Skip to main content
Log in

Generation of transgenic barley lines producing human lactoferrin using mutant alpha-tubulin gene as the selective marker

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The biolistic transformation method was used for genetic improvement of three commercial cultivars of barley (Oksamytoviy, Vodogray, and Hetman). The plasmid pHLFTuBA containing target gene hLF encoding human lactoferrin under the control of the rice glutein B-1 promoter GluB-1 was used for transformation. The gene encoding mutant alfa-tubulin conferring resistance to trifluralin (dinitroaniline herbicide) was used as the selective marker. The screening of different trifluralin concentrations ranging from 0.1–30 μM was used for determination of selective concentration of the agent. Two transgenic barley lines of cultivars Oksamytoviy and Hetman’s callus line were selected after 2–3 months of cultivation on 10 μM of trifluralin. To confirm stable integration of the transformed gene, the PCR analysis of leafs from regenerated plant after their adaptation on the ground was carried out. The 734 bp fragment of the target gene was amplified from both regenerated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanasienko, I.V., Yemets, A.I., and Blume, Ya.B., Estimation of the Efficiency of Callus Formation and Regeneration in Barley Spring Varieties Zoned in Ukraine, Cytol. Genet., 2009, vol. 43, pp. 12–19.

    Article  CAS  Google Scholar 

  2. Farago, J. and Nemcova, L., Regeneration of Biolaphos Resistant Plants after Biolistic Transformation of Two Commercial Cultivars of Spring Barley Hordeum vulgare L. Grown in Slovakia, Vedecke-Prace, 2001, vol. 30, pp. 169–176.

    Google Scholar 

  3. Manoharan, M. and Dahleen, L.S., Genetic Transformation of Commercial Barley Hordeum vulgare L. Cultivar Conlon by Particle Bombardment of Callus, Plant Cell Rep., 2002, vol. 21, pp. 76–80.

    Article  CAS  Google Scholar 

  4. Assem, S.K., Hussein Ebtissam, H.A., Saad, M.E., El-Itriby, H.A., and Madkour, M.A., Comparison of the Efficiency of Some Novel Maize Promoters in Monocot and Dicot Plants, Arab J. Biotech., 2002, vol. 5, pp. 57–66.

    Google Scholar 

  5. Wang, M., Abbott, D., Upadhyaya, N., Jacobsen, J., and Waterhouse, P., Agrobacterium Tumefaciens-Mediated Transformation of an Elite Australian Barley Cultivar with Virus Resistance and Reporter Genes, Aust. J. Plant Physiol., 2001, vol. 28, pp. 149–156.

    Google Scholar 

  6. Sharma, V., Monostori, T., Gobel, C., Hansch, R., Bittner, F., Wasternack, C., Feussner, I., Mendel, R., Hause, B., and Schulze, J., Transgenic Barley Overexpressing a 13-Lipoxygenase to Modify Oxylipin Signature, Phytochemistry, 2006, vol. 67, pp. 264–276.

    Article  PubMed  CAS  Google Scholar 

  7. Delhaize, E., Ryan, P., Hebb, D., Yamamoto, Y., Sasaki, T., and Matsumoto, H., Engineering High-Level Aluminum Tolerance in Barley with the ALMT1 Gene, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 15249–15254.

    Article  PubMed  CAS  Google Scholar 

  8. Dahleen, L.S. and Manoharan, M., Recent Advances in Barley Transformation, In Vitro Cell. Dev. Biol. Plant, 2007, vol. 43, pp. 493–506.

    Article  CAS  Google Scholar 

  9. Ritala, A., Wahlstrom, E., Holkeri, H., Malkelainrn, K., Baez, J., Makinen, K., and Nuutila, A., Production of Recombinant Industrial Protein using Barley Cell Cultures, Protein Expr. Purif., 2008, vol. 59, pp. 274–281.

    Article  PubMed  CAS  Google Scholar 

  10. Adlerova, L., Bartoskova, A., and Faldyna, M., Lactoferrin: A Review, Vet. Med., 2008, vol. 53, pp. 457–468.

    CAS  Google Scholar 

  11. Sorensen, M. and Sorensen, S., The Proteins in Whey, Comptes-rendus des Travaux du Laboratoire Carlsberg, 1939, vol. 23, pp. 55–99.

    CAS  Google Scholar 

  12. Yoo, Y., Watanabe, R., Koike, Y., Mitobe, M., Shimazaki, K., and Watanabe, S., Apoptosis in Human Leukemic Cells Induced by Lactofer-Ricin, a Bovine Milk Protein-Derived Peptide: Involvement of Reactive Oxygen Species, Biochem. Biophys. Res. Commun., 1997, vol. 237, pp. 624–628.

    Article  PubMed  CAS  Google Scholar 

  13. Eliassen, L.T., Berge, G., Sveinbjornsson, B., Svendsen, J.S., Vorland, L.H., and Rekdal, O., Evidence for a Direct Anti-Tumor Mechanism of Action of Bovine Lactoferricin, Anticancer Res., 2002, vol. 22, pp. 2703–2710.

    PubMed  CAS  Google Scholar 

  14. Liang, Q. and Richardson, T., Expression and Characterization of Human Lactoferrin in Yeast Saccharomyces Cerevisiae, J. Arg. Food Chem., 1993, vol. 41, pp. 1800–1807.

