Skip to main content
Log in

Activation of gene expression of the O6-methylguanine-DNA-transferase repair enzyme upon the influence of EMAP II cytokine in human cells in vitro

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The aim of the study is to evaluate the effect of recombinant EMAP II cytokine (endothelial and monocyte-activating polypeptide II) on the level of MGMT gene expression; this gene encodes the O6-methylguanine-DNA-methyltransferase (MGMT) repair enzyme in the cell culture of humans. An investigation into the EMAP II effect on the proliferation of cells was carried out using the standard MTT test. The MGMT protein in a cell extract was identified by Western blot analysis. The following cell lines were investigated: A102 (fibroblasts), CB-1 (umbilical cord blood stromal cells), and 4BL6 (cells obtained from peripheral blood). It was shown in these experiments that the EMAP II cytokine induces MGMT expression in human cells of the investigated lines. There was observed a decrease in the quantity of cells in the presence of a high concentration of this cytokine. The level of expression of the MGMT repair enzyme was established to increase in human cells in vitro in a serum-free culture medium with the EMAP II cytokine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitra, S., MGMT: A Personal Perspective, DNA Rep., 2007, vol. 6, no. 8, pp. 1064–1070.

    Article  CAS  Google Scholar 

  2. Pegg, A.E., Repair of O6-Alkylguanine by Alkyltransferases, Mutat. Res., 2000, vol. 462, nos. 2/3, pp. 83–100.

    PubMed  CAS  Google Scholar 

  3. Lukash, L.L., Man’ko, V.G., and Lylo, V.V., Role of O-Alkylguanine-DNA Alkyltransferase in Repairing Lesions, Induced by Alkylating Compounds, Biopolym. Cell, 2001, vol. 17, no. 4, pp. 265–277.

    CAS  Google Scholar 

  4. Kaina, B., Christmann, M., Naumann, S., and Roos, W.P., MGMT: Key Node in the Battle against Genotoxicity, Carcinogenicity and Apoptosis Induced by Alkylating Agents, DNA Rep., 2007, vol. 6, no. 8, pp. 1079–1099.

    Article  CAS  Google Scholar 

  5. Kyrtopoulos, S.A., O6-Alkylguanine-DNA Alkyltransferase: Influence of Susceptibility To the Genetic Effects of Alkylating Agents, Toxic. Lett., 1998, p. 102.

  6. Lylo, V.V., Revealing the Modified Form of Repair Enzyme O6-Alkylguanine-DNA Alkyltransferase, in Actual Problems of Obstetrics and Gynecology, Clinical Immunology and Medical Genetics. Collected Works, Kyiv-Lugansk, 2010, pp. 299–305.

  7. Lylo, V.V., Piven’, O.O., Serebryakova, K.V., Macewicz, L.L., and Lukash, L.L., The Influence of Lectins on Some Repair Processes in Mammalian Cells in vitro, Ukr. Biochem. J., 2008, vol. 80, no. 6, pp. 60–65.

    CAS  Google Scholar 

  8. Natsume, A., Ishii, D., Wakabayashi, T., Tsuno, T., Hatano, H., Mizuno, M., and Yoshida, J., IFN-β Down-Regulates the Expression of DNA Repair Gene MGMT and Sensitizes Resistant Glioma Cells to Temozolomide, Cancer Res., 2005, vol. 65, no. 17, pp. 7573–7579.

    PubMed  CAS  Google Scholar 

  9. Rosati, S.F., Williams, R.F., Nunnally, L.C., McGee, M.C., Sims, T.L., Tracey, L., Zhou, J., Fan, M., Ng, C.Y., Nathwani, A.C., Stewart, C.F., Pfeffer, L.M., and Davidoff, A.M., IFN-β Sensitizes Neuroblastoma to the Antitumor Activity of Temozolomide by Modulating O6-Methylguanine DNA Methyltransferase Expression, Mol. Cancer Ther., 2008, vol. 7, no. 12, pp. 3852–3858.

    Article  PubMed  CAS  Google Scholar 

  10. Zheng, M., Bocangel, D., Ramesh, R., Ekmekcioglu, S., Poindexter, N., Grimm, E.A., and Chada, S., Interleukin-24 Overcomes Temozolomide Resistance and Enhances Cell Death by Down-Regulation of O6-Methylguanine-DNA Methyltransferase in Human Melanoma Cells, Mol. Cancer Ther., 2008, vol. 7, no. 12, pp. 3842–3851.

    Article  PubMed  CAS  Google Scholar 

  11. Cardozo, A.K., Kruhoffer, M., Leeman, R., Orntoft, T., and Eizirik, D.L., Identification of Novel Cytokine-Induced Genes in Pancreatic P-Cells by High-Density Oligonucleotide Arrays, Diabetes, 2001, vol. 50, no. 5, pp. 909–920.

    Article  PubMed  CAS  Google Scholar 

  12. Simbirtsev, A.S., Cytokines as a New System, Regulating Body Defense Reactions, Cytokin. Inflam., 2002, vol. 1, no. 1, pp. 9–16.

    Google Scholar 

  13. Kao, J., Ryan, J., Brett, G., Chen, J., Shen, H., Fan, Y.G., Godman, G., Familletti, P.C., Wang, F., and Pan, Y.C., Endothelial Monocyte-Activating Polypeptide II. A Novel Tumour-Derived Polypeptide That Activates Host-Response Mechanisms, J. Biol. Chem., 1992, vol. 267, no. 28, pp. 20239–20247.

    PubMed  CAS  Google Scholar 

  14. Ivakhno, S.S. and Komelyuk, A.I., Cytokine-Like Activities of Some Aminoacyl-TRNA Synthetases and Auxiliary p43 Cofactor of Aminoacylation Reaction and Their Role in Oncogenesis, Exp. Oncol., 2004, no. 4, pp. 250–255.

