Skip to main content
Log in

Role of PPARs and their isoforms in metabolic disorders related to insulin resistance and diabetes

  • Reviews
  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

PPARs play a key role in energy homeostasis, inflammation, development of insulin resistance, and the metabolic syndrome. Therefore, special attention is paid to the synthesis of PPAR ligands (fibrates, thiazolidinediones). Three isoforms of PPARs are activated by fatty acids and their derivatives—eicosanoids. The Pro12Ala polymorphism of the PPARG2 gene is associated with insulin sensitivity of tissues and risks of developing diabetes. It is assumed that PPAR polymorphisms are related to differential responses to pharmacotherapy; this is the basis for the development of personalized medicines and assessments of prognoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braissant, O., Foufelle, F., Scotto, C., et al., Differential Expression of Peroxisome Proliferator-Activated Receptors (PPARs): Tissue Distribution of PPAR-α, -β, and -γ in the Adult Rat, Endocrinology, 1996, vol. 137, no. 1, pp. 354–366.

    Article  PubMed  CAS  Google Scholar 

  2. He, W., PPARy2Prol2Ala Polymorphism and Human Health, PPAR Res., 2009, Article ID 849538.

  3. Jones, B.C., Ding, X., and Daynes, R.A., Nuclear Receptor PPARoc Is Expressed in Resting Murine Lymphocytes. The PPARa in T and B Lymphocytes Is Both Transactivation and Transrepression Competent, J. Biol. Chem., 2002, no. 9, pp. 6838–6845.

  4. Matsusue, K., Peters, J.M., and Gonzalez, F.J., PPARβ/gd Potentiates PPARy Stimulated Adipocyte Differentiation, FASED J., 2004, vol. 18, pp. 1477–1479.

    CAS  Google Scholar 

  5. Tanaka, T., Yamamoto, J., Iwasaki, S., et al., Activation of PPARS Induces Fatty Acid P-Oxidation in Skeletal Muscle Ands Attenuates Metabolic Syndrome, Proc. Nat. Acad. Sci. USA, 2003, vol. 100, pp. 15924–15929.

    Article  PubMed  CAS  Google Scholar 

  6. Planavila, A., Laguna, J.C., and Vazquez-Carrera, M., Nuclear Factor-κB Activation Leads to Down-Regulation of Fatty Acid Oxidation During Cardiac Hypertrophy, J. Biol. Chem., 2005, vol. 280, no. 17, pp. 17464–17471.

    Article  PubMed  CAS  Google Scholar 

  7. Imai, T., Takakuwa, R., Marchand, S., et al., PPARy Is Required in Mature White and Brown Adipocytes for Their Survival in the Mouse, Proc. Nat. Acad. Sci. USA, 2004, vol. 101, pp. 4543–4547.

    Article  PubMed  CAS  Google Scholar 

  8. Spiegelman, B.M., PPAR-γ: Adipogenic Regulator and Thiazolidinedione Receptor, Diabetes, 1998, vol. 47, no. 4, pp. 507–514.

    Article  PubMed  CAS  Google Scholar 

  9. Kubota, N., Terauchi, Y., Miki, H., et al., PPARy Mediates High-Fat Diet-Induced Adipocyte Hypertrophy and Insulin Resistance, Mol. Cell, 1999, vol. 4, no. 4, pp. 597–609.

    Article  PubMed  CAS  Google Scholar 

  10. Werman, A., Hollenberg, A., Solanes, G., et al., Ligand-Independent Activation Domain in the N Terminus of Peroxisome Proliferator-Activated Receptor Gamma (PPARgamma). Differential Activity of PPARgammal and -2 Isoforms and Influence of Insulin, J. Biol. Chem., 1997, vol. 272, pp. 20230–20235.

    Article  PubMed  CAS  Google Scholar 

  11. Chawla, A., Boisvert, W.A., Lee, C.-H., et al., A PPARy-LXRABCA1 Pathway in Macrophages Is Involved in Cholesterol Efflux and Atherogenesis, Mol. Cell, 2001, vol. 7, no. 2, pp. 161–171.

    Article  PubMed  CAS  Google Scholar 

  12. Vats, D., Mukundan, L., Odegaard, J.I., et al., Oxidative Metabolism and PGC-Ip Attenuate Macrophage-Mediated Inflammation, Cell Metab., 2006, vol. 4, no. 1, pp. 13–24.

    Article  PubMed  CAS  Google Scholar 

  13. Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., et al., Macrophage-Specific PPARy Controls Alternative Activation and Improves Insulin Resistance, Nature, 2007, vol. 447, no. 7148, pp. 1116–1120.

