Skip to main content
Log in

Development of Discrete Contact Mechanics with Applications to Study the Frictional Interaction of Deformable Bodies

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The paper presents a review of the current state of research in the field of discrete contact mechanics, including the main approaches to the formulation of problems, methods of analytical and numerical solution, the results, and the field of their practical use. It is intended for specialists in contact mechanics and tribology and may also be useful to researchers interested in controlling the interaction of deformable bodies due to the engineering of their surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Ya. Grigoriev, Physics and Microgeometry of Technical Surfaces (Belaruskaya navuka, Minsk, 2016) [in Russian].

  2. T. R. Thomas, Rough Surfaces (Imperial College Press, London, 1999).

    Google Scholar 

  3. I. V. Kragelsky, M. N. Dobychin, and V. S. Kombalov, Friction and Wear. Calculation Methods (Pergamon Press, Oxford, 1982).

    Google Scholar 

  4. N. B. Demkin, Contact of Rough Surfaces (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  5. E. V. Ryzhov, A. G. Suslov, and V. P. Fedorov, Technological Support of the Operational Properties of Machine Parts (Mashinostroenie, Moscow, 1979) [in Russian].

    Google Scholar 

  6. P. Wriggers, Computational Contact Mechanics (Springer, Berlin, 2006).

    Book  MATH  Google Scholar 

  7. V. A. Yastrebov, Numerical Methods in Contact Mechanics (Wiley-ISTE, Hoboken, London, 2013).

    Book  MATH  Google Scholar 

  8. D. Hills, H. Andresen, J. R. Barber, et al., Modeling and Simulation of Tribological Problems in Technology, Ed. by M. Paggi and D. Hills (Springer, Cham, 2020).

    Google Scholar 

  9. A. I. Lurie, Spatial Problems of the Theory of Elasticity (GTTL, Moscow, 1955) [in Russian].

    Google Scholar 

  10. I. G. Goryacheva and E. V. Torskaya, “A periodical contact problem for a system of dies and elastic layer adhered to another base,” Trenie Iznos 16 (4), 642–652 (1995).

    Google Scholar 

  11. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Springer Netherlands, Dordrecht, 1977).

    Book  Google Scholar 

  12. I. Ya. Shtaerman, Contact Problem of the Theory of Elasticity (Gostekhteoretizdat, Leningrad, 1949) [in Russian].

    Google Scholar 

  13. G. M. L. Gladwell, Contact Problems in the Classical Theory of Elasticity (Springer, Dordrecht, 1980).

    Book  MATH  Google Scholar 

  14. M. Dezyani, F. Sharafbafi, and S. Irani, “A new solution for the two-zonal contact problem,” Arab. J. Sci. Eng. 38 (6), 1509–1518 (2013).

    Article  Google Scholar 

  15. P. Ghanati and S. Adibnazari, “A study on the extent of the contact and stick zones in multiple contacts,” Arch. Appl. Mech. 89, 1825–1836 (2019).

    Article  ADS  Google Scholar 

  16. P. Vergne, B. Villechaise, and D. Berthe, “Elastic behavior of multiple contacts: asperity interaction,” ASME J. Tribol. 107 (2), 224–228 (1985).

    Article  Google Scholar 

  17. D. Berthe and P. Vergne, “An elastic approach to rough contact with asperity interactions,” Wear 117 (2), 211–222 (1987).

    Article  Google Scholar 

  18. D. Nowell and D. A. Hills, “Hertzian contact of ground surfaces,” ASME J. Tribol. 111 (1), 175–179 (1989).

    Article  Google Scholar 

  19. N. Sundaram and T. N. Farris, “Multiple contacts of similar elastic materials,” J. Appl. Mech. 131 (2), 1–12 (2009).

    MATH  Google Scholar 

  20. I. G. Goryacheva and M. N. Dobychin, Contact Problems in Tribology (Mashinostroenie, Moscow, 1988) [in Russian].

    Google Scholar 

  21. I. G. Goryacheva, Mechanics of Frictional Interaction (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  22. I. G. Goryacheva and M. N. Dobychin, “Multiple contact model in the problems of tribomechanics,” Tribol. Int. 24 (1), 29–35 (1991).

