Skip to main content
Log in

Physiological and molecular aspects of salt stress in plants

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The study of salt stress mechanisms in plants has become an important issue for the modern agricultural development, climate change, and global food crisis. The plant response to high salt concentrations is complex and comprehensive; it includes many different processes, which should be correctly coordinated. The effect of excessive salt concentrations on plants results in osmotic stress and creates an ionic inbalance due to the accumulation of toxic ions, such as Cl and, especially, Na+. Salt stress also has negative impact on mineral homeostasis, in particular Ca2+ and K+. The progress in transcryptomics, genomics, and molecular biology revealed a new gene families that participate in the formation of salt stress response in plants. This review describes the fundamental principles and mechanisms of plant salt tolerance, maintenance of ion homeostasis. In this paper the detailed analysis of the maine transport membrane systems responsible for the transport of ions and their role in plant salt stress were conducted. The perspectives and directions for the further biotechnological and genetic improvement of salt tolerance in plants are underlied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leary, J.W., Adaptive Components of Salt Tolerance, in Handbook of Plant and Crop Physiology, Pessarakli, M., Ed., New York: Marcel Dekker, 1995, pp. 577–585.

    Google Scholar 

  2. Hoorn, J.W. and Alphen, J.G., Salinity Control, in Drainage Principles and Applications, Ritzema, H.P., Ed., Wageningen, 2006, pp. 533–600.

  3. FAO Land and Plant Nutrition Management Service, 2008. http://www.fao.org/ag/agl/aggl//spush

  4. Lewis, D.H., Storage Carbohydrates in Vascular Plants: Distribution, Physiology and Metabolism, London: Cambridge Univ., 1984.

    Google Scholar 

  5. US Salinity Laboratory. Diagnoses and Improvement of Saline and Alkali Soils: Agriculture Handbook, USDA, 1954, no. 60.

  6. Salt Tolerance of Plants, Agdex 518-17, November 2001.

  7. Flowers, T.J., Troke, P.F., and Yeo, A.R., The Mechanism of Salt Tolerance in Halophytes, Annu. Rev. Plant Physiol., 1977, vol. 28, pp. 89–121.

    Article  CAS  Google Scholar 

  8. Glenn, E.P., Brown, J.J., and O’Leary, J.W., Irrigating Crops with Seawater, Sci. Am., 1998, vol. 279, pp. 56–61.

    Article  Google Scholar 

  9. Ayala, F. and O’Leary, J.W., Growth and Physiology of Salicornia bigenlovii Torr. at Suboptimal Salinity, Int. J. Plant. Sci., 1995, vol. 156, pp. 197–205.

    Article  Google Scholar 

  10. Zhu, J.K., Plant Salt Stress, in Encyclopedia of Life Sciences, Chichester: Wiley, 2007.

    Google Scholar 

  11. Flowers, T.J., Hajibagheri, M.A., and Clipson, N.J.W., Halophytes, Quarterly Rev. Biol., 1986, vol. 61, pp. 313–337.

    Article  Google Scholar 

  12. Greenway, H. and Munns, R., Mechanisms of Salt Tolerance in Nonhalophytes, Annu. Rev. Plant Physiol., 1980, vol. 31, pp. 149–190.

    Article  CAS  Google Scholar 

  13. Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., and Bohnert, H.J., Plant Cellular and Molecular Responses to High Salinity, Annu. Rev. Plant Physiol. Plant. Mol. Biol., 2000, vol. 51, pp. 463–499.

    Article  PubMed  CAS  Google Scholar 

  14. Blumwald, E., Aharon, G.S., and Apse, M.P., Sodium Transport in Plant Cells, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 140–151.

    Article  PubMed  CAS  Google Scholar 

  15. Niu, X., Bressan, R.A., Hasegawa, P.M., and Pardo, J.M., Ion Homeostasis in NaCl Stress Environments, Plant. Physiol., 1995, vol. 109, pp. 735–742.

    PubMed  CAS  Google Scholar 

  16. Zhu, J.-K., Plant Salt Tolerance, Trends Plant. Sci., 2001, vol. 6, pp. 66–71.

    Article  PubMed  CAS  Google Scholar 

  17. Moller, I.S. and Tester, M., Salinity Tolerance of Arabidopsis: A Good Model for Cereals?, Trends Plant Sci., 2007, vol. 12, pp. 534–540.

    Article  PubMed  CAS  Google Scholar 

  18. Munns, R., James, R.A., and Lduchli, A., Approaches to Increasing the Salt Tolerance of Wheat and Other Cereals, J. Exp. Bot., 2006, vol. 57, pp. 1025–1043.

