Skip to main content
Log in

The Features of the Electron Exchange of Ions with Metal Nanoclusters

  • Theoretical and Mathematical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The results of a theoretical and computational study of the electron exchange of ions with metal nanoclusters are presented. Scanning tunneling microscopy and electron exchange in scattering of slow ions are used widely in experimental studies of the electronic structure and surface reactivity of metal nanoclusters. Due to the complexity of direct experiments, computer simulation is an important tool for nanostructure analysis. The results of calculation of the eigenvalues of the electron wave function accurately characterize the spatial distribution of the electron density on the nanocluster surface determined using scanning tunneling microscopy. The electron energy inside a small nanocluster is quantized, and the spatial distribution of the electron density is discrete. The quantization of electron energy (discrete electronic structure) has a significant influence on resonant electron processes, including the electron exchange of ions with nanoclusters and electron tunneling in scanning tunneling microscopy. The model problem of electron tunneling from a negative ion to a nanocluster was used as an example to demonstrate that the discrete electronic structure is manifested in the form of a quantum-size effect of electron exchange and a nonmonotonic dependence of the differential conductivity on the bias voltage. A quantitative explanation for the experimentally observed order-of-magnitude enhancement (compared to bulk samples) of the probability of neutralization of alkali metal ions on metal nanoclusters is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).

    Article  ADS  Google Scholar 

  2. N. Nilius, T. M. Wallis, and W. Ho, Science 297, 1853 (2002).

    Article  ADS  Google Scholar 

  3. J. Li, X. Li, H.-J. Zhai, and L.-S. Wang, Science 299, 864 (2003).

    Article  ADS  Google Scholar 

  4. A. Cho, Science 299, 36 (2003).

    Article  Google Scholar 

  5. R. J. Lad, Surf. Rev. Lett. 12, 109 (1995).

    Article  ADS  Google Scholar 

  6. A. M. Azad, S. A. Akbar, and S. G. Mhaisalkar, Electrochem. Soc. 139, 3690 (1992).

    Article  Google Scholar 

  7. U. Kirner et al., Sens. Actuators B 1, 103 (1990).

    Article  Google Scholar 

  8. A. S. Ilin, M. I. Ikim, P. A. Forsh, et al., Sci. Rep. 7, 12204 (2017).

    Article  ADS  Google Scholar 

  9. S. Vladimirova, V. Krivetskiy, M. Rumyantseva, et al., Sensors 17, 2216 (2017).

    Article  Google Scholar 

  10. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989).

