)) : My(t−) < My(t), t ∈ [0, T ]}, (A.4)
If ξN as in (A.1) exists, then we denote the skewer process of N by

skewer(N) := (skewer(y,N, ξN ), y ≥ 0).
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See Figure A.5 for an illustration of skewer(y,N,X) in the natural extension of this definition
to point measures with finitely many atoms.

Proposition A.2 (Theorem 1.8 of Forman et al. (2021)). For γ ∈ IH , let Nγ ∼ Pα,0
γ be as in

(A.3). Then skewer(Nγ) is an SSIP(α)(0)-evolution starting from γ.

Note that the skewer process is indexed by the non-negative levels of the scaffolding function,
while the time axis of the scaffolding function induces the left-to-right order within the interval
partition. This means we need to be careful when we refer to “time”, so it will often be clearest if
we distinguish “scaffolding time t” and “level y”, but we will also continue to refer to “time y” in an
SSIP(α)(0), which in the context of a clade construction is the same as “level y”.

The Markov property of SSIP(α)(0)-evolutions at time y > 0 corresponds to a decomposition of
Nγ at scaffolding level y in ξNγ . Indeed, the SSIP(α)(0)-evolution after time y is described by the
the spindles of Nγ that the ξNγ places above level y, and these spindles naturally split into clades
according to the excursions of ξNγ above level y, which (for all excursions above almost all levels)
start by a jump that corresponds to the upper part of a spindle straddling level y.

More precisely, denote by Sγ(t) = Leb({u ≤ t : ξNγ (u) ≥ y}), where Leb denote the Lebesgue
measure, the amount of time up to scaffolding time t ∈ [0, len(Nγ)] that the scaffolding ξNγ has
spent above level y. Then we define the associated point measure

N≥y(Nγ) :=
∑

points (t,ft) of Nγ

(
1{ξNγ (t−) ≥ y}δ(Sγ(t), ft) + 1{ξNγ (t−) < y < ξNγ (t)}δ(Sγ(t), f̂yt )

)
,

where f̂yt (s) = f(y−ξNγ (t−)+s), s ∈ [ξNγ (t)−y], is the part of the spindle ft above level y. We can
similarly define N≤y(Nγ) based on (part-)spindles below level y and refer to the σ-algebra generated
by N≤y(Nγ) as the history below level y. Then the point measures Nγ satisfy the following property,
which we refer to as Markov-like property.

Proposition A.3 (Proposition 6.6 of Forman et al. (2020a)). Let Nγ ∼ Pα,0
γ and y > 0. Then con-

ditionally on the history below level y, we have N≥y(Nγ) ∼ Pα,0
βy , where β

y := skewer(y,Nγ , ξNγ ).

A.2. Clade construction of SSIP(α)(θ)-evolutions with θ > 0. Let α ∈ (0, 1) and θ > 0. The clade
construction of SSIP(α)(θ)-evolutions is a Poissonian construction, based on a different type of clade,
clades without an initial spindle. To define these clades, first consider again a Poisson random
measure N on [0,∞) × E with intensity measure Leb ⊗ ν

(−2α)
BESQ and ξN its associated scaffolding

defined as in (A.1). For y > 0, let T−y := inf{t ≥ 0: ξN(t) < −y}, and T (−y)− := supz∈(0,y) T
−z.

We recall from Forman et al. (2020c, Section 2.3) that there is a sigma-finite measure ν(α)
⊥cld on a

suitable space (N ,Σ(N )) of counting measures on [0,∞)× E that can be defined as

ν
(α)
⊥cld(A) := E

 ∑
y∈[0,1]

1
{
N|←

[T (−y)−,T−y)
∈ A

} , A ∈ Σ(N ), (A.5)

where N|←[a,b) :=
∑

(s,f) points of N : s∈[a,b) δ(s−a, f) for every a < b. Since each interval [T (−y)−, T−y)

is the interval of an excursion of ξN above the minimum, the sigma-finite measure ν(α)
⊥cld captures

the distribution of the associated point measure of spindles during such an excursion under the Itô
excursion measure of the spectrally positive stable Lévy process ξN reflected at its running minimum
process. See Forman et al. (2020c, Section 2.3) for more detailed discussion on ν(α)

⊥cld.