    Article  CAS  Google Scholar 

  15. Van Berkel, H., Nuijens, H., Van Veen, A., Abrahams, P., and Thomassen, J., The Protein Structure of Recombinant Human Lactoferrin Produced in the Milk of Transgenic Cows Closely Matches the Structure of Human Milk-Derived Lactoferrin, Transgenic Res., 2005, vol. 14, pp. 397–405.

    Article  PubMed  Google Scholar 

  16. Zhang, Z., Coyne, P., Vidaver, K., and Mitra, A., Expression of Human Lactoferrin cDNA Confers Resistance to Ralstonia solanacearum in Transgenic Tobacco Plants, Phytopathology, 1998, vol. 88, pp. 730–734.

    Article  PubMed  CAS  Google Scholar 

  17. Anzai, H., Takaiwa, F., and Katsumata, K., Production of Human Lactoferrin in Transgenic Plants, in Lactoferrin: Structure, Function and Applications, Shimazaki, K., Tsuda, H., Tomita, M., Kuwata, T., and Perraudin, P., Eds., 2000, pp. 265–271.

  18. Ward, P., Piddington, C., Cunningham, G., Zhou, X., Wyatt, R., and Conneely, O., A System for Production of Commercial Quantities of Human Lactoferrin: A Broad Spectrum Natural Antibiotic, Biotechnology, 1995, vol. 13, pp. 498–503.

    Article  PubMed  CAS  Google Scholar 

  19. Nandi, N., Yalada, D., Lu, S., Nikolov, Z., Fujiyama, K., and Huang, N., Process Development and Economic Evolution of Recombinant Human Lactoferrin Expressed in Rice Grain, Transgenic Res., 2005, vol. 14, pp. 237–249.

    Article  PubMed  CAS  Google Scholar 

  20. Stefanova, G., Vlahova, M., and Atanassov, A., Production of Recombinant Human Lactoferrin from Transgenic Plants, Biol. Plant., 2008, vol. 52, pp. 423–428.

    Article  CAS  Google Scholar 

  21. Chen, I., Thiruvengadam, V., Lin, W.-D., Chang, H.-H., and Hsu, W.-H., Lysine Racemase: A Novel Non-Antibiotic Selectable Marker for Plant Transformation, Plant. Mol. Biol., 2009, vol. 72, pp. 153–169.

    Article  PubMed  Google Scholar 

  22. Yemets, A., Radchuk, V., Bayer, O., Bayer, G., Pakhomov, A., Baird, V.W., and Blume, Ya.B., Development of Transformation Vectors Based upon a Modified Plant α-Tubulin Gene as the Selectable Marker, Cell Biol. Int., 2008, vol. 32, pp. 566–570.

    Article  PubMed  CAS  Google Scholar 

  23. Finer, J., Vain, P., Jones, M., and McMullen, M., Development of the Particle Inflow Gun for DNA Delivery to Plant Cells, Plant Cell Rep., 1992, vol. 11, pp. 232–238.

    Article  Google Scholar 

  24. Abumhadi, N., Trifonova, A., Takumi, S., Nakamura, C., Todorovska, E., Getov, L., Christov, N., and Atanassov, A., Development of the Particle Inflow Gun and Optimizing the Particle Bombardment Method for Efficient Genetic Transformation in Mature Embryos of Cereals, Biotechnol. Biotec. Eq., 2001, vol. 15, pp. 87–96.

    Google Scholar 

  25. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya shkola, 1990.

    Google Scholar 

  26. Hagio, T., Hirabayashi, T., Machii, H., and Tomotsune, H., Production of Fertile Transgenic Barley Hordeum vulgare L. Plant using the Hygromycin-Resistance Marker, Plant Cell Rep., 1995, vol. 14, pp. 329–334.

    Article  CAS  Google Scholar 

  27. Ahlandsberg, S., Sathish, P., Sun, C., and Jansson, C., Green Fluorescent Protein as a Reporter System in the Transformation of Barley Cultivars, Physiol. Plant., 1999, vol. 107, pp. 194–200.

    Article  CAS  Google Scholar 

  28. Cho, M.-J., Jiang, W., and Lemaux, G., Transformation of Recalcitrant Barley Cultivars through Improvement of Regenerability and Decreased Albinism, Plant Sci., 1998, vol. 138, pp. 229–244.

    Article  CAS  Google Scholar 

  29. Tobias, D., Manoharan, M., Pritsch, C., and Dahleen, L., Cobombardment, Integration and Expression of Rice Chitinase and Thaumatin-Like Protein Genes in Barley (Hordeum vulgare cv. Conlon), Plant Cell Rep., 2007, vol. 26, pp. 631–639.

    Article  PubMed  CAS  Google Scholar 

  30. Wan, Y. and Lemaux, P.G., Generation of Large Numbers of Independently Transformed Fertile Barley Plant, Plant Physiol., 1994, vol. 104, pp. 37–48.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Yemets.

Additional information

Original Russian Text © I.V. Tanasienko, A.I. Yemets, Y.V. Pirko, V.I. Korhkovyy, N. Abumhadi, Ya.B. Blume, 2011, published in Tsitologiya i Genetika, 2011, Vol. 45, No. 1, pp. 3–10.

About this article

Cite this article

Tanasienko, I.V., Yemets, A.I., Pirko, Y.V. et al. Generation of transgenic barley lines producing human lactoferrin using mutant alpha-tubulin gene as the selective marker. Cytol. Genet. 45, 1–6 (2011). https://doi.org/10.3103/S0095452711010026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452711010026

Keywords

Navigation