    Article  PubMed  CAS  Google Scholar 

  19. Bohnert, H.J., Nelson, D.E., and Jensen, R.G., Adaptations to Environmental Stresses, Plant Cell, 1995, vol. 7, pp. 1099–1111.

    PubMed  CAS  Google Scholar 

  20. Alscher, R.G., Donahue, J.L., and Cramer, C.L., Reactive Oxygen Species and Antioxidants: Relationships in Green Cells, Physiol. Plant., 1997, vol. 100, pp. 224–233.

    Article  CAS  Google Scholar 

  21. Taiz, L. and Zeiger, E., Plant Physiology, Sunderland, Massachusetts: Sinauer Associates, 1998.

    Google Scholar 

  22. Bohnert, H.J. and Jensen, R.G., Strategies for Engineering Water Stress Tolerance in Plants, Trends Biotechnol., 1996, vol. 14, pp. 89–97.

    Article  CAS  Google Scholar 

  23. Munns, R. and Tester, M., Mechanisms of Salinity Tolerance, Ann. Rev. Plant. Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  Google Scholar 

  24. Maathuis, F.J.M. and Amtmann, A.K., Nutrition and Na Toxicity; the Basis of Cellular K+/Na+ Ratios, Ann. Bot., 1999, vol. 84, pp. 123–133.

    Article  CAS  Google Scholar 

  25. Rhodes, D. and Hanson, A.D., Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1993, vol. 44, pp. 357–384.

    Article  CAS  Google Scholar 

  26. Nuccio, M.L., Rhodes, D., McNeil, S.D., and Hanson, A.D., Metabolic Engineering of Plants for Osmotic Stress Resistance, Curr. Opin. Plant. Biol., 1999, vol. 2, pp. 128–134.

    Article  PubMed  CAS  Google Scholar 

  27. Hernandez, J.A., Ferrer, M.A., Jimenez, A., Barcelo, A.R., and Sevilla, F., Antioxidant Systems and O 2 /H2O2 Production in the Apoplast of Pea Leaves. Its Relation with Salt-Induced Necrotic Lesions in Minor Veins, Plant Physiol., 2001, vol. 127, pp. 817–831.

    Article  PubMed  CAS  Google Scholar 

  28. Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., and Kobayashi, H.A., Recessive Arabidopsis Mutant That Grows Photoautotrophically under Salt Stress Shows Enhanced Active Oxygen Detoxification, Plant Cell, 1999, vol. 11, pp. 1195–1206.

    PubMed  CAS  Google Scholar 

  29. Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., Kishitani, S., Takabe, T., Yokota, S., and Takabe, T., Salt Tolerance of Transgenic Rice Overexpressing Yeast Mitochondrial Mn-SOD in Chloroplasts, Plant Sci., 1999, vol. 143, pp. 131–138.

    Article  Google Scholar 

  30. Xiong, Y., Contento, A.L., Nguyen, P.Q., and Bassham, D.C., Degradation of Oxidized Proteins by Autophage during Oxidative Stress in Arabidopsis, Plant Physiol., 2007, vol. 143, pp. 291–2999.

    Article  PubMed  CAS  Google Scholar 

  31. Shin, J.H., Yoshimoto, K., Ohsumi, Y., Jeon, J.S., and An, G., OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice, Mol. Cell, 2009, vol. 27, pp. 67–74.

    Article  CAS  Google Scholar 

  32. Slavikova, S., Ufaz, S., Avin-Wittenberg, T., Levanony, H., and Galii, G., An Autophage-Associated Atg8 Protein Is Involved in the Responses of Arabidopsis Seedlings to Hormonal Controls and Abiotic Stresses, J. Exp. Bot., 2008, vol. 59, pp. 4029–4043.

    Article  PubMed  CAS  Google Scholar 

  33. Liu, Y., Xiong, Y., and Bassham, D.C., Autophagy Is Required for Tolerance of Drought and Slat Stress in Plants, Autophagy, 2009, vol. 7, pp. 954–963.

    Article  Google Scholar 

  34. Khight, H., Trewavas, A.J., and Knight, M.R., Calcium Signaling in Arabidopsis thaliana Responding to Drought and Salinity, Plant J., 1997, vol. 12, pp. 1067–1078.

    Article  Google Scholar 

  35. Sanders, D., Plant Biology: The Salty Tale of Arabidopsis, Curr. Biol., 2000, vol. 10, pp. 486–488.

    Article  Google Scholar 

  36. Tracy, F.E., Gilliham, M., Dodd, A.N., Webb, A.A.R., and Tester, M., Cytosolic Free Ca2+ in Arabidopsis thaliana are Heterogeneous and Modified by External Ionic Composition, Plant. Cell Environ., 2008, vol. 31, pp. 1063–1073.

