Skip to main content
Log in

The SYLA Linear Electronic Accelerator–Injector for a Specialized Source of Synchrotron Radiation of the Fourth Generation

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Currently, Russia is designing the SYLA (Synchrotron \(+\) Laser) fourth-generation synchrotron radiation source, which will become one of the world’s largest scientific centers. Its creation will make it possible to carry out experiments to study the structure of a wide range of objects in various disciplines at a qualitatively new level compared to the previous generation of sources. The general layout of the facility includes the main storage ring for an energy of 6 GeV and a linear electron accelerator (LEA) for full energy. It is proposed to use one LEA with two microwave guns. A microwave gun with a photocathode can be used to generate a beam for a free electron laser (FEL), a microwave gun with a thermionic cathode, for injection into a storage ring. Both injectors will work with the same regular part of the linear accelerator, consisting of 100–120 identical sections. The planned transverse emittance in the main storage ring will be 50–100 pm rad. The development of a general scheme of the LEA in order to minimize the spread of the beam energy and transverse emittance at the output, the optimization of the geometric and electrodynamic characteristics of the accelerating structures, and the analysis of the beam dynamics in this linear accelerator will be discussed in the article. The simulation of the beam dynamics was performed using the BEAMDULAC package developed at the Department of Electrophysical Installations of the National Research Nuclear University MEPhI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. J. C. Biasci, J. F. Bouteille, N. Carmignani, J. Chavanne, D. Coulon, Y. Dabin, F. Ewald, L. Farvacque, L. Goirand, M. Hahn, J. Jacob, G. LeBec, S. Liuzzo, B. Nash, H. Pedroso-Marques, T. Perron, E. Plouviez, P. Raimondi, J. L. Revol, K. Scheidt, and V. Serriere, ‘‘A low-emittance lattice for the ESRF,’’ Synchrotron Radiat. News 27 (6), 8–12 (2014). https://doi.org/10.1080/08940886.2014.970931

    Article  ADS  Google Scholar 

  2. A. Alekou, R. Bartolini, P. Raimondi, E. Gianfelice-Wendt, and E. Sargsyan, ‘‘Study of a double triple bend achromat (DTBA) lattice for a 3 GeV light source,’’ in Proc. 7th Int. Particle Accelerator Conf., Busan, Korea, 2016, Ed. by C. Petit-Jean- Genaz, D. E. Kim, K. S. Kim, I. S. Ko, and V. R. W. Schaa (JACoW, Geneva, 2016), pp. 2940–2942. https://doi.org/10.18429/JACoW-IPAC2016-WEPOW044

  3. S. Leemann and W. Wurtz, ‘‘Pushing the MAX IV 3 GeV storage ring brightness and coherence towards the limit of its magnetic lattice,’’ in Proc. 8th Int. Particle Accelerator Conf., Copenhagen, 2017, Ed. by V. R. W. Schaa, G. Arduini, J. Pranke, M. Seidel, and M. Lindroos (JACoW, Geneva, 2017), pp. 2557–2560. https://doi.org/10.18429/JACoW-IPAC2017-WEPAB002

  4. L. Liu and H. Westfahl, Jr., ‘‘Towards diffraction limited storage ring based light sources,’’ in Proc. 8th Int. Particle Accelerator Conf., Copenhagen, 2017, Ed. by V. R. W. Schaa, G. Arduini, J. Pranke, M. Seidel, and M. Lindroos (JACoW, Geneva, 2017), pp. 1203–1208. https://doi.org/10.18429/JACOW-IPAC2017-TUXA1

  5. G. Xu, X. H. Cui, Z. Duan, Y. Y. Guo, D. H. Ji, Y. Jiao, J. Y. Li, X. Y. Li, Y. M. Peng, Q. Qin, S. K. Tian, J. Q. Wang, N. Wang, Y. Y. Wei, H. S. Xu, F. Yan, C. H. Yu, and Y. L. Zhao, ‘‘Bunch lengthening in NSLS-II storage ring due to longitudinal coupling impedance,’’ in Proc. 8th Int. Particle Accelerator Conf., Copenhagen, 2017, Ed. by V. R. W. Schaa, G. Arduini, J. Pranke, M. Seidel, and M. Lindroos (JACoW, Geneva, 2017), pp. 2697–2699. https://doi.org/10.18429/JACoW-IPAC2017-WEPAB052

  6. S. Krinsky, J. Bengtsson, and S. L. KRamer, ‘‘Consideration of the double bend achromatic lattice for NSLS-II,’’ in Proc. 10th Eur. Particle Accelerator Conf., Edinburgh, 2006 (2006), pp. 3487–3489.