    Article  Google Scholar 

  23. L. A. Galin, Contact Problems (Springer, Dordrecht, 2008).

    MATH  Google Scholar 

  24. J. A. Greenwood and G. P. B. Williamson, “Contact of nominally flat surfaces,” Proc. R. Soc. London, Ser. A 295 (1442), 300–319 (1966).

    Article  ADS  Google Scholar 

  25. A. E. Andrejkiv and V. V. Panasyuk, “A mixed elastic problem for a half-space with circular interfaces of boundary conditions,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 26–32 (1972).

    Google Scholar 

  26. I. I. Argatov and S. A. Nazarov, “Method of spliced expansions for problems with small contact zones,” in Mechanics of Contact Interactions, Ed. by I. I. Vorovicha and V. M. Aleksandrova (Fizmatlit, Moscow, 2001), pp. 73–82 [in Russian].

    Google Scholar 

  27. I. I. Argatov, “Refinement of the asymptotic solution obtained by the method of splicing expansions in the contact problem of elasticity theory,” Comput. Math. Math. Phys. 40 (4), 594–604 (2000).

    MathSciNet  MATH  Google Scholar 

  28. I. Argatov, Q. Li, and V. L. Popov, “Cluster of the Kendall-type adhesive microcontacts as a simple model for load sharing in bioinspired fibrillar adhesives,” Arch. Appl. Mech. 89, 1447–1472 (2019).

    Article  ADS  Google Scholar 

  29. W. D. Collins, “Some coplanar punch and crack problems in three-dimensional elastostatics,” Proc. R. Soc. London, Ser. A 274 (1359), 507–528 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S. Li, Q. Yao, Q. Li, X.-Q. Feng, and H. Gao, “Contact stiffness of regularly patterned multi-asperity interfaces,” J. Mech. Phys. Solids 111, 277–289 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. A. A. Yakovenko, “Simulation of contact interaction of a gripping tool with a biological tissue,” Russ. J. Biomech. 21 (4), 355–364 (2017).

    Google Scholar 

  32. M. Sadowsky, “Zweidimensionale Probleme der Elastizitätstheorie,” Z. Angew. Math. Mech. 8 (2), 107–121 (1928).

    Article  MATH  Google Scholar 

  33. J. M. Block and L. M. Keer, “Periodic contact problems in plane elasticity,” J. Mech. Mater. Struct. 3, 1207–1237 (2008).

    Article  Google Scholar 

  34. H. M. Westergaard, “Bearing pressures and cracks,” J. Appl. Mech. 6, 49–52 (1939).

    Google Scholar 

  35. J. Dundurs, K. C. Tsai, and L. M. Keer, “Contact between elastic bodies with wavy surfaces,” J. Elasticity 3, 109–115 (1973).

    Article  Google Scholar 

  36. E. A. Kuznetsov, “A periodic contact problem accounting for the additional load acting beyond the indenter,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 84–93 (1982).

    Google Scholar 

  37. H. Hertz, “Ueber die Berüehrung fester elastischer Köerper,” J. Reine Angew. Math. 92, 156–171 (1881).

    Google Scholar 

  38. I. N. Sneddon, “The distribution of stress in the neighbourhood of a crack in an elastic solid,” Proc. R. Soc. London, Ser. A 187 (1009), 229–260 (1946).

    Article  ADS  MathSciNet  Google Scholar 

  39. K. L. Johnson, Contact Mechanics (Univ. Press, Cambridge, 1985).

    Book  MATH  Google Scholar 

  40. Y. Xu and R. L. Jackson, “Periodic contact problems in plane elasticity: the fracture mechanics approach,” ASME J. Tribol. 140 (1), 1–11 (2018).

    Article  Google Scholar 

  41. I. Y. Tsukanov, “Effects of shape and scale in mechanics of elastic interaction of regular wavy surfaces,” Proc. Inst. Mech. Eng., Part J 231 (3), 332–340 (2017).

    Google Scholar 

  42. I. Yu. Tsukanov, “Periodic contact problem for a surface with two-scale waviness,” Mech. Solids 82 (Suppl. 1), 129–136 (2018).

    Article  ADS  Google Scholar 

  43. I. Y. Tsukanov, “Partial contact of a rigid multisinusoidal wavy surface with an elastic half-plane,” Adv. Tribol. 2018, 1–8 (2018).