    Article  PubMed  CAS  Google Scholar 

  37. Mendoza, I., Quintero, F.J., Bressan, R.A., Hasegawa, P.M., and Pardo, J.M., Activated Calcineurin Confers High Tolerance to Ion Stress and Alters the Budding Pattern and Cell Morphology of Yeast Cells, J. Biol. Chem., 1996, vol. 271, pp. 23061–23067.

    Article  PubMed  CAS  Google Scholar 

  38. Pardo, J.M., Reddy, M.P., Yang, S., Maggio, A., Huh, G.-H., Matsumoto, T., Coca, M.A., Paino-D’, UrazoM., Koiwa, H., Yun, D.-J., Watad, A.A., Bressan, R.A., and Hasegawa, P.M., Stress Signaling through Ca2+/Calmodulin-Dependent Protein Phosphatase Calcineurin Mediates Salt Adaptation in Plants, Proc. Nat. Acad. Sci. USA, 1998, vol. 95, pp. 9681–9686.

    Article  PubMed  CAS  Google Scholar 

  39. Zhu, J.K., Sat and Drought Stress Signal Transduction in Plants, Ann. Rev. Plant Biol., 2002, vol. 53, pp. 247–273.

    Article  CAS  Google Scholar 

  40. Shi, H., Ishatani, M., Kim, C., and Zhu, J.K., The Arabidopsis thaliana Salt Tolerance Gene SOSI Encodes a Putative Na+/H+ Antiporter, Proc. Nat. Acad. Sci. USA, 2000, vol. 97, pp. 6896–6901.

    Article  PubMed  CAS  Google Scholar 

  41. Liu, W., Fairbairn, D.J., Reid, R.J., and Schachtman, D.P., Characterization of Two HKTI Homologues from Eucalyptus camaldulensis That Display Intrinsic Osmosensing Capability, Plant Physiol., 2001, vol. 127, pp. 283–294.

    Article  PubMed  CAS  Google Scholar 

  42. Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hiryama, T., and Shinozaki, K., A Transmembrane Hybrid-Type Histidine Kinase in Arabidopsis Functions as an Osmosensor, Plant Cell, 1999, vol. 11, pp. 1743–1754.

    PubMed  CAS  Google Scholar 

  43. Maathuis, F.J.M. and Sanders, D., Sodium Uptake in Arabidopsis thaliana Roots is Regulated by Cyclic Nucleotides, Plant Physiol., 2001, vol. 127, pp. 1617–1625.

    Article  PubMed  CAS  Google Scholar 

  44. Donaldson, L., Ludidi, N., Knight, M.R., Gehring, C., and Denby, K., Salt and Osmotic Stress Cause Rapid Increases in Arabidopsis thaliana CGMP Levels, FEBS Lett., 2004, vol. 569, pp. 317–320.

    Article  PubMed  CAS  Google Scholar 

  45. Kronzucker, H.J., Szczerba, M.W., Moazami-Goudarzi, M., and Britto, D.V., The Cytosolic Na+: K+ Ratio Does Not Explain Salinity-Induced Growth Impairment in Barley: A Dual-Tracer Study Using 42K and 24Na, Plant Cell Environ., 2006, vol. 29, pp. 2228–2237.

    Article  PubMed  CAS  Google Scholar 

  46. Cheeseman, J.M., Pump Leak Sodium Fluxes in Low Salt Corn Roots, J. Membr. Biol., 1982, vol. 70, pp. 157–164.

    Article  CAS  Google Scholar 

  47. Xiong, L. and Zhu, J.-K., Salt Tolerance, in The Arabidopsis Book, Meyerowitz, E.M. and Somerville, C.R., Eds., American Society of Plant Biologists, 2002. doi/10.1199/tab.0048. http://www.aspb.org/publications/arabgidopsis/

  48. Flowers, T.J. and Colmer, T.D., Salinity Tolerance in Halophytes, New Phytol., 2008, vol. 179, pp. 945–963.

    Article  PubMed  CAS  Google Scholar 

  49. Blumwald, E., Sodium Transport and Salt Tolerance in Plants, Curr. Opin. Cell Biol., 2000, vol. 12, pp. 431–434.

    Article  PubMed  CAS  Google Scholar 

  50. Maathuis, F.J.M., Monovalent Cation Transporters; Establishing a Link between Bioinformatics and Physiology, Plant Soil, 2007, vol. 301, pp. 1–15.

    Article  CAS  Google Scholar 

  51. Amtmann, A. and Sanders, D., Mechanism of Na+ Uptake by Plant Cells, Adv. Bot. Res., 1999, vol. 29, pp. 76–112.

    Google Scholar 

  52. Schachtman, D.P., Molecular Insights into the Structure and Function of Plant K+ Transport Mechanisms, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 127–139.