  7. M. Borland, T. G. Berenc, R. R. Lindberg, V. Sajaev, and Y. P. Sun, ‘‘Beam optics in the APS multiband achromat lattice,’’ in Proc. of North American Particle Accelerator Conf. NAPAC’16, Chicago, 2016 (JACoW, Geneva, 2016), pp. 877–880. https://doi.org/10.18429/JACOW-NAPAC2016-WEPOB01

  8. J. Keil, ‘‘PETRA-IV lattice studies,’’ in Abstracts of 2nd Workshop on Low Emittance Ring Lattice Design, Lund, Sweden, 2016 (2016).

  9. J.-L. Revol, P. Berkvens, J. C. Biasci, J.-F. B. Bou- teille, N. Carmignani, F. Ewald, L. Farvacque, A. Franchi, L. Goirand, M. Hahn, L. Hardy, J. Jacob, J. M. Koch, G. Lebec, S. M. Liuzzo, B. Nash, T. P. Perron, E. Plouviez, P. Raimondi, K. B. Scheidt, V. Serriere, and R. Versteegen, ‘‘ESRF upgrade phase II status,’’ in Proc. of 5th Int. Particle Acceleerator Conf. IPAC’14, Dresden, 2014 (JACoW, Geneva, 2014), pp. 209–212. https://doi.org/10.18429/JACoW-IPAC2014-MOPRO055

  10. P. Raimondi, ‘‘The ESRF low-emittance upgrade,’’ in Proc. of 7th Int. Particle Accelerator Conf. IPAC’16, Busan, Korea, Ed. by C. Petit-Jean-Genaz (JACoW, Geneva, 2016), pp. 2023–2027. https://doi.org/10.18429/JACoW-IPAC2016-WEXA01

  11. H. Tanaka, T. Ishikawa, S. Goto, K. Shibata, T. Watanabe, and M. Yabashi, ‘‘SPring-8 Upgrade project,’’ in Proc. of 7th Int. Particle Accel. Conf. IPAC’16, Busan, Korea, Ed. by C. Petit-Jean-Genaz (JACoW, Geneva, 2016), pp. 2867–2870. https://doi.org/10.18429/JACoW-IPAC2016-WEPOW019

  12. I. A. Ashanin, Yu. A. Bashmakov, V. A. Budkin, A. G. Valentinov, M. A. Gusarova, D. K. Danilova, A. A. Dementev, V. V. Dmitriyeva, N. S. Dudina, V. S. Dyubkov, Yu. D. Kliuchevskaia, V. N. Kor- chuganov, M. V. Lalayan, Yu. Yu. Lozeev, T. A. Lozeeva, A. A. Makhoro, V. Yu. Mekha- nikova, O. A. Mosolova, S. M. Polozov, A. I. Pro- nikov, V. I. Rashchikov, A. A. Savchenko, A. V. Sa- moshin, A. S. Smygacheva, V. A. Ushakov, A. M. Fe- shchenko, E. A. Fomin, V. L. Shatokhin, J.-C. Biasci, S. Liuzzo, P. Raimondi, J.-L. Revol, L. Farvaque, and S. White, ‘‘Conceptual design of a dedicated fourth-generation specialized synchrotron radiation source (SSRS-4) at the Kurchatov Institute,’’ Phys. At. Nucl. 81, 1646–1651. https://doi.org/10.1134/S1063778818110030

  13. G. N. Baranov, A. V. Bogomyagkov, E. B. Levichev, and S. V. Sinyatkin, ‘‘Magnet lattice optimization for Novosibirsk fourth generation light source SKIF,’’ Sib. Fiz. Zh. 15 (1), 5–23. https://doi.org/10.25205/2541-9447-2020-15-1-5-23

  14. M. Satoh, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, Y. Enomoto, S. Fukuda, Y. Funakoshi, K. Furukawa, T. Higo, H. Honma, N. Iida, M. Ikeda, H. Iwase, H. Kaji, K. Kakihara, T. Kamitani, H. Katagiri, S. Kazama, M. Kikuchi, H. Koiso, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Mimashi, T. Miura, F. Miyahara, T. Mori, A. Morita, H. Nakajima, K. Nakao, T. Natsui, Y. Ogawa, Y. Ohnishi, S. Ohsawa, F. Qiu, I. Satake, D. Satoh, Y. Seimiya, T. Shidara, A. Shirakawa, M. Suetake, H. Sugimoto, T. Suwada, M. Tanaka, M. Tawada, Y. Yano, K. Yokoyama, M. Yoshida, R. Zhang, and X. Zhou, ‘‘Commissioning status of SuperKEKB injector Linac,’’ in Proc. of 7th Int. Particle Accel. Conf. IPAC’16, Busan, Korea (JACoW, Geneva, 2016), pp. 4152–4154. https://doi.org/10.18429/JACoW-IPAC2016-THPOY027

