Skip to main content
Log in

Transgenic sugar beet tolerant to imidazolinone obtained by Agrobacterium-mediated transformation

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Sugar beet is highly sensitive to imidazolinone herbicides thus rotational restrictions exist. In order to develop imidazolinone tolerant sugar beets als gene from Arabidopsis thaliana encoding acetolactate synthase with S653N mutation was used for genetic transformation. Transgenic sugar beet plants were obtained by Agrobacterium-mediated transformation of aseptic seedlings using vacuum-infiltration. The efficiency of genetic transformation was 5.8%. RT-PCR analysis of obtained plants revealed accumulation of specific als transcript. The resistance to imidazolinone was proved for developed transgenic sugar beet plants in vitro and in greenhouse conditions after spraying with imazethapyr (Pursuit®, BASF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renner, K.A. and Powell, G.E., Response of Sugar Beet (Beta vulgaris) to Herbicides Residues in Soil, Weed Technol., 1991, vol. 5, pp. 622–627.

    CAS  Google Scholar 

  2. Alister, C. and Kogan, M., Efficacy of Imidazolinone Herbicides Applied to Imidazolinone Resistant Maize and Their Carryover Effect on Rotational Crops, Crop Prot., 2005, vol. 24, pp. 375–379.

    Article  CAS  Google Scholar 

  3. Shaner, D.L., Anderson, P.C., and Stidham, M.A., Imidazolinones: Potent Inhibitors of Acetohydroxyacid Synthase, Plant Physiol., 1984, vol. 76, pp. 545–546.

    Article  PubMed  CAS  Google Scholar 

  4. Singh, B.K., Stidham, M.A., and Shaner, D.L., Assay of Acetohydroxyacid Synthase, Anal. Biochem., 1988, vol. 171, pp. 173–179.

    Article  PubMed  CAS  Google Scholar 

  5. Chatteff, R.S. and Mauvais, C.J., Acetolactate Synthase Is the Site of Action of Two Sulfonylurea Herbicides in Higher Plants, Science, 1984, vol. 224, pp. 1443–1445.

    Article  Google Scholar 

  6. Ray, T.B., Site of Action of Chlorsulfuron: Inhibition of Valine and Isoleucine Biosynthesis in Plants, Plant Physiol., 1984, vol. 75, pp. 827–831.

    Article  PubMed  CAS  Google Scholar 

  7. Gerwick, B.C., Subramanian, M.V., Loney-Gallant, V., and Chander, D.P., Mechanism of Action of the 1,2,4-Triazolo[L,5-A]Pyrimidine, Pestic. Sci., 1990, vol. 29, pp. 357–364.

    Article  CAS  Google Scholar 

  8. Sprague, C.L., Frasier, A.L., and Penner, D., Identifying Acetolactate Synthase Inhibitors for Potential Control of Quackgrass (Elytrigia repens) and Canada Thistle (Cirsium arvense) in Corn (Zea mays), Weed Technol., 1999, vol. 13, pp. 54–58.

    CAS  Google Scholar 

  9. Geier, P.W., Stahlman, P.W., Hargett, J.G., Dose Responses of Weeds and Winter Wheat to MKH 6561, Weed Sci., 2001, vol. 49, pp. 788–791.

    Article  CAS  Google Scholar 

  10. Winder, T. and Spalding, M., Imazaquin and Chlorsulfuron Resistance and Cross Resistance in Mutants of Chlamydomonas reinhardtii, Mol. Gen. Genet., 1988, vol. 213, pp. 394–399.

    Article  PubMed  CAS  Google Scholar 

  11. Saxena, P. and King, J., Herbicide Resistance in Datura innoxia: Cross-Resistance of Sulfonyl Urea Resistance Lines to Imidazolinones, Plant Physiol., 1988, vol. 86, pp. 863–867.