    Article  PubMed  CAS  Google Scholar 

  53. Cahao, D.Y., Luo, Y.H., Shi, M., Luo, D., and Lin, H.X., Salt Responsive Genes in Rice Revealed by cDNA Microarray Analysis, Cell Res., 2005, vol. 15, pp. 796–810.

    Article  Google Scholar 

  54. Walia, H., Wilson, C., Condamine, P., Lui, X., Ismail, A.M., Zeng, L., Wanamaker, S.I., Mandal, J., Xu, J., Cui, X., and Close, T.J., Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes under Salinity Stress during the Vegetative Growth Stage, Plant Physiol., 2005, vol. 139, pp. 822–835.

    Article  PubMed  CAS  Google Scholar 

  55. Walia, H., Wilson, C., Condamine, P., Liu, X., Ismoil, A.M., and Close, T.J., Large-Scale Expression Profiling and Physiological Characterization of Jasmonic Acid-Mediated Adaptation of Barley to Salinity Stress, Plant Cell Environ., 2007, vol. 30, pp. 410–421.

    Article  PubMed  CAS  Google Scholar 

  56. Su, H., Golldack, D., Zhao, C., and Bohnert, H.J., The expression of HAK-Type K+ Transporters Is Regulated in Response to Salinity Stress in Common Ice Plant, Plant Physiol., 2002, vol. 129, pp. 1482–1493.

    Article  PubMed  CAS  Google Scholar 

  57. Pardo, J.M. and Quintero, F.J., Plants and Sodium Ions: Keeping Company with the Enemy, Genome Biol., 2002, vol. 3, pp. 1017.1–1017.4.

    Article  Google Scholar 

  58. Santa-Maria, G.E., Rubio, F., Dubcovsky, J., and Rodriguez-Navarro, A., The HAKI Gene of Barley Is a Member of a Large Gene Family and Encodes a High-Affinity Potassium Transporter, Plant Cell, 1997, vol. 9, pp. 2281–2289.

    PubMed  CAS  Google Scholar 

  59. Fu, H.H. and Luan, S., AtKUPl: A Dual-Affinity K+ Transporter from Arabidopsis, Plant Cell, 1998, vol. 10, pp. 63–74.

    PubMed  CAS  Google Scholar 

  60. Haro, R., Banuelos, M.A., Senn, M.E., Berrero-Gil, J., and Rodriguez-Navarro, A., HKT1 Mediates Sodium Uniport in Roots: Pitfalls in the Expression of HKT1 in Yeast, Plant Physiol., 2005, vol. 139, pp. 1495–1506.

    Article  PubMed  CAS  Google Scholar 

  61. Laurie, S., Feeney, K.A., Maathuis, F.J.M., Heard, P.J., Brown, S.J., and Leigh, R.A., A Role for HKT1 in Sodium Uptake by Wheat Roots, Plant J., 2002, vol. 32, pp. 139–149.

    Article  PubMed  CAS  Google Scholar 

  62. Kato, Y., Sakaguchi, M., Mori, Y., Saito, K., Nakamura, T., Bakker, E.P., Sato, Y., Goshima, S., and Uozumi, N., Evidence in Support of a Four-Pore Transmembrane Topology Model for the Arabidopsis thaliana Na+/K+ Translocating AtHKT1 Protein, a Member of the Superfamily of K+ Transporters, Proc. Nat. Acad. Sci. USA, 2001, vol. 98, pp. 6488–6493.

    Article  PubMed  CAS  Google Scholar 

  63. Uozumi, N., Kim, E.J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E.P., Nakamura, T., and Schroeder, J.L., The Arabidopsis HKT1 Gene Homolog Mediates Inward Na+ Currents in Xenopus laevis Oocytes and Na+ Uptake in Saccharomyces cerevisiae, Plant Physiol., 2000, vol. 122, pp. 1249–1259.

    Article  PubMed  CAS  Google Scholar 

  64. Horie, T., Costa, A., Kim, T.H., Han, M.J., Horie, R., Leung, H.-Y., Miyao, A., and Hirochika, H., An G., Schroeder J.I. Rice OsHKT2;1 Transporter Mediates Large Na+ Influx Component into K+-Starved Roots for Growth, EMBO J., 2007, vol. 26, pp. 3003–3014.

    Article  PubMed  CAS  Google Scholar 

  65. Fairbairn, D.J., Liu, W., Schachtman, D.P., Gomez-Gallego, S., Day, S.R., and Teasdale, R.D., Characterisation of Two Distinct HKT1-Like Potassium Transporters from Eucalyptus camaldulensis, Plant. Mol. Biol., 2000, vol. 43, pp. 515–525.