Lemma A.4 (Equations (2.17)–(2.18) in Forman et al. (2020c)). Let Nx = δ(0, f)+N◦ ∼ Cladex(α)
be a clade of initial mass x > 0 and write T−y := inf{t ≥ 0: ξN◦(t) ≤ −y}, y ∈ [0, ζ(f)). Then
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conditionally given ζ(f) = s, ∑
y∈[0,ζ(f)) :T (−y)−<T−y

δ
(
ζ(f)− y,N◦|←

[T (−y)−,T−y)

)
,

is a Poisson random measure on [0, s]×N with intensity measure Leb⊗ ν(α)
⊥cld.

Let
↼

F be a Poisson random measure on (−∞, 0] × N with intensity measure (θ/α)Leb ⊗ ν(α)
⊥cld.

We will abbreviate the distribution of
↼

F to Pα,θ
∅ . We will now use the points (s,Ns) of

↼

F to provide
immigration at level |s| that contributes to levels y ≥ |s| via skewer(y − |s|, Ns, ξNs).

Proposition A.5 (Proposition 3.4 of Forman et al. (2020c)). Let
↼

F ∼ Pα,θ
∅ and

↼

βy = ?
points (s,Ns) of

↼
F : s∈[−y,0]

skewer(y − |s|, Ns, ξNs), y ≥ 0. (A.6)

Then (
↼

βy, y ≥ 0) is an SSIP(α)(θ)-evolution starting from ∅.

We stress that each atom (s,Ns) of
↼

F is in the negative half plane with s ≤ 0. So this concate-
nation is in decreasing order of |s|, setting skewers of Ns with |s| higher to the left of those with |s|
lower.

Recall from Proposition 2.9 that an SSIP(α)(θ)-evolution starting from β0 ∈ IH can be con-
structed as (βy1 ? β

y
2 , y ≥ 0) for an independent pair of an SSIP(α)(θ)-evolution (βy1 , y ≥ 0) starting

from ∅ and an SSIP(α)(0)-evolution (βy2 , y ≥ 0) starting from β0. In particular, we can combine
Propositions A.2 and A.5 to obtain a clade construction of an SSIP(α)(θ)-evolution starting from
β0, based on an independent pair (

↼

F,Nβ0) ∼ Pα,θ
∅ ⊗Pα,0

β0 .
Finally, let us note the Markov-like property in this context. To this end, we denote by

N≥y(
↼

F) = ?
points (s,Ns) of

↼
F : s∈[−y,0]

N≥y−ss

the point measure of spindles that takes into account all immigration at levels s ≤ y and builds
a point measure from the associated (part-)spindles above level y = s + (y − s). We collect the
immigration at levels s > y in a point measure

↼

F≥y :=
↼

F|←(y,∞) on [0,∞) × N . We include the

remaining spindles below level y, captured in N≤y−ss , from immigration at levels s ≤ y, in the
history below level y.

Proposition A.6 (Lemma 3.10 of Forman et al. (2020c)). Let (
↼

F,Nβ0) ∼ Pα,θ
∅ ⊗Pα,0

β0 and y > 0.
Denote by (βy, y ≥ 0) the associated SSIP(α)(θ)-evolution. Then conditionally given the history
below level y, we have (

↼

F≥y, N≥y(
↼

F) ? N≥y(Nβ0)) ∼ Pα,θ
∅ ⊗Pα,0

βy .

For more details, we refer to Forman et al. (2020c, Section 3).

A.3. Excursions of interval partition evolutions. Let Λ(α) be the image of the measure ν(α)
⊥cld via the

mapping N 7→ skewer(N). Then Λ(α) is the desired excursion measure in Section 4.1.

Proof of Proposition 4.1: Part 1 is Forman et al. (2020c, Proposition 2.12(i)). For part 2, the
entrance law is given by Forman et al. (2020c, Lemma 3.5) and the Markov property is implied by
Forman et al. (2020c, Corollary 3.9).