    Article  PubMed  CAS  Google Scholar 

  14. Wan, Y., Chong, L.-W., and Evans, R.M., PPAR-Y Regulates Osteoclastogenesis in Mice, Nature Med, 2007, vol. 13, no. 12, pp. 1496–1503.

    Article  PubMed  CAS  Google Scholar 

  15. Duan, S.Z., Ivashchenko, C.Y., Russell, M.W., et al., Cardiomyocyte-Specific Knockout and Agonist of Peroxisome Proliferator-Activated Receptor-γ Both Induce Cardiac Hypertrophy in Mice, Circ. Res., 2005, vol. 97, no. 4, pp. 372–379.

    Article  PubMed  CAS  Google Scholar 

  16. Nicol, C.J., Adachi, M., Akiyama, T.E., et al., PPARy in Endothelial Cells Influences High Fat Diet-Induced Hypertension, Amer. J. Hyperten., 2005, vol. 18, no. 4, pp. 549–556.

    Article  CAS  Google Scholar 

  17. Rosen, E.D. and Spiegelman, B.M., PPAR: A Nuclear Regulator of Metabolism, Differentiation, and Cell Growth, J. Biol. Chem., 2001, vol. 276, pp. 37731–37734.

    Article  PubMed  CAS  Google Scholar 

  18. Gilde, A.J., Fruchart, J.C., and Staels, B., Peroxisome Proliferator-Activated Receptors at the Crossroads of Obesity, Diabetes, and Cardiovascular Disease, J. Amer. Coll. Cardiol., 2006, vol. 48, pp. A24–A32.

    Article  CAS  Google Scholar 

  19. Kozarsky, K.F., Donahe, M.H., Glick, J.M., et al., Gene Transfer and Hepatic Overexpression of the HDL Receptor SR-BI Reduces Atherosclerosis in the Cholesterol-Fed LDL Receptor-Deficient Mouse, Arterioscler. Thromb. Vase. Biol., 2000, vol. 20, pp. 721–727.

    CAS  Google Scholar 

  20. Peters, J.M., Lee, S.S., Li, W., et al., Growth, Adipose, Brain, and Skin Alterations Resulting from Targeted Disruption of the Mouse Peroxisome Proliferator-Activated Receptor Beta (Delta), Mol. Cell Biol., 2000, vol. 20, pp. 5119–5128.

    Article  PubMed  CAS  Google Scholar 

  21. Watcher, D. and Marx, N., Insulin Resistance and Cardiovascular Disease: the Role of PPARy Activators Beyond Their Anti-Diabetic Action, Diabetes Vase. Dis. Res., 2004, vol. 2, pp. 76–81.

    Google Scholar 

  22. Tenenbaum, A., Motro, M., Fisman, E.Z., et al., Effect of Bezafibrate on Incidence of Type 2 Diabetes Mellitus in Obese Patients, Eur. Heart J., 2005, vol. 26, no. 19, pp. 2032–2038.

    Article  PubMed  CAS  Google Scholar 

  23. Chinetti-Gbaguidi, G., Fruchart, J.C., and Staels, B., Role of the PPAR Family of Nuclear Receptors in the Regulation of Metabolic and Cardiovascular Homeostasis: New Approaches to Therapy, Curr. Opin. Pharmacol., 2005, vol. 5, pp. 177–183.

    Article  PubMed  CAS  Google Scholar 

  24. FIELD Study Investigators. The Need for a Large-Scale Trial of Fibrate Therapy in Diabetes: the Rationale and Design of the Fenofibrate Intervention and Event Lowering in Diabetes (HELD) study [ISRCTN64783481], Cardiovasc. Diabetol., 2004, vol. 3, p. 9.

  25. Yahia, R.B., Lichnovska, R., and Brychta, T., The Metabolic Syndrome: Relationship between Insulin Sensitivity and the Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Saccharide and Lipid Metabolism, Biomed Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub., 2005, vol. 149, no. 2, pp. 237–241.

    PubMed  Google Scholar 

  26. Quinn, C.E., Hamilton, P.K., Lockhart, C.J., and McVeigh, G.E., Thiazolidinediones: Effects on Insulin Resistance and the Cardiovascular System, Brit. X Pharmacol., 2008, vol. 153, pp. 636–645.

    Article  CAS  Google Scholar 

  27. Chen, H., Montagnani, M., Funahashi, T., et al., Adiponectin Stimulates Production of Nitric Oxide in Vascular Endothelial Cells, J. Biol. Chem., 2003, vol. 278, pp. 45021–45026.