    Article  Google Scholar 

  11. M. Haruta, Catal. Today 36, 153 (1997).

    Article  Google Scholar 

  12. M. Haruta, Gold Bull. 37, 27 (2004).

    Article  Google Scholar 

  13. G. J. Hutchings and M. Haruta, Appl. Catal. A 291, 2 (2005).

    Article  Google Scholar 

  14. X. Lai, T. P. St. Clair, M. Valden, and D. W. Goodman, Prog. Surf. Sci. 59, 25 (1998).

    Article  ADS  Google Scholar 

  15. X. Lai, T. P. St. Clair, and D. W. Goodman, Faraday Discuss. 114, 279 (1999).

    Article  ADS  Google Scholar 

  16. K. Luo, T. P. St. Clair, X. Lai, and D. W. Goodman, J. Phys. Chem. B 104, 3050 (2000).

    Article  Google Scholar 

  17. C. Salvo, P. Karmakar, and J. Yarmoff, Phys. Rev. B 98, 035437 (2018).

    Article  ADS  Google Scholar 

  18. G. Hagenbach, Ph. Courty, and B. Delmon, J. Catal. 31, 264 (1973).

    Article  Google Scholar 

  19. J. H. Block, H. J. Kreuzer, and L. C. Wang, Surf. Sci. 246, 125 (1991).

    Article  ADS  Google Scholar 

  20. A.-Q. Wang, J.-H. Liu, S. D. Lin, et al., J. Catal. 233, 186 (2005).

    Article  Google Scholar 

  21. V. R. Stamenkovic et al., Nat. Mater. 6, 241 (2007).

    Article  ADS  Google Scholar 

  22. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  ADS  Google Scholar 

  23. I. V. Yaminsky, Scanning Probe Microscopy of Biopolymers, Ed. by I. V. Yaminsky (Moscow, Nauchnyi Mir, 1997).

  24. G. Binnig and H. Rohrer, Rev. Mod. Phys. 59, 615 (1987).

    Article  ADS  Google Scholar 

  25. P. I. Arseev, V. N. Mantsevich, N. S. Maslova, and V. I. Panov, Phys.-Usp. 60, 1067 (2017).

    Article  ADS  Google Scholar 

  26. I. Barke and H. Hovel, Phys. Rev. Lett. 90, 166801 (2003).

    Article  ADS  Google Scholar 

  27. R. Narayanan and M. A. El-Sayed, J. Phys. Chem. B 107, 12416 (2003).

    Article  Google Scholar 

  28. C. Fan, H. Wang, S. Sun, et al., Anal. Chem. 73, 2850 (2001).

    Article  Google Scholar 

  29. R. Narayanan and M. A. El-Sayed, J. Am. Chem. Soc. 126, 7194 (2004).

    Article  Google Scholar 

  30. X. Gan, T. Liu, J. Zhong, et al., J. BioChem. 5, 1686 (2004).

    Google Scholar 

  31. Yu. V. Martynenko, Radiat. Eff. Defects Solids 20, 211 (1973).

    Article  Google Scholar 

  32. I. F. Urazgil’din, Phys. Rev. B 47, 4139 (1993).

    Article  ADS  Google Scholar 

  33. A. Tolstogouzov, S. Daolio, and C. Pagura, Surf. Sci. 441, 213 (1999).

    Article  ADS  Google Scholar 

  34. S. S. Elovikov, E. Yu. Zykova, A. S. Mosunov, et al., Bull. Russ. Acad. Sci.: Phys. 66, 558 (2002).

    Google Scholar 

  35. L. D. Bogomolova, A. M. Borisov, V. A. Kurnaev, and E. S. Mashkova, Nucl. Instrum. Methods Phys. Res., Sect. B 212, 164 (2003).

    Article  ADS  Google Scholar 

  36. A. S. Mosunov, Y. A. Ryzhov, I. I. Shkarban, et al., Radiat. Eff. Defects Solids 162, 401 (2007).

    Article  ADS  Google Scholar 

  37. N. V. Novikov and Y. A. Teplova, J. Phys.: Conf. Ser. 194, 082032 (2009).

    Google Scholar 

  38. I. S. Dmitriev, Y. A. Teplova, Y. A. Belkova, et al., At. Data Nucl. Data Tables 96, 85 (2010).

    Article  ADS  Google Scholar 

  39. K. A. Tolpin, V. I. Bachurin, and V. E. Yurasova, Nucl. Instrum. Methods Phys. Res., Sect. B 273, 76 (2012).

    Article  ADS  Google Scholar 

  40. M. W. Ullah, A. Kuronen, F. Djurabekova, et al., Vacuum 105, 88 (2014).

    Article  ADS  Google Scholar 

  41. A. A. Shemukhin, A. V. Nazarov, Yu. V. Balakshin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 354, 274 (2015).

    Article  ADS  Google Scholar 

  42. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, and V. I. Shulga, J. Clin. Invest. 10, 412 (2016).

    Google Scholar 

  43. L. Gao, Y. Zhu, Y. Shi, et al., Phys. Rev. A 96, 052705 (2017).

    Article  ADS  Google Scholar 

  44. P. Y. Babenko, D. S. Meluzova, A. P. Shergin, and A. N. Zinoviev, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 460 (2017).

    Article  ADS  Google Scholar 

  45. H. J. Lüdde, M. Horbatsch, and T. Kirchner, Eur. Phys. J. B 91, 99 (2018).

    Article  ADS  Google Scholar 

  46. N. V. Mamedov, D. N. Sinelnikov, V. A. Kurnaev, et al., Vacuum 148, 248 (2018).

    Article  ADS  Google Scholar 

  47. A. N. Zinoviev, P. Y. Babenko, D. S. Meluzova, and A. P. Shergin, JETP Lett. 108, 633 (2018).

    Article  ADS  Google Scholar 

  48. J. Shen, J. Jia, K. Bobrov, et al., Gold Bull. 46, 343 (2013).

    Article  Google Scholar 

  49. P. I. Arseev, V. N. Mantsevich, N. S. Maslova, and V. I. Panov, Phys.-Usp. 60, 1067 (2017).

    Article  ADS  Google Scholar 

  50. A. P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528 (1994).

    Article  ADS  Google Scholar 

  51. V. N. Mantsevich and N. S. Maslova, Solid State Commun. 150, 2072 (2010).

    Article  ADS  Google Scholar 

  52. V. N. Mantsevich and N. S. Maslova, JETP Lett. 91, 139 (2010).

    Article  ADS  Google Scholar 

  53. S. Datta, Quantum Transport: Atom to Transistor (Cambridge Univ. Press, 2005).

  54. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).