  15. Schwarz, M.A., Kandel, J., Brett, J., Li, J., Hayward, J., Schwarz, R.E., Chappey, O., Wautier, J.L., Chabot, J., Gerfo, P.L., and Stern, D., Endothelial-Monocyte Activating Polypeptide II. A Novel Antitumour Cytokine That Suppresses Primary and Metastatic Tumour Growth and Induces Apoptosis in Growing Endothelial Cells, J. Exp. Med., 1999, vol. 190, no. 3, pp. 341–354.

    Article  PubMed  CAS  Google Scholar 

  16. Schwarz, R.E. and Schwarz, M.A., In vivo Therapy of Local Tumour Progression by Targeting Vascular Endothelium with EMAP II, J. Surg. Res., 2004, vol. 120, no. 1, pp. 64–72.

    Article  PubMed  CAS  Google Scholar 

  17. Schwarz, R.E., Awasthi, N., Konduri, S., Cafasso, D., and Schwarz, M.A., EMAP II-Based Antiangiogenic-Anti-Endothelial in vivo Combination Therapy of Pancreatic Cancer, Amer. Surg. Oncol., 2010, vol. 17, no. 5, pp. 1442–1452.

    Article  Google Scholar 

  18. Reznikov, A.G., Chaykovskaya, L.V., Polyakova, L.I., and Komelyuk, A.I., Antitumor Effect of Endothelial Monocyte-Activating Polypeptide-II on Human Prostate Adenocarcinoma in Mouse Xenograft Model, Exp. Oncol., 2007, vol. 29, no. 4, pp. 267–271.

    PubMed  CAS  Google Scholar 

  19. Vozianov, A.F., Reznikov, A.G., Komelyuk, A.I., Romanenko, A.M., Chaikovskaya, L.V., Polyakova, L.I., and Grigorenko, V.N., Effects of Recombinant Protein EMAP-II on the Growth, Histological and Histochemical Features of the Heterotransplants of Human Prostate Cancer, J. Acad. Med. Sci. Ukraine, 2008, 14, no. 4, pp. 719–730.

    Google Scholar 

  20. Dubrovsky, A.L., Brown, J.N., Kornelyuk, A.I., Murray, J.C., and Matsuka, G.Kh., Bacterial Expression of Full-Length and Truncated Forms of Cytokine EMAP-2 and Cytokine-Like Domain of Mammalian Tyrosyl-TRNA Synthetase, Biopolym. Cell, 2000, vol. 16, no. 3, pp. 229–235.

    CAS  Google Scholar 

  21. Van Horssen, R., Eggermont, A.M., and Hagen, T.L., Endothelial Monocyte-Activating Polypeptide-II and Its Functions in Pathophysiological Processes, Cytokine Growth Factor Rev., 2006, vol. 17, no. 5, pp. 339–348.

    Article  PubMed  Google Scholar 

  22. Kovalenko, O.O., Lukash, L.L., and Lukash, S.I., Induction of Gene Mutations by Lectins of Different Origin and Cytokine EMAPII in Somatic Mammalian Cells in vitro, Biopolym. Cell, 2007, vol. 23, no. 5, pp. 410–415.

    CAS  Google Scholar 

  23. Morton, E.N. and Margison, G.P., Increased O6-Alky1guanine-DNA Alkyltransferase Activity in Chinese Hamster V-79 Cells Following Selection with Chloroethylating Agents, Carcinogenesis, 1988, vol. 9, no. 1, pp. 45–49.

    Article  Google Scholar 

  24. Laemmli, U.K., Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  PubMed  CAS  Google Scholar 

  25. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, nos. 1/2, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  26. Aldridge, G.M., Podrebarac, D.M., Greenough, W.T., and Weiler, I.J., The Use of Total Protein Stains as Loading Controls: An Alternative to High-Abundance Single-Protein Controls in Semi-Quantitative Immunoblotting, J. Neurosci. Methods, 2008, vol. 172, no. 2, pp. 250–254.

    Article  PubMed  CAS  Google Scholar 

  27. http://www.novusbio.com/support/protocols/protocolspecific-for-mgmt-antibody-nb100-168.html.

  28. Twentyman, P.R. and Luscombe, M., A Study of Some Variables in a Tetrazolium Dye (MTT) Based Assay for Cell Growth and Chemosensitivity, Brit. J. Cancer, 1987, vol. 56, no. 3, pp. 279–285.

    Article  PubMed  CAS  Google Scholar 

  29. Lukash, L.L., Boldt, J., Pegg, F.E., Dolan, M.E., Maher, V.M., and McCormick, J.J., Effect of O6-Alkylguanine-DNA-Alkyltransferase on the Frequency and Spectrum of Mutations Induced by N-Methyl-N′-nitro-N-nitrosoguanidine in the HPRT Gene of Diploid Human Fibroblasts, Mutat. Res., 1991, vol. 250, nos. 1/2, pp. 397–409.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Babenko.

Additional information

Original Russian Text © V.V. Lylo, L.L. Matsevich, E.V. Kotsarenko, L.A. Babenko, A.I. Kornelyuk, E.M. Sukhorada, L.L. Lukash, 2011, published in Tsitologiya i Genetika, 2011, Vol. 45, No. 6, pp. 53–60.

About this article

Cite this article

Lylo, V.V., Matsevich, L.L., Kotsarenko, E.V. et al. Activation of gene expression of the O6-methylguanine-DNA-transferase repair enzyme upon the influence of EMAP II cytokine in human cells in vitro. Cytol. Genet. 45, 373–378 (2011). https://doi.org/10.3103/S0095452711060053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452711060053

Keywords

Navigation