    Article  PubMed  CAS  Google Scholar 

  28. Kahn, C.R., Chen, L., and Cohen, S.E., Unraveling the Mechanism of Action of Thiazolidinediones, J. Clin. Invest., 2000, no. 11, pp. 1305–1307.

  29. Olefsky, J.M., Treatment of Insulin Resistance with Peroxisome Proliferator-Activated Receptor γ Agonists, J. Clin. Invest., 2000, vol. 106, no. 4, pp. 467–472.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, Y.X., Lee, C.H., Tiep, S., et al., Peroxisome-Proliferator-Activated Receptor Delta Activates Fat Metabolism to Prevent Obesity, Cell, 2003, vol. 113, pp. 159–170.

    Article  PubMed  CAS  Google Scholar 

  31. Skogsberg, J., Kannisto, K., Cassel, T.N., Hamsten, A., and Eriksson, P., and Ehrenborg, E., Evidence That Peroxisome Proliferator-Activated Receptor 8 Influences Cholesterol Metabolism in Men, Arterioscl. Thromb. Vase. Biol., 2003, vol. 23, no. 4, pp. 637–643.

    Article  CAS  Google Scholar 

  32. Chen, S., Tsybouleva, N., Ballantyne, C.M., Gotto, A.M., and Marian, A.J., Effects of PPARα, γ and δ Haplotypes on Plasma Levels of Lipids, Severity and Progression of Coronary Atherosclerosis and Response to Statin Therapy in the Lipoprotein Coronary Atherosclerosis Study, Pharmacogenetics, 2004, vol. 14, no. 1, pp. 61–71.

    Article  PubMed  CAS  Google Scholar 

  33. Skogsberg, J., Kannisto, K., Roshani, L., et al., Characterization of the Human Peroxisome Proliferator Activated Receptor 8 Gene and Its Expression, Int. J. Mol. Med., 2000, vol. 6, no. 1, pp. 73–81.

    PubMed  CAS  Google Scholar 

  34. Vohl, M.-C., Lepage, P., Gaudet, D., et al., Molecular Scanning of the Human PPARa Gene: Association of the L162V Mutation with Hyperapobetalipoproteinemia, J. Lipid Res., 2000, vol. 41, no. 6, pp. 945–952.

    PubMed  CAS  Google Scholar 

  35. Tai, E.S., Demissie, S., Cupples, L.A., et al., Association between the PPARA L162V Polymorphism and Plasma Lipid Levels: The Framingham Offspring Study, Arterioscl. Thromb. Vase. Biol., 2002, vol. 22, no. 5, pp. 805–810.

    Article  CAS  Google Scholar 

  36. Evans, D., Aberle, J., Wendt, D., et al., A Polymorphism, L162V, in the Peroxisome Proliferator-Activated Receptor Alpha (PPARalpha) Gene Is Associated with Lower Body Mass Index in Patients with Non-Insulin-Dependent Diabetes Mellitus, J. Mol. Med., 2001, vol. 79, pp. 198–204.

    Article  PubMed  CAS  Google Scholar 

  37. Jamshidi, Y., Montgomery, H.E., Hense, H.W., et al., Peroxisome Proliferator-Activated Receptor Alpha Gene Regulates Left Ventricular Growth in Response to Exercise and Hypertension, Circulation, 2002, vol. 105, pp. 950–955.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, X.L., Oosterhof, J., and Duarte, N., Peroxisome Proliferator-Activated Receptor gamma C161-T Polymorphism and Coronary Artery Disease, Cardiovasc. Res., 1999, vol. 44, pp. 588–594.

    Article  PubMed  CAS  Google Scholar 

  39. Savage, D.B., Tan, G.D., Acerini, C.L., et al., Human Metabolic Syndrome Resulting from Dominant-Negative Mutations in the Nuclear Receptor Peroxisome Proliferator-Activated Receptor-gamma, Diabetes, 2003, vol. 52, pp. 910–917.

    Article  PubMed  CAS  Google Scholar 

  40. Barroso, I., Gurnell, M., Crowley, V.E., et al., Dominant Negative Mutations in Human PPARgamma Associated with Severe Insulin Resistance, Diabetes Mellitus and Hypertension, Nature, 1999, vol. 402, pp. 880–883.

    PubMed  CAS  Google Scholar 

  41. Spam, T., Hussain, M.S., Andersen, G., et al., Relationships Between the Functional PPARa Leul62Val Polymorphism and Obesity, Type 2 Diabetes, Dyslipidaemia, and Related Quantitative Traits in Studies of 5799 Middle-Aged White People, Mol. Genet. Metab, 2007, vol. 90, no. 2, pp. 205–209.