  55. V. V. Kuznetsov, A. K. Savchenko, D. R. Mace, E. H. Linfield, and D. A. Ritchie, Phys. Rev. B 56, R15533 (1997).

    Article  ADS  Google Scholar 

  56. S. G. Tikhodeev and H. Ueba, Phys. Rev. Lett. 102, 246101 (2009).

    Article  ADS  Google Scholar 

  57. E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

    Article  ADS  Google Scholar 

  58. E. Y. Usman, I. F. Urazgil’din, A. G. Borisov, and J. P. Gauyacq, Phys. Rev. B 64, 205405 (2001).

    Article  ADS  Google Scholar 

  59. I. K. Gainullin, E. Yu. Usman, Y. W. Song, and I. F. Urazgil’din, Vacuum 72, 263 (2003).

    Article  ADS  Google Scholar 

  60. E. R. Amanbaev, I. K. Gainullin, E. Yu. Zykova, and I. F. Urazgildin, Thin Solid Films 519, 4737 (2011).

    Article  ADS  Google Scholar 

  61. D. K. Shestakov, I. K. Gainullin, and I. F. Urazgil’din, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 3, 33 (2009).

    Article  Google Scholar 

  62. D. K. Shestakov, T. Yu. Polivnikova, I. K. Gainullin, and I. F. Urazgildin, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 2596 (2009).

    Article  ADS  Google Scholar 

  63. E. R. Amanbaev, D. K. Shestakov, and I. K. Gainullin, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 3, 865 (2009).

    Article  Google Scholar 

  64. J. Shaw, Y. Zhang, D. Doerr, H. Chakraborty, and D. Monismith, Phys. Rev. A 98, 052705 (2018).

    Article  ADS  Google Scholar 

  65. U. Thumm, P. Kürpick, and U. Wille, Phys. Rev. B 61, 3067 (2000).

    Article  ADS  Google Scholar 

  66. I. K. Gainullin, E. Yu. Usman, and I. F. Urazgildin, Nucl. Instrum. Methods Phys. Res., Sect. B 232, 22 (2005).

    Article  ADS  Google Scholar 

  67. I. K. Gainullin and I. F. Urazgildin, Phys. Rev. B 74, 205403 (2006).

    Article  ADS  Google Scholar 

  68. A. A. Magunov, D. K. Shestakov, I. K. Gainullin, and I. F. Urazgildin, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2, 764 (2008).

    Article  Google Scholar 

  69. J. Los and J. J. C. Geerlings, Phys. Rep. 190, 133 (1990).

    Article  ADS  Google Scholar 

  70. H. Winter, Phys. Rep. 367, 387 (2002).

    Article  ADS  Google Scholar 

  71. J. S. Cohen and G. Fiorentini, Phys. Rev. A 33, 1590 (1986).

    Article  ADS  Google Scholar 

  72. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  73. E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).

    Article  ADS  Google Scholar 

  74. J. R. Schrieffer and D. C. Mattis, Phys. Rev. 140, A1412 (1965).

    Article  ADS  Google Scholar 

  75. D. E. Logan, M. P. Eastwood, and M. A. Tusch, J. Phys.: Condens. Matter 10, 2673 (1998).

    ADS  Google Scholar 

  76. V. N. Mantsevich and N. S. Maslova, Solid State Commun. 147, 278 (2008).

    Article  ADS  Google Scholar 

  77. V. N. Mantsevich, N. S. Maslova, A. I. Oreshkin, S. I. Oreshkin, D. A. Muzychenko, S. V. Savinov, and V. I. Panov, Bull. Russ. Acad. Sci.: Phys. 73, 886 (2009).