The self-similarity follows from the scaling property of ν(α)
⊥cld given by Forman et al. (2020c,

Lemma 2.11). Specifically, for any N ∈ N , define c�(α)
cld N ∈ N by replacing each atom (t, f) of N
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with (c1+αt, cf(·/c)). Then Forman et al. (2020c, Lemma 2.11) states that the image of ν(α)
⊥cld via

the mapping N 7→ c�(α)
cld N is c−1ν

(α)
⊥cld. Combining with the identity

skewer
(
y, c�(α)

cld N, ξc�(α)
cldN

)
= c · skewer

(
y/c,N, ξN

)
, y > 0,

we have, for any measurable set A in EI ,

Λ(α)(ΦcA) = ν
(α)
⊥cld

(
skewer−1(ΦcA)

)
= ν

(α)
⊥cld

(
c�(α)

cld skewer−1(A)
)

= c−1ν
(α)
⊥cld

(
skewer−1(A)

)
= c−1Λ(α)(A). �

Proof of Proposition 4.2: The first statement follows from Proposition A.5. The second one is a
consequence of Proposition A.6. �

A.4. Proofs of Lemmas 3.4 and 3.8.

Proof of Lemma 3.4: Let ((βy1 ,m
y, βy2 ), y ≥ 0) be a J -valued SSIP

(α)
† (θ1, θ2)-evolution as defined

in Definition 3.1. Since total mass evolves continuously between and across any finite number of
renaissance times, the total mass reaches zero continuously on any event {Tn = T∞ < ∞}, n ≥ 0.
Hence, it suffices to show that, on the event {Tn ↑ T∞ < ∞}, the total mass tends to zero along
the sequence (Tn, n ≥ 0).

Recall from (A.3) the concatenation of clades Nγ =?U∈γ NU and from Definition A.1 notation
skewer(Nγ). We use the notation of Definition 3.1, consider f (0) ∼ BESQm0(−2α) and independent
clade constructions

γ
(0)
1 =

↼

β
(0)
1 ? skewer

(
?
U∈β0

1

N
(0)
U

)
and γ

(0)
2 = rev

(
↼

β
(0)
2 ? skewer

(
?

U∈rev(β0
2)

N
(0)
U

))
,

in the sense of (A.3) and where
↼

β
(0)
i is built from point measures

↼

F
(0)
i of clades as in (A.6), with

intensities θi, i = 1, 2. Our strategy is to use these clades, as well as an auxiliary independent clade
δ(0, f (0)) + N

(0)
mid := clade(f (0),N) associated with f (0), to enhance Definition 3.1 and construct

from these clades the entire process ((βy1 ,m
y, βy2 ), y ≥ 0), as well as a process (βyem, y ≥ 0) that is

an SSIP(α)(α)-evolution during [0, T∞) and, on {T∞ <∞}, proceeds continuously across T∞, as an
SSIP(α)(0)-evolution. Indeed, while the blocks of (βy1 ,m

y, βy2 ) can then be thought of as a subset
of the blocks of γ(0)

i (y), i = 1, 2, and f (0)(y), we will make sure that βyem will contain precisely the
remaining blocks (“emigration”), and the corresponding relationship of the associated total mass
processes will yield the claimed asymptotics.

Specifically, suppose by induction that we have constructed the processes for the time interval
[0, Tn] for some n ≥ 0 and are given families (N

(n)
U , U ∈ βTni ), i = 1, 2, and point measures

↼

F
(n)
i ,

i = 1, 2, of clades, as well as another clade δ(0, f (n))+N
(n)
mid. Furthermore, suppose that, conditionally

given the history up to level Tn, in the sense of Forman et al. (2020c, (3.8) and (3.10)) and as recalled
less formally in Section A.2, these clades and point measures are independent and so that

γ
(n)
1 =

↼

β
(n)
1 ? skewer

(
?

U∈βTn1

N
(n)
U

)
and γ

(n)
2 = rev

(
↼

β
(n)
2 ? skewer

(
?

U∈rev(βTn2 )

N
(n)
U

))
,

and f (n) have joint conditional distributions given ((βy1 ,m
y, βy2 ), 0 ≤ y ≤ Tn) as in Definition 3.1.