    Article  PubMed  CAS  Google Scholar 

  12. Haughn, G.W. and Somerville, C.R., A Mutation Causing Imidazolinone Resistance Maps to Csrl Locus in Arabidopsis thaliana var. columbia, Plant Physiol., 1990, vol. 92, pp. 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  13. Trucco, F., Eager, A.G., and Tranel, P.J., Acetolactate Synthase Mutation Conferring Imidazolinone-Specific Herbicide Resistance in Amaranthus hybridus, J. Plant Physiol., 2006, vol. 163, pp. 475–479.

    Article  PubMed  CAS  Google Scholar 

  14. Ott, K.M., Kwagh, J.-G., Stockton, G.W., Sidorov, V., and Kake-Juda, G., Rational Molecular Design and Genetic Engineering of Herbicide Resistant Crops by Structure Modeling and Site-Directed Mutagenesis of Acetohydroxyacid Synthase, J. Mol. Biol., 1996, vol. 263, pp. 359–368.

    Article  PubMed  CAS  Google Scholar 

  15. Chang, A.K. and Duggleby, R.G., Herbicide-Resistant Forms of Arabidopsis thaliana Acetohydroxyacid Synthase: Characterization of the Catalytic Properties and Sensitivity to Inhibitors of Four Defined Mutants, Biochem. J., 1998, vol. 333, pp. 765–777.

    PubMed  CAS  Google Scholar 

  16. Lee, Y.-T., Chang, A.K., and Duggleby, R.G., Effect of Mutagenesis at Serine 653 of Arabidopsis thaliana Acetohydroxyacid Synthase on the Sensitivity to Imidazolinone and Sulfonylurea Herbicides, FEBS Lett., 1999, vol. 452, pp. 341–345.

    Article  PubMed  CAS  Google Scholar 

  17. Oh, K.J., Park, E.J., Yoon, M.Y., Han, T.R., and Choi, J.D., Roles of Histidine Residues in Tobacco Acetolactate Synthase, Biochem. Biophys. Res. Commun., 2001, vol. 282, pp. 1237–1243.

    Article  PubMed  CAS  Google Scholar 

  18. Duggleby, R.G., Pang, S.S., Yu, K., and Guddat, L.W., Systematic Characterization of Mutations in Yeast Acetohydroxyacid Synthase: Interpretation of Herbicide-Resistance Data, Eur. J. Biochem., 2003, vol. 270, pp. 2895–2904.

    Article  PubMed  CAS  Google Scholar 

  19. Le, D.T., Yoon, M.Y., Kim, Y.T., and Choi, J.D., Roles of Conserved Methionine Residues in Tobacco Acetolactate Synthase, Biochem. Biophys. Res. Communs, 2003, vol. 306, pp. 1075–1082.

    Article  CAS  Google Scholar 

  20. Le, D.T., Yoon, M.Y., Kim, Y.T., and Choi, J.D., Two Consecutive Aspartic Acid Residues Conferring Herbicide Resistance in Tobacco Acetohydroxy Acid Synthase, Biochim. Biophys. acta. Proteins Proteomics, 2005, vol. 1749, pp. 103–112.

    Article  CAS  Google Scholar 

  21. Kolkman, J.M., Slabaugh, M.B., Bruniard, J.M., Berry, S., Bushman, B.S., Olungu, C., Maes, N., Abratti, G., Zambelli, A., Miller, J.F., Leon, A., and Knapp, S.J., Acetohydroxyacid Synthase Mutations Conferring Resistance to Imidazolinone or Sulfonylurea Herbicides in Sunflower, Theor. Appl. Genet., 2004, vol. 109, pp. 1147–1159.

    Article  PubMed  CAS  Google Scholar 

  22. Preston, C., Stone, L.M., Rieger, M.A., and Baker, J., Multiple Effects of a Naturally Occurring Proline to Threonine Substitution within Acetolactate Synthase in Two Herbicide-Resistant Populations of Lactuca serriola, Pestic Biochem. Physiol., 2006, vol. 84, pp. 227–235.

    Article  CAS  Google Scholar 

  23. Newhouse, K.E., Singh, B.K., Shaner, D.L., and Stidham, M.A., Mutations in Corn (Zea mays L.) Conferring Resistance to Imidazolinone Herbicides, Theor. Appl. Genet., 1991, vol. 83, pp. 65–70.