    Article  Google Scholar 

  78. V. A. Ermoshin and A. K. Kazansky, Phys. Lett. A 218, 99 (1996).

    Article  ADS  Google Scholar 

  79. P. J. Jennings, R. O. Jones, and M. Weinert, Phys. Rev. B 37, 6113 (1988).

    Article  ADS  Google Scholar 

  80. E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 437, 330 (1999).

    Article  ADS  Google Scholar 

  81. J. N. Bardsley, Case Stud. At. Phys. 4, 299 (1974).

    Google Scholar 

  82. I. K. Gainullin and M. A. Sonkin, Phys. Rev. A 92, 022710 (2015).

    Article  ADS  Google Scholar 

  83. I. K. Gainullin, Phys. Rev. A 95, 052705 (2017).

    Article  ADS  Google Scholar 

  84. L. Guillemot and V. A. Esaulov, Phys. Rev. Lett. 82, 4552 (1999).

    Article  ADS  Google Scholar 

  85. M. Maazouz, A. G. Borisov, V. A. Esaulov, J. P. Gauyacq, L. Guillemot, S. Lacombe, and D. Teillet-Billy, Phys. Rev. B 55, 13869 (1997).

    Article  ADS  Google Scholar 

  86. A. G. Borisov, D. Teillet-Billy, and J. P. Gauyacq, Phys. Rev. Lett. 68, 2842 (1992).

    Article  ADS  Google Scholar 

  87. A. G. Borisov, D. Teillet-Billy, J. P. Gauyacq, H. Winter, and G. Dierkes, Phys. Rev. B 54, 17166 (1996).

    Article  ADS  Google Scholar 

  88. H. Chakraborty, T. Niederhausen, and U. Thumm, Phys. Rev. A 69, 052901 (2004).

    Article  ADS  Google Scholar 

  89. H. Chakraborty, T. Niederhausen, and U. Thumm, Phys. Rev. A 70, 052903 (2004).

    Article  ADS  Google Scholar 

  90. H. H. Brongersma, M. Draxler, M. de Ridder, and P. Bauer, Surf. Sci. 62, 63 (2007).

    Article  Google Scholar 

  91. I. K. Gainullin, Surf. Sci. 677, 324 (2018).

    Article  ADS  Google Scholar 

  92. I. K. Gainullin, Surf. Sci. 681, 158 (2019).

    Article  ADS  Google Scholar 

  93. I. K. Gainullin and M. A. Sonkin, Comput. Phys. Commun. 188, 68 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  94. I. K. Gainullin, Comput. Phys. Commun. 210, 72 (2017).

    Article  ADS  Google Scholar 

  95. V. Lindberg and B. Helling, J. Phys.: Condens. Matter 17, S1075 (2005).

    ADS  Google Scholar 

  96. A. S. Smirnov, N. N. Negulyaev, L. Niebergall, W. Hergert, A. M. Saletsky, and V. S. Stepanyuk, Phys. Rev. B 78, 041405(R) (2008).

    Article  ADS  Google Scholar 

  97. O. O. Brovko, W. Hergert, and V. S. Stepanyuk, Phys. Rev. B 79, 205426 (2009).

    Article  ADS  Google Scholar 

  98. M. Muller, N. Neel, S. Crampin, and J. Kroger, Phys. Rev. Lett. 117, 136803 (2016).

    Article  ADS  Google Scholar 

  99. J. Li, W.-D. Schneider, S. Crampin, and R. Berndt, Surf. Sci. 422, 95 (1999).

    Article  ADS  Google Scholar 

  100. H. Hovel and I. Barke, New J. Phys. 5, 31 (2003).

    Article  ADS  Google Scholar 

  101. G. Rodary, D. Sander, H. Liu, H. Zhao, L. Niebergall, V. S. Stepanyuk, P. Bruno, and J. Kirschner, Phys. Rev. B 75, 233412 (2007).

    Article  ADS  Google Scholar 

  102. A. Delga, J. Lagoute, V. Repain, C. Chacon, Y. Girard, M. Marathe, S. Narasimhan, and S. Rousset, Phys. Rev. B. 84, 035416 (2011).

    Article  ADS  Google Scholar 

  103. G. F. Liu, Z. Sroubek, and J. A. Yarmoff, Phys. Rev. Lett. 92, 216801 (2004).

    Article  ADS  Google Scholar 

  104. J. Shen, J. Jia, K. Bobrov, L. Guillemot, and V. A. Esaulov, J. Phys. Chem. C 119, 15168 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

Computational resources were provided by the Research Computing Center of the Moscow state University. The author wishes to thank A.F. Aleksandrov for fruitful discussion and insightful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Gainullin.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 6, pp. 33–41.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainullin, I.K. The Features of the Electron Exchange of Ions with Metal Nanoclusters. Moscow Univ. Phys. 74, 585–594 (2019). https://doi.org/10.3103/S0027134919060158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919060158

Keywords

Navigation