    Article  Google Scholar 

  42. Tai, E.S., Corella, D., Demissie, S., et al., Polyunsaturated Fatty Acids Interact with the PPARA-L162V Polymorphism To Affect Plasma Triglyceride and Apolipoprotein C-III Concentrations in the Framingham Heart Study, J. Nutr., 2005, vol. 135, no. 3, pp. 397–403.

    PubMed  CAS  Google Scholar 

  43. Rubins, K.B., Robins, S.J., Collins, D., et al., Gemfibrozil for the Secondary Prevention of Coronary Heart Disease in Men with Low Levels of High-Density Lipoprotein Cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group, N.E. J. Med., 1999, vol. 341, no. 6, pp. 410–418.

    CAS  Google Scholar 

  44. Robins, S.J., Rubins, KB., Faas, F.H., et al., Insulin Resistance and Cardiovascular Events with Low HDL Cholesterol: The Veterans Affairs HDL Intervention Trial (VA-HIT), Diabetes Care, 2003, vol. 26, no. 5, pp. 1513–1517.

    Article  PubMed  CAS  Google Scholar 

  45. Rubins, H.B., Robins, S.J., Collins, D., et al., Diabetes, Plasma Insulin, and Cardiovascular Disease: Subgroup Analysis from the Department of Veterans Affairs High-Density Lipoprotein Intervention Trial (VA-HIT), Arch. Int. Med., 2002, vol. 162, no. 22, pp. 2597–2604.

    Article  CAS  Google Scholar 

  46. Arnett, D.K., Province, M.A., Borecki, L.B., et al., The PPARa L162V Polymorphism Predicts Triglyceride Lowering Response to Fenofibrate: The GOLDN Study, Circulation, 2005, vol. 112, no. 17, pp. 11–509.

    Google Scholar 

  47. Ansquer, J.C., Foucher, C., Rattier, S., et al., Fenofibrate Reduces Progression to Microalbuminuria over 3 Years in a Placebo-Controlled Study in Type 2 Diabetes: Results from the Diabetes Atherosclerosis Intervention Study (DAIS), Amer. J. Kid. Dis., 2005, vol. 45, no. 3, pp. 485–493.

    Article  CAS  Google Scholar 

  48. Cresci, S., PPAR Genomics and Pharmacogenomics: Implications for Cardiovascular Disease, PPAR Res, 2008.

  49. Tönjes, A., Schotz, M., Loeffler, M., and Stumvoll, M., Association of Prol2Ala Polymorphism in Peroxisome Proliferator-Activated Receptor γ with Pre-Diabetic Phe-Notypes Meta-Analysis of 57 Studies on Nondiabetic Individuals, Diabetes Care, 2006, vol. 29, pp. 2489–2497.

    Article  PubMed  Google Scholar 

  50. Minge, C.E., Robker, R.X., and Norman, R.J., PPAR Gamma: Coordinating Metabolic and Immune Contributions to Female Fertility, PPAR Res., 2008, p. 243791.

  51. Altshuler, D., Hirschhorn, J.N., Klannemark, M., et al., The Common PPARgamma Prol2Ala Polymorphism Is Associated with Decreased Risk of Type 2 Diabetes, Nat. Genet., 2000, vol. 26, pp. 76–80.

    Article  PubMed  CAS  Google Scholar 

  52. Fornage, M., Jacobs, D., R., Jr., et al., Inverse Effects of the PPARγ2 Prol2Ala Polymorphism on Measures of Adiposity over 15 Years in African Americans and Whites: The CARDIA Study, Metabolism: Clin. Exper., 2005, vol. 54, no. 7, pp. 910–917.

    CAS  Google Scholar 

  53. Wei, Q., Jacobs, D.R., Schreiner, R.J., et al., Patterns of Association between PPARγ Genetic Variation and Indices of Adiposity and Insulin Action in African-Americans and Whites: the CARDIA Study, J. Mol. Med., 2006, vol. 84, no. 11. P. 955–965.

    Article  PubMed  CAS  Google Scholar 

  54. Ostergard, T., Ek, J., Hamid, Y., et al., Influence of the PPAR-Y2 Prol2Ala and ACE I/D Polymorphisms on Insulin Sensitivity and Training Effects in Healthy Off-spring of Type 2 Diabetic Subjects, Hormone Metab. Res., 2005, vol. 37, no. 2, pp. 99–105.

    Article  CAS  Google Scholar 

  55. Luan, J., Browne, P.O., Harding, A.-H., et al., Evidence for Gene-Nutrient Interaction at the PPARγ Locus, Diabetes, 2001, vol. 50, no. 3, pp. 686–689.