    Article  PubMed  CAS  Google Scholar 

  66. Schachtman, D.P. and Schroeder, J.I., Structure and Transport Mechanism of a High-Affinity Potassium Uptake Transporter from Higher Plants, Nature, 1994, vol. 370, pp. 655–658.

    Article  PubMed  CAS  Google Scholar 

  67. Rubio, F., Schwarz, M., and Schoeder, J.I., Genetic Selection of Mutants in the High Affinity K+ Transporter HKT1 That Define Functions of a Loop Site for Reduced Na+ Permeability and Increased Na+ Tolerance, J. Biol. Chem., 1999, vol. 274, pp. 6839–6847.

    Article  PubMed  CAS  Google Scholar 

  68. Mian, A., Oomen, R.J.F., Isayenkov, S., Sentenac, H., Maathuis, F.J.M., and Very, A.A., Overexpression of a Na+ and K+-Permeable HKT Transporter in Barley Improves Slat Tolerance, Plant J., 2011, vol. 68, pp. 468–479.

    Article  PubMed  CAS  Google Scholar 

  69. Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B., Matsumoto, T.K., Koiwa, H., Zhu, J.-K., Bressan, R.A., and Hasegawa, P.M., AtHKT1 Is a Salt Tolerance Determinant That Controls Na+ Entry into Plant Roots, Proc. Nat. Acad. Sci. USA, 2001, vol. 98, pp. 14150–14155.

    Article  PubMed  CAS  Google Scholar 

  70. Garciadeblas, B., Senn, M.E., Bacuelos, M.A., and Rodriguez-Navarro, A., Sodium Transport and HKT Transporters: The Rice Model, Plant J., 2003, vol. 34, pp. 788–801.

    Article  PubMed  CAS  Google Scholar 

  71. Huang, S., Spelemeyer, W., Lagudah, E.S., James, R.A., Platten, J.D., Dennis, E.S., and Munns, R., A Sodium Transporter (HKT7) is a Candidate for Nax1, a Gene for Salt Tolerance in Durum Wheat, Plant Physiol., 2006, vol. 142, pp. 1718–1727.

    Article  PubMed  CAS  Google Scholar 

  72. Golldack, D., Su, H., Quigley, F., Kamasani, U.R., Garay, C.M., Balderas, E., Popova, O.V., Bennett, J., Bohnert, H.J., and Pantoja, O., Characterization of a HKT-Type Transporter in Rice as a General Alkali Cation Transporter, Plant J., 2002, vol. 31, pp. 529–542.

    Article  PubMed  CAS  Google Scholar 

  73. Schachtman, D.P., Kumar, R., Schroeder, J.I., and Marsh, L., Molecular and Functional Characterization of a Novel Low-Affinity Cation Transporter (LCT1) in Higher Plants, Proc. Nat. Acad. Sci. USA, 1997, vol. 94, pp. 11079–11084.

    Article  PubMed  CAS  Google Scholar 

  74. Clemens, S., Antosiewicz, D.M., Ward, J.M., Schachtman, D.P., and Schroeder, J.I., The Plant cDNA LCT1 Mediates the Uptake of Calcium and Cadmium in Yeast, Proc. Nat. Acad. Sci. USA, 1998, vol. 95, pp. 12043–12048.

    Article  PubMed  CAS  Google Scholar 

  75. Stefanovic, A., Sanders, D., and Schachtamn, D.P., The Wheat cDNA LCT1 Generates Hypersensitivity to Sodium in a Salt-Sensitive Yeast Strain, Plant Physiol., 2001, vol. 126, pp. 1061–1071.

    Article  PubMed  Google Scholar 

  76. Davenport, R.J. and Tester, M., A Weakly Voltage-Dependent, Nonselective Cation Channel Mediates Toxic Sodium Influx in Wheat, Plant Physiol., 2000, vol. 122, pp. 823–834.

    Article  PubMed  CAS  Google Scholar 

  77. Tester, M. and Davenport, R., Na+ Tolerance and Na+ Transport in Higher Plants, Ann. Bot., 2003, vol. 91, pp. 503–527.

    Article  PubMed  CAS  Google Scholar 

  78. Kader, M.A. and Lidnberg, S., Uptake of Sodium in Protoplasts of Salt-Sensitive and Salt-Tolerant Cultivars of Rice, Oryza sativa L. Determined by the Fluorescent Dye SBF1, J. Exp. Bot., 2005, vol. 422, pp. 3149–3158.

