Skip to main content
Log in

Shannon entropy in the research on stationary regimes and the evolution of complexity

  • Biophysics and Medical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The questions of the identification of complex biological systems (complexity) as special self-organizing systems or systems of the third type first defined by W. Weaver in 1948 continue to be of interest. No reports on the evaluation of entropy for systems of the third type were found among the publications currently available to the authors. The present study addresses the parameters of muscle biopotentials recorded using surface interference electromyography and presents the results of calculation of the Shannon entropy, autocorrelation functions, and statistical distribution functions for electromyograms of subjects in different physiological states (rest and tension of muscles). The results do not allow for statistically reliable discrimination between the functional states of muscles. However, the data obtained by calculating electromyogram quasiatttractor parameters and matrices of paired comparisons of electromyogram samples (calculation of the number k of “coinciding” pairs among the electromyogram samples) provide an integral characteristic that allows the identification of substantial differences between the state of rest and the different states of functional activity. Modifications and implementation of new methods in combination with the novel methods of the theory of chaos and self-organization are obviously essential. The stochastic approach paradigm is not applicable to systems of the third type due to continuous and chaotic changes of the parameters of the state vector x(t) of an organism or the contrasting constancy of these parameters (in the case of entropy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Eskov, V. V. Eskov, M. Ya. Braginskii, and A. S. Pashnin, Meas. Tech. 54, 832 (2011).

    Article  Google Scholar 

  2. V. M. Eskov, V. V. Eskov, and O. E. Filatova, Meas. Tech. 53, 1404 (2011).

    Article  Google Scholar 

  3. V. M. Eskov, T. V. Gavrilenko, V. V. Kozlova, and M. A. Filatov, Meas. Tech. 55, 1096 (2012).

    Article  Google Scholar 

  4. S. N. Rusak, V. V. Eskov, D. I. Molyagov, and O. E. Filatova, Ekol. Chel., No. 11, 19 (2013).

    Google Scholar 

  5. F. Schlegel, Z. Phys. 243, 303 (1971).

  6. Yu. V. Vokhmina, V. M. Eskov, T. V. Gavrilenko, and O. E. Filatova, Meas. Tech. 58, 462 (2015).

    Article  Google Scholar 

  7. V. V. Eskov, O. E. Filatova, T. V. Gavrilenko, and O. I. Khimikova, Ekol. Chel., No. 11, 3 (2014).

    Google Scholar 

  8. V. M. Eskov, T. V. Gavrilenko, Yu. V. Vokhmina, M. I. Zimin, and M. A. Filatov, Meas. Tech. 57, 720 (2014).

    Article  Google Scholar 

  9. V. M. Eskov, V. V. Eskov, T. V. Gavrilenko, and M. I. Zimin, Moscow Univ. Phys. Bull. 69, 406 (2014). doi 10.3103/S002713491405004X

    Article  ADS  Google Scholar 

  10. V. M. Eskov, V. V. Eskov, T. V. Gavrilenko, and J. V. Vochmina, Moscow Univ. Phys. Bull. 70, 140 (2015). doi 10.3103/S0027134915020046

    Article  ADS  Google Scholar 

  11. V. M. Eskov, V. V. Eskov, J. V. Vochmina, and T. V. Gavrilenko, Moscow Univ. Phys. Bull. 71, 143 (2016). doi 10.3103/S0027134916020053

    Article  ADS  Google Scholar 

  12. V. M. Eskov, O. E. Filatova, O. V. Provorova, and O. I. Khimikova, Ekol. Chel., No. 5, 57 (2015).

    Google Scholar 

  13. V. M. Eskov, V. V. Eskov, O. E. Filatova, A. A. Khadartsev, and D. V. Sinenko, Adv. Gerontol. 6, 24 (2016).

    Article  Google Scholar 

  14. G. R. Garaeva, V. M. Eskov, V. V. Eskov, et al., Ekol. Chel., No. 9, 50 (2015).

    Google Scholar 

  15. N. Bernstein, The Co-Ordination and Regulation of Movements (Pergamon Press, 1967).

    Google Scholar 

  16. O. E. Filatova, O. V. Provorova, and M. A. Volokhova, Ekol. Chel., No. 6, 16 (2014).

    Google Scholar 

  17. T. V. Gavrilenko, V. M. Eskov, A. A. Khadartsev, and A. A. Sokolova, Usp. Gerontol. 27, 30 (2014).

    Google Scholar 

  18. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York, 1971).

    MATH  Google Scholar 

  19. V. M. Es’kov and O. E. Filatova, Biophysics 44, 510 (1999).

    Google Scholar 

  20. V. M. Eskov and O. E. Filatova, Biophysics 48, 497 (2003).

    Google Scholar 

  21. V. M. Es’kov, S. V. Kulaev, Yu. M. Popov, and O. E. Filatova, Meas. Tech. 49, 59 (2006).

    Article  Google Scholar 

  22. V. A. Karpin, O. E. Filatova, T. V. Soltys, et al., Ekol. Chel., No. 7, 3 (2013).

    Google Scholar 

  23. V. B. Betelin, V. M. Eskov, V. A. Galkin, and T. V. Gavrilenko, Doklady Mathematics 95, 92 2017).

  24. V. M. Eskov, V. V. Eskov, T. V. Gavrilenko, and Yu. V. Vochmina, Biofizika 62, 168 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Eskov.

Additional information

Original Russian Text © V.M. Eskov, V.V. Eskov, Yu.V. Vochmina, D.V. Gorbunov, L.K. Ilyashenko, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 3, pp. 91–99.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskov, V.M., Eskov, V.V., Vochmina, Y.V. et al. Shannon entropy in the research on stationary regimes and the evolution of complexity. Moscow Univ. Phys. 72, 309–317 (2017). https://doi.org/10.3103/S0027134917030067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134917030067

Keywords

Navigation