    Article  PubMed  CAS  Google Scholar 

  56. Memisoglu, A., Hu, F.B., Hankinson, S.E., et al., Interaction between a Peroxisome Proliferator-Activated Receptor γ Gene Polymorphism and Dietary Fat Intake in Relation to Body Mass, Hum. Mol. Genet., 2003, vol. 12, no. 22, pp. 2923–2929.

    Article  PubMed  CAS  Google Scholar 

  57. Jaziri, R., Lobbens, S., Aubert, R., et al., The PPARG Prol2Ala Polymorphism Is Associated with a Decreased Risk of Developing Hyperglycemia Over 6 Years and Combines with the Effect of the APM1 G-11391A Single Nucleotide Polymorphism: The Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) Study, Diabetes, 2006, vol. 55, no. 4, pp. 1157–1162.

    Article  PubMed  CAS  Google Scholar 

  58. Soriguer, F., Morcillo, S., Cardona, F., et al., Prol2Ala Polymorphism of the PPARG2 Gene Is Associated with Type 2 Diabetes Mellitus and Peripheral Insulin Sensitivity in a Population with a High Intake of Oleic Acid, J. Nutr., 2006, vol. 136, no. 9, pp. 2325–2330.

    PubMed  CAS  Google Scholar 

  59. Franks, P.W., Luan, J., Browne, P.O., et al., Does Peroxisome Proliferator-Activated Receptor γ Genotype (Prol2ala) Modify the Association of Physical Activity and Dietary Fat with Fasting Insulin Level?, Metab. Clin. Exp., 2004, vol. 53, no. 1, pp. 11–16.

    PubMed  CAS  Google Scholar 

  60. Pollex, R.L., Mamakeesick, M., Zinman, B., et al., Peroxisome Proliferator-Activated Receptor γ Polymorphism Prol2Ala Is Associated with Nephropathy in Type 2 Diabetes, J. Diabet. Its Compl., 2007, vol. 21, no. 3, pp. 166–171.

    Article  Google Scholar 

  61. Malecki, M.T., Cyganek, K., Mirkiewicz-Sieradzka, B., et al., Alanine Variant of the Prol2Ala Polymorphism of the PPARγ Gene Might Be Associated with Decreased Risk of Diabetic Retinopathy in Type 2 Diabetes, Diabet. Res. Clin. Pract., 2008, vol. 80, no. 1, pp. 139–145.

    CAS  Google Scholar 

  62. Stumvoll, M., Stefan, N., Fritsche, A., et al., Interaction Effect between Common Polymorphisms in PPARγ 2 (Prol2Ala) and Insulin Receptor Substrate 1 (Gly972Arg) on Insulin Sensitivity, J. Mol. Med., 2002, vol. 80, no. 1, pp. 33–38.

    Article  PubMed  CAS  Google Scholar 

  63. Mousavinasab, F., Common Polymorphisms in the PPARgamma2 and IRS-1 Genes and Their Interaction Influence Serum Adiponectin Concentration in Young Finnish Men, Mol. Genet. Metab., 2005, vol. 84, pp. 344–348.

    Article  PubMed  CAS  Google Scholar 

  64. Baratta, R., Di Paola, R., Spampinato, D., et al., Evidence for Genetic Epistasis in Human Insulin Resistance: the Combined Effect of PC-L(K121Q) and (P12A) Polymorphisms, J. Mol. Med., 2003, vol. 81, no. 11, pp. 718–723.

    Article  PubMed  CAS  Google Scholar 

  65. Pizzuti, A., Frittitta, L., Argiolas, A., et al., A Polymorphism (K121Q) of the Human Glycoprotein PC-1 Gene Coding Region Is Strongly Associated with Insulin Resistance, Diabetes, 1999, vol. 48, no. 9, pp. 1881–1884.

    Article  PubMed  CAS  Google Scholar 

  66. Deeb, S.S., Fajas, L., Nemoto, M., et al., A Pro12Ala Substitution in PPARγ2 Associated with Decreased Receptor Activity, Lower Body Mass Index and Improved Insulin Sensitivity, Nat. Genet., 1998, vol. 20, no. 3, pp. 284–287.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kravchenko.

Additional information

Original Russian Text © N.A. Kravchenko, N.V. Yarmysh, 2011, published in Tsitologiya i Genetika, 2011, Vol. 45, No. 3, pp. 68–78.

About this article

Cite this article

Kravchenko, N.A., Yarmysh, N.V. Role of PPARs and their isoforms in metabolic disorders related to insulin resistance and diabetes. Cytol. Genet. 45, 191–199 (2011). https://doi.org/10.3103/S0095452711030042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452711030042

Keywords

Navigation