    Article  CAS  Google Scholar 

  79. Maathuis, F.J.M., The Role of Monovalent Cation Transporters in Plant Responses to Salinity, J. Exp. Bot., 2006, vol. 57, pp. 1137–1147.

    Article  PubMed  CAS  Google Scholar 

  80. Gobert, A., Park, G., Amtmann, A., Sanders, D., and Maathuis, F.J.M., Arabidopsis thaliana Cyclic Nucleotide Gated Channel 3 Forms a Non-Selective Cation Transporter Involved in Germination and Cation Transport, J. Exp. Bot., 2006, vol. 57, pp. 791–800.

    Article  PubMed  CAS  Google Scholar 

  81. Guo, K.M., Babourina, O., Christopher, D.A., Borsics, T., and Rengel, Z., The Cyclic Nucleotide-Gated Channel, AtCNGC10, Influences Salt Tolerance in Arabidopsis, Physiol. Plant., 2008, vol. 134, pp. 499–507.

    Article  PubMed  CAS  Google Scholar 

  82. Gasiola, R.A., Rao, R., Sherman, A., Grisafi, P., Alper, S.L., and Fink, G.R., The Arabidopsis thaliana Proton Transporters AtNhx1 and Avp1 Can Function in Cation Detoxification in Yeast, Proc. Nat. Acad. Sci. USA, 1999, vol. 96, pp. 1480–1485.

    Article  Google Scholar 

  83. Gasiola, R.A., Li, J., Undurraga, S., Dang, L.M., Allen, G.J., Alper, S.L., and Fink, G.R., Drought- and Salt-Tolerant Plants Results from Overexpression of the AVP1 H+-Pump, Proc. Nat. Acad. Sci. USA, 2001, vol. 98, pp. 11444–11449.

    Article  Google Scholar 

  84. Binzel, M. and Ratajczak, R., Function of Membrane Transport Systems under Salinity: Tonoplast, in Salinity: Environment-Plants-Molecules, Lauchli, A. and Littge, U., Eds., Dordrecht: Kluwer, 2002, pp. 423–449.

    Google Scholar 

  85. Reinhold, L. and Guy, M., Function of Membrane Transport Systems Under Salinity: Plasma Membrane, in Salinity: Environment-Plants-Molecules, Lauchli, A. and Littge, U., Eds., Dordrecht: Kluwer, 2002, pp. 397–421.

    Google Scholar 

  86. Isayenkov, S., Isner, J.C., and Maathuis, F.J.M., Plant Vacuolar Ion Channels, FEBS Lett., 2010, vol. 584, pp. 1982–1988.

    Article  PubMed  CAS  Google Scholar 

  87. Nass, R., Cunningham, K.W., and Rao, R., Intracellular Sequestration of Sodium by a Novel Na+/H+ Exchanger in Yeast Is Enhanced by Mutations in the Plasma Membrane H+-ATPase, J. Biol. Chem., 1997, vol. 272, pp. 26145–26152.

    Article  PubMed  CAS  Google Scholar 

  88. Quintero, F.J., Blatt, M.R., and Pardo, J.M., Functional Conservation between Yeast and Plant Endosomal Na+/H+-Antiporters, FEBS Lett., 2000, vol. 471, pp. 224–228.

    Article  PubMed  CAS  Google Scholar 

  89. Nass, R. and Rao, R., Novel Localization of a Na+/H+ Exchanger in a Late Endosomal Compartment of Yeast. Implications for Vacuole Biogenesis, J. Biol. Chem., 1988, vol. 273, pp. 21054–21060.

    Article  Google Scholar 

  90. Blumwald, E. and Poole, R.J., Salt Tolerance in Suspension Cultures of Sugar Beet. Induction of Na+/H+ Antiport Activity at the Tonoplast by Growth in Salt, Plant Physiol., 1987, vol. 83, pp. 884–887.

    Article  PubMed  CAS  Google Scholar 

  91. Hassidim, M., Braun, Y., Lerner, H.R., and Reinhold, L., Na+/H+ and K+/H+ Antiport in Root Membrane Vesicles Isolated from the Halophyte Atriplex and the Glycophyte Cotton, Plant Physiol., 1990, vol. 94, pp. 1795–1801.

    Article  PubMed  CAS  Google Scholar 

  92. Staal, M., Elzenga, T.M., Oberbeek, J.H.M., and Prins, H.B.A., Na+/H+ Antiport Activity of the Salt-Tolerant Plantago maritime and the Salt-Sensitive Plantago media, Physiol. Plant., 1991, vol. 82, pp. 179–184.

    Article  CAS  Google Scholar 

  93. Barkla, B.J., Zingarelli, L., Blumwald, E., and Smith, J.A.C., Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L., Plant Physiol., 1995, vol. 109, pp. 549–556.