Then Tn+1 := Tn + ζ(f (n)),

(βy1 ,m
y, βy2 ) :=

(
γ

(n)
1 (y − Tn), f (n)(y − Tn), γ

(n)
2 (y − Tn)

)
, Tn ≤ y < Tn+1,
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and (β
Tn+1

1 ,mTn+1 , β
Tn+1

2 ) := φ(β
Tn+1−
1 ? β

Tn+1−
2 ) extends the construction of the J -valued process

to [0, Tn+1] as in Definition 3.1. To proceed with the induction, we note that ζ(f (n)) is independent
of the other clades, conditionally given the history up to level Tn, so we can apply the Markov-like
properties at level ζ(f (n)), which we recalled from Forman et al. (2020a) and Forman et al. (2020c)
in Propositions A.3 and A.6. Specifically, we obtain point measures of spindles that, via (A.3), can
be decomposed into clades and then grouped as (N

(n+1)
U , U ∈ βTn+1

i ), i = 1, 2, and we also obtain
point measures

↼

F
(n+1)
i , i = 1, 2, of clades, as well as another clade δ(0, f (n+1)) + N

(n+1)
mid associated

with the longest interval of length mTn+1 , all conditionally independent given the history up to level
Tn+1. Inductively, this completes the construction of Definition 3.1 on [0, T∞).

Now set β0
em := 0 and suppose further that we enter the induction step also with a clade δ(0, f (n))+

N
(n)
mid and an independent process

βyem =

n−1∑
j=0

skewer
(
y − Tj ,N(j)

mid, ζ(f (j)) + ξ
N

(j)
mid

)
, y ≥ 0, (A.7)

that is an SSIP(α)(α)-evolution on [0, Tn] continued as an SSIP(α)(0)-evolution on [Tn,∞). By
Lemma 2.8, the process skewer

(
y,N

(n)
mid, ζ(f (n)) + ξ

N
(n)
mid

)
, y ≥ 0, evolves as an SSIP(α)(α)-

evolution on [0, ζ(f (n))]. By the Markov-like property at level ζ(f (n)), it continues as an SSIP(α)(0)-
evolution. Then the strong Markov property Forman et al. (2021, Proposition 3.14) of SSIP(α)(α)-
evolutions yields (A.7) with n replaced by n + 1. Inductively, the statement holds for all n ≥ 0,
and by Poisson random measure arguments based on Lemma A.4 and Proposition A.5, this also
entails the corresponding statement with n = ∞, and in particular, the left limit at T∞ extends
this continuously to an SSIP(α)(α) on [0, T∞].

By construction, the blocks of (βy1 ,m
y, βy2 ) are all taken from the skewer at level y of clades that

were used in the construction of γ(0)
1 and γ

(0)
2 , and from f (0). Specifically, this holds explicitly for

0 ≤ y < T1. For Tn ≤ y < Tn+1, n ≥ 1, we take skewers at level y − Tn of clades above level
Tn, which were obtained from the original clades by repeatedly applying Markov-like properties at
levels ζ(f (j)), 0 ≤ j ≤ n− 1, and these levels add up to Tn. We remark that only the order, not the
size of blocks, is affected by the reversals in (A.4).

This construction captures at each step all clades above the next level for use either in (βy1 ,m
y, βy2 ),

0 ≤ y < T∞ or, via N
(n)
mid, n ≥ 0, for use in βyem, 0 ≤ y < T∞. In particular, for all 0 ≤ y < T∞,

‖βy1‖+my + ‖βy2‖ =
∥∥∥γ(0)

1 (y)
∥∥∥+

∥∥∥γ(0)
2 (y)

∥∥∥+
∥∥∥skewer

(
y, δ(0, f (0)) + N

(0)
mid

)∥∥∥− ‖βyem‖. (A.8)

On the other hand, the size of the longest interval of ((βy1 ?{(0,my)}?βy2 ), 0 ≤ y < T∞) tends to zero
along times (Tn, n ≥ 0), when on the event {Tn ↑ T∞ < ∞}: indeed, any subsequence of longest
intervals of lengths exceeding ε > 0 would contribute lifetimes that are stochastically bounded
below by the lifetimes of an independent sequence of BESQε(−2α), and such lifetimes would have an
infinite sum almost surely.

