Skip to main content
Log in

Recrystallization of the Structure of Silicon Carbide under Ion Irradiation

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Silicon carbide was irradiated with aluminum ions at an energy of 190 keV with fluences of \(2\times 10^{13}{-}5\times 10^{14}\) ion/cm\({}^{2}\). The temperature of the target during irradiation was 300–500\({}^{\circ}\)C or it was kept at room temperature. It is shown that the presence of nitrogen in the structure of silicon carbide erodes the edge of the interband absorption. After irradiation at room temperature, the structure is disordered to form Si–Si and C–C compounds, as well as 3C–SiC. According to the absorption spectra, when the target temperature is increased during irradiation to 500\({}^{\circ}\)C, the structure of silicon carbide recrystallizes up to the initial state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. B. N. Pushpakaran, A. S. Subburaj, S. B. Bayne, et al., Renewable Sustainable Energy Rev. 55, 971 (2016).

    Article  Google Scholar 

  2. T. Kimoto, Prog. Cryst. Growth Charact. Mater. 62, 329 (2016).

    Article  Google Scholar 

  3. T. O. Shinobu, O. Naoya, I. Takahiro, et al., Physics and Technology of Silicon Carbide Devices (InTech, Rijeka, Croatia, 2012).

    Google Scholar 

  4. A. A. Lebedev, G. A. Oganesyan, and V. V. Kozlovski, Crystals 9, 115 (2019).

    Article  Google Scholar 

  5. N. G. Chechenin, K. K. Bourdelle, and A. V. Suvorov, Nucl. Instrum. Methods Phys. Res., Sect. B 65, 341 (1992).

    Article  Google Scholar 

  6. R. Nipoti, H. M. Ayedh, and B. G. Svensson, Mater. Sci. Semicond. Process 78, 13 (2018).

    Article  Google Scholar 

  7. A. A. Shemukhin, Y. V. Balakshin, V. S. Chernysh, et al., Semiconductors 48, 517–520 (2014).

    Article  ADS  Google Scholar 

  8. M. L. Megherbi, F. Pezzimenti, L. Dehimi, et al., Solid State Electron. 109, 12 (2015).

    Article  ADS  Google Scholar 

  9. R. Nipoti, F. Moscatelli, and P. Nicola, IEEE Electron Dev. Lett. 34, 966 (2013).

    Article  ADS  Google Scholar 

  10. O. V. Aleksandrov and E. V. Kalinina, Phys. B (Amsterdam, Neth.) 404, 4764 (2009).

  11. A. A. Shemukhin, A. P. Evseev, A. V. Kozhemyako, B. Merzuk, V. I. Egorkin, Yu. S. Fedotov, A. V. Da- nilov, and V. S. Chernysh, Mosc. Univ. Phys. Bull. 74, 620 (2019).

    Article  ADS  Google Scholar 

  12. A. Hallen and G. Moschetti, Nucl. Instrum. Methods Phys. Res., Sect. B 332, 172 (2014).

    Google Scholar 

  13. A. Kozlovskiy, I. Kenzhina, M. Zdorovets, et al., Mater. Res. Express. 6, 075072 (2019).

    Article  ADS  Google Scholar 

  14. I. K. Gainullin, Phys. Rev. A 100, 032712 (2019).

    Article  ADS  Google Scholar 

  15. M. Kutuzau, A. Shumskaya, E. Kaniukov, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 460, 212 (2019).

    Google Scholar 

  16. T. Taguchi, S. Yamamoto, and H. Ohba, Acta Mater. 154, 90 (2018).

    Article  Google Scholar 

  17. A. Kozlovskiy and M. Zdorovets, Mater. Res. Express 6, 075066 (2019).

    Article  ADS  Google Scholar 

  18. K. D. Kushkina, A. A. Shemukhin, and E. A. Vorobyeva, Nucl. Instrum. Methods Phys. Res., Sect. B 430, 11 (2018).

    Google Scholar 

  19. M. L. Garcna-Betancourt, C. Magasa-Zavala, and A. Crespo-Sosa, J. Microsc. Ultrastruct. 6, 72–82 (2018).

    Article  Google Scholar 

  20. Yu. V. Balakshin, A. A. Shemukhin, A. V. Nazarov, A. V. Kozhemiako, and V. S. Chernysh, Tech. Phys. 63, 1861 (2018).

    Article  Google Scholar 

  21. M. J. Madito, T. T. Hlatshwayo, V. A. Skuratov, et al., Appl. Surf. Sci. 493, 1291 (2019).

    Article  ADS  Google Scholar 

  22. S. Agarwal, Q. Chen, T. Koyanagi, et al., J. Nucl. Mater. 526, 151778 (2019).

    Article  Google Scholar 

  23. H. A. A. Abdelbagi, V. A. Skuratov, S. V. Motloung, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 451, 113 (2019).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 16-12-00072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shemukhin.

Additional information

Translated by D. Churochkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shemukhin, A.A., Smirnov, A.M., Evseev, A.P. et al. Recrystallization of the Structure of Silicon Carbide under Ion Irradiation. Moscow Univ. Phys. 75, 133–136 (2020). https://doi.org/10.3103/S0027134920020113

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920020113

Keywords:

Navigation