    PubMed  CAS  Google Scholar 

  94. Apse, M.P., Aharon, G.S., Snedden, W.A., and Blumwald, E., Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis, Science, 1999, vol. 285, pp. 1656–1658.

    Article  Google Scholar 

  95. Xue, Z.Y., Zhi, D.Y., Xue, G.P., Zhang, H., Zhao, Y.X., and Xia, G.M., Enhanced Salt Tolerance of Transgenic Wheat (Triticum aestivum L.) Expressing a Vacuolar Na+/H+ Antiporter Gene with Improved Grain Yields in Saline Soils in the Field and a Reduced Level of Leaf Na+, Plant Sci., 2004, vol. 167, pp. 849–859.

    Article  CAS  Google Scholar 

  96. Zhang, H.X. and Blumwald, E., Transgenic Salt-Tolerant Tomato Plants Accumulate Salt in Foliage but Not in Fruit, Nat. Biotechnol., 2001, vol. 19, pp. 765–768.

    Article  PubMed  CAS  Google Scholar 

  97. Li, W.Y.F., Wong, F.L., Tsai, S.N., Phang, T.H., Shao, G., and Lam, H., M. Tonoplast-Located GmCLC1 and GmNHX1 from Soybean Enhance NaCl Tolerance in Transgenic Bright Yellow (BY)-2 Cells, Plant Cell Environ., 2006, vol. 29, pp. 1122–1137.

    Article  PubMed  CAS  Google Scholar 

  98. Fukuda, A., Nakamura, A., and Tanaka, Y., Molecular Cloning and Expression of the Na+/H+ Exchanger Gene in Oryza sativa, Biochim. Biophys. Acta, 1999, vol. 1446, pp. 149–155.

    Article  PubMed  CAS  Google Scholar 

  99. Yokoi, S., Bressan, R.A., and Hasegawa, P.M., Salt Stress Tolerance of Plants, JIRCAS Working Rep., 2002, pp. 25–33.

  100. Fukuda, A., Nakamura, A., Tagiri, A., et al., Function, Intracellular Localization and the Importance of Salt Tolerance of a Vacuolar Na+/H+ Antiporter from Rice, Plant Cell Physiol., 2004, vol. 45, pp. 146–159.

    Article  PubMed  CAS  Google Scholar 

  101. Chen, Z.H., Pottosin, I.I., Cuin, T.A., Fuglsang, A.T., Tester, M., Jha, D., Zepeda-Jazo, I., Zhou, M., Palmgren, G., Newman, A., and Shabala, S., Root Plasma Membrane Transporters Controlling K+/Na+ Homeostasis in Salt-Stressed Barley, Plant Physiol., 2007, vol. 145, pp. 1714–1725.

    Article  PubMed  CAS  Google Scholar 

  102. Yokoi, S., Quintero, F.J., Cubero, B., Riuz, M.T., Bressan, R.A., Hasegawa, P.M., and Pardo, J.M., Differential Expression and Function of Arabidopsis thaliana NHX Na+/H+ Antiporters in the Salt Stress Response, Plant J., 2002, vol. 30, pp. 529–529.

    Article  PubMed  CAS  Google Scholar 

  103. Rodriguez-Rosales, M.P., Jiang, X., Galvez, F.J., Aranda, M.N., Cubero, B., and Venema, K., Overexpression of the Tomato K+/H+ Antiporter LeNHX2 Confers Salt Tolerance by Improving Potassium Compartmentalization, New Phytol., 2008, vol. 179, pp. 366–377.

    Article  PubMed  CAS  Google Scholar 

  104. Jiang, X., Leidi, E.J., and Pardo, J.M., How Do Vacuolar NHX Exchangers Function in Plant Salt Tolerance?, Plant Signal. Behav., 2010, vol. 5, pp. 792–795.

    Article  PubMed  CAS  Google Scholar 

  105. Ohnishia, M., Fukada-Tanaka, S., Hoshino, A., Takada, J., Inagaki, Y., and Iida, S., Characterization of a Novel Na+/H+ Antiporter Gene InNHX2 and Comparison of InNHX2 with InNHX1, Which Is Responsible for Blue Flower Coloration by Increasing the Vacuolar pH in the Japanese Morning Glory, Plant Cell Physiol., 2005, vol. 46, pp. 259–267.

    Article  CAS  Google Scholar 

  106. Gobert, A., Isayenkov, S., Voelker, C., Czempinski, K., and Maathuis, F.J.M., The Two-Pore Channel TPK1 Gene Encodes the Vacuolar K+ Conductance and Plays a Role in K+ Homeostasis, Proc. Nat. Acad. Sci. USA, 2007, vol. 104, pp. 10726–10731.