    Article  CAS  Google Scholar 

  24. Newhouse, K.E., Smith, W.A., Starrett, M.A., Schaefer, T.J., and Singh, B.K., Tolerance to Imidazolinone Herbicides in Wheat, Plant Physiol., 1992, vol. 100, pp. 882–886.

    Article  PubMed  CAS  Google Scholar 

  25. Wright, T.R. and Penner, D., Cell Selection and Inheritance of Imidazolinone in Sugarbeet (Beta vulgaris), Theor. Appl. Genet., 1998, vol. 96, pp. 612–620.

    Article  CAS  Google Scholar 

  26. Andersson, M., Trifonova, A., Andersson, A.-B., Johansson, M., Bulow, L., and Hofvander, P., A Novel Selection System for Potato Transformation Using a Mutated AHAS Gene, Plant Cell. Rep, 2003, vol. 22, pp. 261–267.

    Article  PubMed  CAS  Google Scholar 

  27. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Culture, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  28. Kishchenko, E.M., Komarnitskii, I.K., and Kuchuk, N.V., Production of Transgenic Sugarbeet (Beta vulgaris L.) Plants Resistant to Phosphinothricin, Cell. Biol. Int., 2005, vol. 29, pp. 15–19.

    Article  PubMed  CAS  Google Scholar 

  29. Morel, G. and Wetmore, R.H., Fern Callus Tissue Culture, Am. J. Bot., 1951, vol. 38, pp. 141–143.

    Article  CAS  Google Scholar 

  30. Doyle, J.J. and Doyle, J.L., Isolation of Plant DNA from Fresh Tissue, Focus, 1990, vol. 12, pp. 13–15.

    Google Scholar 

  31. Logemann, J., Schell, J., and Willmitzer, L., Improved Method for the Isolation of RNA from Plant Tissues, Ann. Biochem., 1987, vol. 163, pp. 16–20.

    Article  CAS  Google Scholar 

  32. Tertivanidis, K., Goudoula, C., Vasilikiotis, C., Hassiotou, E., Perl-Treves, R., and Tsaftaris, A., Superoxide Dismutase Trans-Genes in Sugarbeets Confer Resistance to Oxidative Agents and the Fungus C. beticola, Transgenic Res., 2004, vol. 13, pp. 225–233.

    Article  PubMed  CAS  Google Scholar 

  33. Norouzi, P., Malboobi, M.A., Zamani, K., and Yazdi-Samadi, B., Using a Competent Tissue for Efficient Transformation of Sugarbeet (Beta vulgaris L.), In Vitro Cell. Dev. Biol. Plant, 2005, vol. 41, pp. 11–16.

    Article  Google Scholar 

  34. Jafari, M., Norouzi, P., Malboobi, M.A., Ghareyazie, B., Valizadeh, M., Mohammadi, S.A., and Mousavi, M., Enhanced Resistance to a Lepidopteran Pest in Transgenic Sugar Beet Plants Expressing Synthetic CrylAb Gene, Euphytica, 2009, vol. 165, pp. 333–344.

    Article  CAS  Google Scholar 

  35. Krens, F.A., Trifonova, A., Keizer, L.C.P., and Hall, R.D., The Effect of Exogenously-Applied Phytohormones on Gene Transfer Efficiency in Sugarbeet (Beta vulgaris L.), Plant Sci., 1996, vol. 116, pp. 97–106.

    Article  CAS  Google Scholar 

  36. Mishutkina, Ya.V., Kamionskaya, A.M., and Skryabin, K.G., Sozdanie transgennykh rastenii sakharnoi svekly, ekspressiruyushchikh gen bar, Prikl. Biokhim. Mikrobiol., 2010, vol. 46, no. 1, pp. 89–95.

    PubMed  Google Scholar 

  37. Hisano, H., Kimoto, Y., Hayakawa, H., et al., High Frequency Agrobacterium-Mediated Transformation and Plant Regeneration via Direct Shoot Formation from Leaf Explants in Beta vulgaris and Beta maritima, Plant Cell. Rep., 2004, vol. 22, pp. 910–918.