  15. M. Benedikt and F. Zimmermann, ‘‘Beam dynamics challenges in future circular colliders,’’ in Proc. of XXV Russian Particle Accel. Conf. RuPAC’16, St. Petersburg, 2016 (JACoW, Geneva, 2016), pp. 34–38. https://doi.org/10.18429/JACOW-RUPAC2016-TUYMH01

  16. E. S. Masunov and S. M. Polozov, ‘‘Publisher’s Note: High intensity ion beams in rf undulator linac’’ Phys. Rev. Accelerators Beams 1, 079901 (2008). https://doi.org/10.1103/PhysRevSTAB.11.079901

    Article  ADS  Google Scholar 

  17. E. S. Masunov and S. M. Polozov, ‘‘New versions of the BEAMDULAC code for high intensity ion beam dynamics investigation,’’ Vopr. At. Nauki Tekh., No. 3, 119–121 (2006).

  18. E. S. Masunov and S. M. Polozov, ‘‘BEAMDULAC code for numerical simulation of 3D beam dynamics in a high-intensity undulator linac,’’ Nucl. Instrum. Methods Phys. Res., Sect. A 558, 184–187 (2006). https://doi.org/10.1016/j.nima.2005.11.037

    Article  Google Scholar 

  19. A. V. Voronkov, E. S. Masunov, S. M. Polozov, and V. I. Rashchikov, ‘‘Calculation of beam dynamics in traveling-wave accelerators taking account of the current load,’’ At. Energy 109, 106–112 (2010). https://doi.org/10.1007/s10512-010-9331-y

    Article  Google Scholar 

  20. A. V. Voronkov, E. S. Masunov, S. M. Polozov, and V. I. Rashchikov, ‘‘Stationary and transient beam dynamics simulation results comparison for travelling wave electron linac with beam loading,’’ Vopr. At. Nauki Tekh., No. 4, 96–99 (2012).

  21. E. S. Masunov, Effects of Current Load in Accelerators of Charged Particles (Izd-vo Mosk. Inzh. Fiz. Inst., Moscow, 1999).

    Google Scholar 

  22. S. M. Polozov, I. A. Ashanin, Yu. D. Kliuchevskaia, M. V. Lalayan, A. I. Pronikov, V. I. Rashchikov, ‘‘Beam dynamics simulation results in the 6 GeV top-up injection linac of the 4th generation light source USSR,’’ in Proc. 26th Russian Particle Accelerator Conference (RUPAC’18), Protvino, Russia (JACoW, Geneva, 2018), pp. 285–288. https://doi.org/10.18429/JACoW-RUPAC2018-WEPSB05

  23. Yu. D. Klucheskaia and S. M. Polozov, ‘‘Optimization of the RF-gun with photocathode at operating frequency 2800 MHz for the new injection linac for USSR project,’’ in Russian Particle Accelerator Conf., Alushta, Russia (JACoW, Geneva, 2018), pp. 319–321. https://doi.org/10.18429/JACoW-RuPAC2021-TUPSB43

  24. I. A. Ashanin, Yu. D. Kluchevskaia, A. A. Makhoro, V. Yu. Mechanikova, O. A. Mosolova, S. M. Polozov, A. I. Pronikov, and V. I. Rashchikov, ‘‘Beam dynamics simulation in the linear accelerator used as an injector for the 4th generation Specialized Synchrotron Radiation Source SSRS-4,’’ Vestn. S.-Peterb. Univ.. Ser. 10. Prikl. Mat., Inf., Upr. 15 (1), 126–139 (2019). https://doi.org/10.21638/11701/spbu10.2019.110

    Article  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation under contract no. 075-15-2021-1358 of October 12, 2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Ashanin, Yu. D. Klyuchevskaya, S. M. Polozov or V. I. Rashchikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Sokolova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashanin, I.A., Klyuchevskaya, Y.D., Polozov, S.M. et al. The SYLA Linear Electronic Accelerator–Injector for a Specialized Source of Synchrotron Radiation of the Fourth Generation. Moscow Univ. Phys. 78, 48–56 (2023). https://doi.org/10.3103/S0027134923010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134923010022

Keywords:

Navigation