Skip to main content
Log in

A Sagnac interferometer as a gravitational-wave third-generation detector

  • Optics and Spectroscopy. Laser Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

It is planned that the next generation of laser interferometric gravitational-wave detectors will surpass the second-generation detectors in amplitude sensitivity in a broad range of frequencies by nearly tenfold. Since the sensitivity will be limited by quantum noise at all frequencies above ∼10 Hz at almost all frequencies, the development of new schemes for detectors that are able to provide the required lowered level of quantum fluctuations is very topical. A velocimeter based on the Sagnac interferometer, which is investigated in this study, is one such scheme and possibly is the most promising among them. We present a complete comparative analysis of the quantum noise of the signal-recycling Sagnac and Mickelson interferometers with frequency-dependent squeezing of the quantum state of light and demonstrate the substantial advantage of the former, both in sensitivity and from the viewpoint of its easier experimental implementation. In particular, we show that the Sagnac scheme is able to surpass even a xylophone configuration of two Michelson detectors in the level of quantum noises and is less tolerant to optical losses in the filter cavity when using frequency-dependent squeezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Blair, The Detection of Gravitational Waves (Cambridge: Cambridge University, 1991).

    Book  Google Scholar 

  2. H. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, Phys. Rev. D: Part. Fields 65, 022002 (2001).

    Article  ADS  Google Scholar 

  3. V. Braginskii, Zh. Eksp. Teor. Fiz. 53, 1436 (1967).

    Google Scholar 

  4. V. B. Braginsky and F. Y. Khalili, Quantum Measurement (Cambridge: Cambridge University, 1992).

    Book  MATH  Google Scholar 

  5. Y. Chen, Phys. Rev. D: Part. Fields 67, 122004 (2003).

    Article  ADS  Google Scholar 

  6. V. B. Braginsky and F. Y. Khalili, Phys. Rev. A: Atom., Molec., Opt. Phys. 147, 251 (1990).

    Google Scholar 

  7. S. L. Danilishin and F. Y. Khalili, Liv. Rev. Relat. 15, 5 (2012).

    Google Scholar 

  8. Y. Chen, S. L. Danilishin, F. Y. Khalili, and H. Muller-Ebhardt, Gen. Rel. Grav. 43, 671 (2011).

    Article  ADS  MATH  Google Scholar 

  9. S. L. Danilishin, Phys. Rev. D: Part. Fields 69, 102003 (2004).

    Article  ADS  Google Scholar 

  10. C. Caves, Phys. Rev. D: Part. Fields 23, 1693 (1981).

    Article  ADS  Google Scholar 

  11. W. G. Unruh, Quantum Optics, Experimental Gravity, and Measurement Theory (Plenum, 1983).

    Google Scholar 

  12. B. L. Schumaker and C. M. Caves, Phys. Rev. A: Atom., Molec., Opt. Phys. 31, 3093 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Wang, C. Bond, D. Brown, F. Brueckner, L. Carbone, R. Palmer, and A. Freise, Phys. Rev. D: Part. Fields 87, 096008 (2013).

    Article  ADS  Google Scholar 

  14. A. Buonanno and Y. Chen, Phys. Rev. D: Part. Fields 67, 062002 (2003).

    Article  ADS  Google Scholar 

  15. J. Abadie, B. P. Abbott, R. Abbott, et al., (Ligo Scientific Collaboration, total of 81 authors), Nat. Phys 7,962 (2011).

    Article  Google Scholar 

  16. J. Aasi, J. Abadie, B. P. Abbott, et al., (total of 150 authors), Nat. Photon 7, 613 (2013).

    Article  ADS  Google Scholar 

  17. ET design study document, 2011. https://tds.egogw.it/gl/?c=7954.

  18. Instrument science white paper, 2013. https://dcc.ligo.org/LIGO-T1300433/public.

  19. F. Y. Khalili, Phys. Lett. A 288, 251 (2001).

    Article  ADS  Google Scholar 

  20. H. Muller-Ebhardt, On quantum effects in the dynamics of macroscopic test masses: PhD thesis. Hannover (2009).

    Google Scholar 

  21. F. Y. Khalili, Phys. Rev. D: Part. Fields 81, 122002 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Voronchev.

Additional information

Original Russian Text © N.V. Voronchev, Sh.L. Danilishin, F.Ya. Khalili, 2014, published in Vestnik Moskovskogo Universiteta. Fizika, 2014, No. 6, pp. 81–89.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronchev, N.V., Danilishin, S.L. & Khalili, F.Y. A Sagnac interferometer as a gravitational-wave third-generation detector. Moscow Univ. Phys. 69, 519–528 (2014). https://doi.org/10.3103/S0027134914060198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134914060198

Keywords

Navigation