    Article  Google Scholar 

  44. Y. Ju and T. N. Farris, “Spectral analysis of two-dimensional contact problems,” ASME J. Tribol. 118 (2), 320–328 (1996).

    Article  Google Scholar 

  45. K. L. Johnson, J. A. Greenwood, and J. G. Higginson, “The contact of elastic regular wavy surfaces,” Int. J. Mech. Sci. 27 (6), 383–396 (1985).

    Article  MATH  Google Scholar 

  46. J. J. Kalker, “Variational principles of contact elastostatics,” J. Inst. Math. Appl. 20 (2), 199–219 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  47. W. Manners, “Partial contact between elastic surfaces with periodic profiles,” Proc. R. Soc. London, Ser. A 454 (1980), 3203–3221 (1998).

  48. W. Manners, “Methods for analyzing partial contact between surfaces,” Int. J. Mech. Sci. 45 (6-7), 1181–1199 (2003).

    Article  MATH  Google Scholar 

  49. L. A. Galin, “Indentation of punch with friction and adhesion,” Prikl. Mat. Mekh. 9 (5), 413–424 (1945).

    MATH  Google Scholar 

  50. Yu. A. Antipov and N. Kh. Arutyunyan, “Contact problems of the theory of elasticity with friction and adhesion,” J. Appl. Math. Mech. 55 (6), 887–901 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Ciavarella, “The generalized Cattaneo partial slip plane contact problem, I: theory,” Int. J. Solids Struct. 35 (18), 2349–2362 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Ciavarella, “The generalized Cattaneo partial slip plane contact problem, II: examples,” Int. J. Solids Struct. 35 (18), 2363–2378 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  53. C. Cattaneo, “Sul contatto di due corpi elastici: distribuzione locale degli sforzi,” Rend. Accad. Naz. Lincei 27, 342–348 (1938).

    MATH  Google Scholar 

  54. R. D. Mindlin, “Compliance of elastic bodies in contact,” J. Appl. Mech. 16, 259–268 (1949).

    MathSciNet  MATH  Google Scholar 

  55. T. Klimchuk and V. Ostryk, “Stress distributions in the Cattaneo-Mindlin problem on a contact with slip and adhesion of two cylindrical bodies,” Front. Mech. Eng. 6, 1–11 (2020).

    Article  Google Scholar 

  56. I. G. Goryacheva, N. I. Malanchuk, and P. M. Martynyak, “Contact interaction of bodies with a periodic relief during partial slip,” J. Appl. Math. Mech. 76 (5), 621–630 (2012).

    Article  MathSciNet  Google Scholar 

  57. Y. A. Antipov, “Galin’s problem for a periodic system of stamps with friction and adhesion,” Int. J. Solids Struct. 37 (15), 2093–2125 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  58. L. E. Goodman, “Contact stress analysis of normally loaded rough spheres,” J. Appl. Mech. 29 (3), 515–522 (1962).

    Article  ADS  MATH  Google Scholar 

  59. E. A. Kuznetsov, “Periodic contact problem for half-plane allowing for forces of friction,” Sov. J. Appl. Mech. 12 (10), 1014–1019 (1976).

    Article  ADS  Google Scholar 

  60. E. A. Kuznetsov and G. A. Gorokhovskii, “On actual contact pressure,” Probl. Treniya Iznashivaniya, No. 12, 10–13 (1977).

    Google Scholar 

  61. E. A. Kuznetsov and G. A. Gorokhovskii, “Effect of roughness on the stress state of bodies in frictional contact,” Sov. Appl. Mech. 14 (9), 62–68 (1978).

    Google Scholar 

  62. Ye. A. Kuznetsov and G. A. Gorokhovsky, “Effect of tangential load on the stressed state of rubbing rough bodies,” Wear 73 (1), 41–58 (1981).

    Article  Google Scholar 

  63. A. A. Krishtafovich and R. M. Martynyak, “Frictional contact of two elastic halfplanes with wavy surfaces,” Trenie Iznos 21 (5), 1–8 (2000).

    Google Scholar 

  64. M. Nosonovsky and G. G. Adams, “Steady-state frictional sliding of two elastic bodies with a wavy contact interface,” ASME J. Tribol. 122 (3), 490–495 (2000).