In the clade construction of γ(0)
1 and γ

(0)
2 , the mass evolution of each block is represented by a

spindle in a clade. In our construction, each spindle that starts strictly below level T∞ is either used
for ((βy1 ,m

y, βy2 ), 0 ≤ y < T∞) or for (βyem, y ≥ 0). But on {T∞ <∞}, each spindle that straddles
level T∞ must have a positive mass at level T∞, exceeding some ε > 0 on an interval around T∞.
Hence it cannot be included in ((βy1 ,m

y, βy2 ), 0 ≤ y < T∞). But then the RHS of (A.8) tends to 0
as y ↑ T∞, and this completes the proof. �

Proof of Lemma 3.8: Let J2 := IH × (0,∞) × IH × (0,∞) × IH and (β0,m0, β1,m1, β2) ∈ J2.
We want to couple two SSIP

(α)
† (θ1, θ2) starting respectively from (β0,m0, β1 ? {(0,m1)} ? β2) and

(β0 ? {(0,m0)} ? β1,m1, β2) such that the associated IH -valued processes coincide.
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Viewing J -valued processes as IH -valued processes split around a marked block, we now construct
a J2-valued process that captures two marked blocks. Specifically, we construct

((βy0 ,m
y
0, β

y
1 ,m

y
1, β

y
2 ), 0 ≤ y < SN )

starting from (β0,m0, β1,m1, β2) at time S0 := 0 by the following inductive steps, mimicking Def-
inition 3.1. Suppose that we have constructed the process on [0, Sn] for some n ≥ 0 and some
(βSn0 ,mSn

0 , βSn1 ,mSn
1 , βSn2 ) ∈ J2.

• Conditionally on the history, consider, independently,
– an SSIP(α)(θ1)-evolution γ

(n)
0 starting from βSn0 ,

– an SSIP(α)(α) = RSSIP(α)(α)-evolution γ
(n)
1 starting from βSn1 ,

– an RSSIP(α)(θ2)-evolution γ
(n)
2 starting from βSn2 ,

– and f
(n)
i ∼ BESQ

mSni
(−2α), i = 0, 1.

Let ∆n := min{ζ(f
(n)
0 ), ζ(f

(n)
1 )} and Sn+1 := Sn + ∆n. Define, for 0 ≤ y < ∆(Sn),(

βSn+y
0 ,mSn+y

0 , βSn+y
1 ,mSn+y

1 , βSn+y
2

)
:=
(
γ

(n)
0 (y), f

(n)
0 (y), γ

(n)
1 (y), f

(n)
1 (y), γ

(n)
2 (y)

)
.

• If ∆n = ζ(f
(n)
i ) for some i = 0, 1, and f

(n)
1−i(∆n) exceeds the length of the longest interval in

γ
(n)
j (∆n) for all j = 0, 1, 2, let N = n+ 1. The construction is complete.

• Otherwise, identify the longest interval and split the associated γ(n)
j (∆n) around this interval.

This results in a total of four interval partitions and two blocks. In the natural order, two
of these interval partitions are adjacent. Concatenate these two and collect the now five
components as

(
β
Sn+1

0 ,m
Sn+1

0 , β
Sn+1

1 ,m
Sn+1

1 , β
Sn+1

2

)
.

Note that (in general) we may have N ∈ N ∪ {∞}. On the event {N < ∞}, we further continue
the evolution as a J -valued process starting from the terminal value of the J2-valued process, with
adjacent interval partitions concatenated.

By concatenation properties of SSIP(α)(θ1)- and RSSIP(α)(θ2)-evolutions (Proposition 2.9 and
Lemma 2.8) and by the strong Markov property of these processes applied at the stopping times Sn,
n ≥ 1, we obtain two coupled SSIP

(α)
† (θ1, θ2)-evolutions, which induce the same IH -valued process,

as required. Indeed, the construction of these two processes is clearly complete on {N <∞} and on
{N =∞, S∞ =∞} with S∞ = limn→∞ Sn. This suffices if the event {N =∞, S∞ <∞} has zero
probability. Otherwise, on {N =∞, S∞ <∞} the construction of at least one process is complete
and by Lemma 3.4, the total mass tends to zero along a subsequence of (Sn, n ≥ 0), and hence the
other construction cannot remain unfinished with blocks of positive size at S∞. �
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