    Article  PubMed  CAS  Google Scholar 

  38. Lindsey, K. and Gallois, P., Transformation of Sugarbeet (Beta vulgaris) by Agrobacterim tumefaciens, J. Exp. Bot., 1990, vol. 41, pp. 529–536.

    Article  CAS  Google Scholar 

  39. Snyder, G.W., Ingersoll, J.C., Smigocki, A.C., and Owens, L.D., Introduction of Pathogen Defense Genes and a Cytokinin Biosynthesis Gene into Sugarbeet (Beta vulgaris L.) by Agrobacterium or Particle Bombardment, Plant Cell. Rep., 1999, vol. 18, pp. 829–834.

    Article  CAS  Google Scholar 

  40. Zhang, C.-L., Chen, D.-F., McCormac, A.C., Scott, N.W., Elliot, M.C., and Slater, A., Use of the GFP Reporter Gene as a Vital Marker for Agrobacterium-Mediated Transformation of Sugar Beet (Beta vulgaris L.), Mol. Biotechnol., 2001, vol. 17, pp. 109–117.

    Article  PubMed  Google Scholar 

  41. Joersbo, M., Donaldson, I., Kreiberg, J., Petersen, S.G., Brunstedt, J., and Okkels, F.T., Analysis of Mannose Selection Used for Transformation of Sugar Beet, Mol. Breed., 1998, vol. 4, pp. 111–117.

    Article  CAS  Google Scholar 

  42. Kuykendall, L.D., Stocked, T.M., and Saunders, J.W., Rhizobium radiobacter Conjugation and Callus-Independent Shoot Regeneration Used to Introduce the Cercosporin Export Gene Cfp from Cercospora into Sugar Beet (Beta vulgaris L.), Biotechnol. Lett., 2003, vol. 25, pp. 739–744.

    Article  PubMed  CAS  Google Scholar 

  43. Yang, A.F., Duan, X.G., Gu, X.F., Gao, F., and Zhang, J.R., Efficient Transformation of Beet (Beta vulgaris) and Production of Plants with Improved Salt-Tolerance, Plant Cell Tissue Organ Cult., 2005, vol. 83, pp. 259–270.

    Article  CAS  Google Scholar 

  44. D’alluin, K., Bossut, M., Bonne, E., Mazur, B., Leemans, J., and Botterman, J., Transformation of Sugarbeet (Beta vulgaris L.) and Evaluation of Herbicide Resistance in Transgenic Plants, Bio. Technology, 1992, vol. 10, pp. 309–314.

    Google Scholar 

  45. Ivic-Haymes, S.D. and Smigocki, A.C., Biolistic Transformation of Highly Regenerative Sugar Beet (Beta vulgaris L.) Leaves, Plant Cell Rep., 2005, vol. 23, pp. 699–704.

    Article  PubMed  CAS  Google Scholar 

  46. Hall, R.D., Riksen-Bruinsma, T., Weyens, G.J., et al., A High Efficiency Technique for the Generation of Transgenic Sugar Beets from Stomatal Guard Cells, Nat. Biotechnol., 1996, vol. 14, pp. 1133–1138.

    Article  PubMed  CAS  Google Scholar 

  47. Mannerlöf, M., Tuvesson, S., Steen, P., and Tenning, P., Transgenic Sugar Beet Tolerant to Glyphosate, Euphytica, 1997, vol. 94, pp. 83–91.

    Article  Google Scholar 

  48. Winder, T. and Spalding, M., Imazaquin and Chlorsulfuron Resistance and Cross Resistance in Mutants of Chlamydomonas reinhardtii, Mol. Gen. Genet., 1988, vol. 231, pp. 394–399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Kishchenko.

Additional information

The article is published in the original.

About this article

Cite this article

Kishchenko, E.M., Komarnitskii, I.K. & Kuchuk, N.V. Transgenic sugar beet tolerant to imidazolinone obtained by Agrobacterium-mediated transformation. Cytol. Genet. 45, 148–152 (2011). https://doi.org/10.3103/S0095452711030030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452711030030

Keywords

Navigation