    Article  Google Scholar 

  65. I. A. Soldatenkov, “The periodic contact problem of the plane theory of elasticity. Taking friction, wear and adhesion into account,” J. Appl. Math. Mech. 77 (2), 337–351 (2013).

    MathSciNet  MATH  Google Scholar 

  66. X. Wang, Y. Xu, and R. L. Jackson, “Elastic sinusoidal wavy surface contact under full stick conditions,” Tribol. Lett. 65 (4), 156–170 (2017).

    Article  ADS  Google Scholar 

  67. A. Rostami and R. L. Jackson, “Predictions of the average surface separation and stiffness between contacting elastic and elastic-plastic sinusoidal surfaces,” J. Reine Angew. Math. 227 (12), 1376–1385 (2013).

    Google Scholar 

  68. V. A. Yastrebov, G. Anciaux, and J.-F. Molinari, “The contact of elastic regular wavy surfaces revisited,” Tribol. Lett. 56 (1), 171–183 (2014).

    Article  Google Scholar 

  69. I. Y. Tsukanov, “An extended asymptotic analysis for elastic contact of three-dimensional wavy surfaces,” Tribol. Lett. 67 (4), 107–113 (2019).

    Article  Google Scholar 

  70. I. G. Goryacheva, “The periodic contact problem for an elastic half-space,” J. Appl. Math. Mech. 62 (6), 959–966 (1998).

    Article  MathSciNet  Google Scholar 

  71. I. G. Goryacheva and E. V. Torskaya, “Contact of multi-level periodic system of indenters with coated elastic half-space,” Facta Univ., Ser.: Mech. Eng. 17 (2), 149–159 (2019).

    Google Scholar 

  72. Y. A. Kuznetsov and G. A. Gorokhovsky, “Stress distribution in a polymeric material subjected to the action of a rough-surface indenter,” Wear 51 (2), 299–308 (1978).

    Article  Google Scholar 

  73. I. G. Goryacheva and I. Y. Tsukanov, “Analysis of elastic normal contact of surfaces with regular microgeometry based on the localization principle,” Front. Mech. Eng. 6, 1–10 (2020).

    Article  Google Scholar 

  74. E. A. Kuznetsov, “On the use of automorphic functions in plane elasticity theory,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 6, 35–44 (1978).

    Google Scholar 

  75. Ye. A. Kuznetsov, “Effect of fluid lubricant on the contact characteristics of rough elastic bodies in compression,” Wear 102 (3), 177–194 (1985).

    Article  Google Scholar 

  76. R. M. Martynyak, “The method of functions of intercontact gaps in problems of local loss of contact between elastic half-spaces,” Math. Meth. Phys.-Mech. Fields 43 (1), 102–108 (2000).

    MathSciNet  MATH  Google Scholar 

  77. O. P. Kozachok, B. S. Slobodian, and R. M. Martynyak, “Interaction of two elastic bodies in the presence of periodically located gaps filled with a real gas,” J. Math. Sci. 222 (2), 131–142 (2017).

    Article  MathSciNet  Google Scholar 

  78. O. P. Kozachok and R. M. Martynyak, “Contact problem for wavy surfaces in the presence of an incompressible liquid and a gas in interface gaps,” Math. Mech. Solids 24 (11), 3381–3393 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  79. A. G. Shvarts and V. A. Yastrebov, “Fluid flow across a wavy channel brought in contact,” Tribol. Int. 126, 116–126 (2018).

    Article  Google Scholar 

  80. K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. London, Ser. A 324 (1558), 301–313 (1971).

    Article  ADS  Google Scholar 

  81. D. Maugis, “Adhesion of spheres: the JKR-DMT transition using a Dugdale model,” J. Colloids Interface Sci. 150 (1), 243–269 (1991).

    Article  Google Scholar 

  82. D. Tabor, “Surface forces and surface interactions,” J. Colloids Interface Sci. 58 (2), 2–13 (1977).

    Article  ADS  Google Scholar 

  83. B. V. Derjaguin, V. M. Muller, and Yu. P. Toporov, “Effect of contact deformations on the adhesion of particles,” J. Colloid. Interf. Sci. 53 (2), 314–326 (1975).

    Article  ADS  Google Scholar 

  84. K. L. Johnson, “The adhesion of two elastic bodies with slightly wavy surfaces,” Int. J. Solids Struct. 32 (3-4), 423–430 (1995).

    Article  MATH  Google Scholar 

  85. W. Koiter, “An infinite row of collinear cracks in an infinite elastic sheet,” Ing.-Arch. 28, 168–172 (1959).

    MathSciNet  MATH  Google Scholar 

  86. S. Zilberman and B. N. J. Persson, “Nanoadhesion of elastic bodies: roughness and temperature effects,” J. Chem. Phys. 118 (14), 6473–6480 (2003).

    Article  ADS  Google Scholar 

  87. G. G. Adams, “Adhesion at the wavy contact interface between two elastic bodies,” ASME J. Appl. Mech. 71 (6), 851–856 (2004).

    Article  ADS  MATH  Google Scholar 

  88. C. Y. Hui, Y. Y. Lin, J. M. Baney, and E. J. Kramer, “The mechanics of contact and adhesion of periodically rough surfaces,” J. Polym. Sci., Part B: Polym. Phys. 39 (11), 1195–1214 (2001).

    Article  Google Scholar 

  89. F. Jin, Q. Wan, and X. Guo, “A double-westergaard model for adhesive contact of a wavy surface,” Int. J. Solids Struct. 102–103, 66–76 (2016).

    Article  Google Scholar 

  90. Yu. Yu. Makhovskaya, “Discrete contact of elastic bodies in the presence of adhesion,” Mech. Solids 38 (2), 39–48 (2003).

    Google Scholar 

  91. I. Goryacheva, Contact Mechanics in Tribology (Springer, Dordrecht, 1997).

    MATH  Google Scholar 

  92. I. G. Goryacheva, “Mechanics of discrete contact,” Tribol. Int. 39 (5), 381–386 (2006).

    Article  Google Scholar 

  93. I. G. Goryacheva and I. Y. Tsukanov, “Modeling of normal contact of elastic bodies with surface relief taken into account,” J. Phys. Conf. Ser. 991 (1), 1–8 (2018).

    Article  Google Scholar 

  94. I. G. Goryacheva, “Plane and axisymmetric contact problems for rough elastic bodies,” Prikl. Mat. Mekh. 43 (1), 99–105 (1979).

    MathSciNet  MATH  Google Scholar 

  95. B. A. Galanov, “Spatial contact problems for rough elastic bodies under elastoplastic deformations of the unevenness,” Prikl. Mat. Mekh. 48 (6), 1020–1029 (1984).

    MathSciNet  MATH  Google Scholar 

  96. I. G. Goryacheva, “Calculation of contact characteristics with consideration of surface macro- and microgeometric parameters,” Trenie Iznos 20 (3), 239–248 (1999).

    Google Scholar 

  97. I. G. Goryacheva and Yu. Yu. Makhovskaya, “Elastic contact between nominally plane surfaces in the presence of roughness and adhesion,” Mech. Solids 52 (4), 435–443 (2017).

    Article  ADS  Google Scholar 

  98. I. Goryacheva and Y. Makhovskaya, “Combined effect of surface microgeometry and adhesion in normal and sliding contacts of elastic bodies,” Friction 5 (3), 339–350 (2017).

    Article  Google Scholar 

  99. T. H. C. Childs, “The persistence of asperities in indentation experiments,” Wear 25 (1), 3–16 (1973).

    Article  Google Scholar 

  100. Y. F. Gao, A. F. Bower, K. S. Kim, et al., “The behavior of an elastic-perfectly plastic sinusoidal surface under contact loading,” Wear 261 (2), 145–154 (2006).

    Article  Google Scholar 

  101. F. Sun, E. Van der Giessen, and L. Nicola, “Interaction between neighboring asperities during flattening: a discrete dislocation plasticity analysis,” Mech. Mater. 90, 157–165 (2015).

    Article  Google Scholar 

  102. V. Krithivasan and R. L. Jackson, “An analysis of three-dimensional elasto-plastic sinusoidal contact,” Tribol. Lett. 27 (1), 31–43 (2007).

    Article  Google Scholar 

  103. W. Manners, “Plastic deformation of a sinusoidal surface,” Wear 264 (1-2), 60–68 (2008).

    Article  Google Scholar 

  104. I. G. Goryacheva and F. Sadeghi, “Contact characteristics of rolling/sliding cylinder and a viscoelastic layer bonded to an elastic substrate,” Wear 184 (2), 125–132 (1995).

    Article  Google Scholar 

  105. I. G. Goryacheva, F. Sadeghi, and D. Nickel, “Internal stresses in contact of rough body and a viscoelastic layered semi-infinite plane,” ASME J. Tribol. 118 (1), 131–136 (1996).

    Article  Google Scholar 

  106. I. G. Goryacheva and Yu. Yu. Makhovskaya, “Effect of surface imperfect elasticity on a sliding contact of rough elastic bodies,” J. Frict. Wear 18 (1), 5–12 (1997).

    Google Scholar 

  107. A. N. Lyubicheva, “Analysis of the mutual influence of contact spots in sliding of the periodic system of asperities on a viscoelastic base of the winkler type,” J. Frict. Wear 29 (2), 125–133 (2008).

    Article  Google Scholar 

  108. A. N. Lyubicheva, “Numerical simulation of sliding of a system of spherical indenters over a viscoelastic body,” Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, No. 4-5, 2324–2325 (2011).

    Google Scholar 

  109. M. A. Nozdrin, Yu. Yu. Makhovskaya, and B. V. Sheptunov, “Calculation of a deformation component of friction force during sliding of a body on a viscoelastic base,” Vestn. Ivanov. Energ. Inst., No. 3, 48–50 (2009).

  110. B. V. Sheptunov, I. G. Goryacheva, and M. A. Nozdrin, “Contact problem of die regular relief motion over viscoelastic base,” J. Frict. Wear 34 (2), 109–119 (2013).

    Article  Google Scholar 

  111. M. A. Nozdrin and B. V. Sheptunov, “Friction model of a rigid body with a regular relief and a viscoelastic half-space,” Fiz., Khim. Mekh. Tribosist., No. 12, 24–29 (2015).

  112. I. A. Soldatenkov, “Calculation of the deformation component of the force of friction for a standard elastoviscous base,” J. Frict. Wear 29 (1), 12–21 (2008).

    Article  Google Scholar 

  113. I. G. Goryacheva and A. P. Goryachev, “Contact problems of the sliding of a punch with a periodic relief on a viscoelastic half-plane,” J. Appl. Math. Math. Phys. 80 (1), 73–83 (2016).

    MathSciNet  MATH  Google Scholar 

  114. N. Menga, C. Putignano, G. Carbone, and G. P. Demelio, “The sliding contact of a rigid wavy surface with a viscoelastic half-space,” Proc. R. Soc. London, Ser. A 470 (2169), 1–14 (2014).

    MATH  Google Scholar 

  115. S. C. Hunter, “The rolling contact of a rigid cylinder with a viscoelastic half space,” ASME J. Appl. Mech. 28 (4), 611–617 (1961).

    Article  ADS  MATH  Google Scholar 

  116. I. G. Goryacheva and A. G. Shpenev, “Modelling of a punch with a regular base relief sliding along a viscoelastic foundation with a liquid lubricant,” J. Appl. Math. Mech. 76 (5), 582–589 (2012).

    Article  MathSciNet  Google Scholar 

  117. I. G. Goryacheva and Yu. Yu. Makhovskaya, “Modeling of friction at different scale levels,” Mech. Solids 45 (3), 100–110 (2010).

    Article  Google Scholar 

  118. I. Goryacheva and Y. Makhovskaya, “Adhesion effect in sliding of a periodic surface and an individual indenter upon a viscoelastic base,” J. Strain Anal. Eng. 51 (4), 286–293 (2015).

    Article  Google Scholar 

  119. I. G. Goryacheva, Yu. Yu. Makhovskaya, A. V. Morozov, and F. I. Stepanov, Friction of Elastomers. Modeling and Experiment (Institute for Computer Science, Moscow-Izhevsk, 2017) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-18-50346.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. G. Goryacheva or I. Yu. Tsukanov.

Additional information

Translated by E. Chernokozhin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryacheva, I.G., Tsukanov, I.Y. Development of Discrete Contact Mechanics with Applications to Study the Frictional Interaction of Deformable Bodies. Mech. Solids 55, 1441–1462 (2020). https://doi.org/10.3103/S0025654420080099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420080099

Keywords:

Navigation