    Article  PubMed  CAS  Google Scholar 

  107. Isayenkov, S., Isner, J.C., and Maathuis, F.J.M., Rice Two-Pore K+ Channels Are Expressed in Different Types of Vacuoles, Plant Cell, 2011, vol. 23, pp. 756–768.

    Article  PubMed  CAS  Google Scholar 

  108. Isayenkov, S., Isner, J.C., and Maathuis, F.J.M., Membrane Localization Diversity of TPK Channels and Their Physiological Role, Plant Signal Behav., 2011, vol. 6 [Epub Ahead of Print].

  109. Munns, R., Genes and Salt Tolerance: Bringing Them Together, New Phytol., 2005, vol. 167, pp. 645–663.

    Article  PubMed  CAS  Google Scholar 

  110. Ardie, S.W., Liu, S., and Takano, T., Expression of the AKT1-Type K+ Channel Gene from Puccinellia tenuiflora, PutAKT1, Enhances Salt Tolerance in Arabidopsis, Plant Cell. Rep., 2010, vol. 29, pp. 865–874.

    Article  PubMed  CAS  Google Scholar 

  111. Schachtman, D.P., Tyerman, S.D., and Terry, B.R., The K+/Na+ Selectivity of a Cation Channel in the Plasma Membrane of Root Cells Does Not Differ in Salt-Tolerant and Salt-Sensitive Wheat Species, Plant Physiol., 1991, vol. 97, pp. 598–605.

    Article  PubMed  CAS  Google Scholar 

  112. Wang, S.M., Zhang, J., and Flowers, T.J., Low-Affinity Na+ Uptake in the Halophyte Suaeda maritime, Plant Physiol., 2007, vol. 145, pp. 559–571.

    Article  PubMed  CAS  Google Scholar 

  113. Munns, R., Comparative Physiology of Salt and Water Stress, Plant Cell Environ., 2002, vol. 25, pp. 239–250.

    Article  PubMed  CAS  Google Scholar 

  114. Obata, T., Kitamoto, H.K., Nakamura, A., Fukada, A., and Tanaka, Y., Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to Salinity Stress on Yeast and Rice Cells, Plant Physiol., 2007, vol. 144, pp. 1978–1985.

    Article  PubMed  CAS  Google Scholar 

  115. Zhu, J.K., Genetic Analysis of Plant Salt Tolerance using Arabidopsis, Plant Physiol., 2000, vol. 124, pp. 941–948.

    Article  PubMed  CAS  Google Scholar 

  116. Hasegawa, P.M., Bressan, R.A., and Pardo, J.M., The Dawn of Plant Salt to Tolerance Genetics, Trends Plant Sci., 2000, vol. 5, pp. 317–319.

    Article  PubMed  CAS  Google Scholar 

  117. Shi, H., Quintero, F.J., Pardo, J.M., and Zhu, J.K., Role of SOS1 as a Plasma Membrane Na+/H+ Antiporter That Controls Long Distance Na+ Transport in Plant, Plant Cell, 2002, vol. 14, pp. 465–477.

    Article  PubMed  CAS  Google Scholar 

  118. Shi, H., Wu, S.J., and Zhu, J.K., Overexpression of a Plasma Membrane Na+/H+ Antiporter Improves Salt Tolerance in Arabidopsis, Nature Biotechnol., 2003, vol. 21, pp. 81–85.

    Article  CAS  Google Scholar 

  119. Martinez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., and Quintero, F.J., Conservation of the SOS Salt Tolerance Pathway in Rice, Plant Physiol., 2007, vol. 143, pp. 1001–1012.

    Article  PubMed  CAS  Google Scholar 

  120. Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bresan, R.A., Hasegawa, P.M., and Pardo, J.M., Differential Expression and Function of Arabidopsis thaliana NHX Na+/H+ Antiporters in the Salt Stress Response, Plant J., 2002, vol. 30, pp. 529–539.

    Article  PubMed  CAS  Google Scholar 

  121. Weigcht, T.R., MacDonald J.D. Effect of Phytophthora Root-Rot on Na+ Uptake and Accumulation by Safflower, Phytopathology, 1992, vol. 82, pp. 520–526.

    Article  Google Scholar 

  122. Lessani, H. and Marschner, H., Relation Between Salt Tolerance and Long-Distance Transport of Sodium and Chloride in Various Crop Species, Austral. J. Plant Physiol., 1978, vol. 5, pp. 27–37.

    Article  CAS  Google Scholar 

  123. Pitman, M.G., Ion Transport into the Xylem, Annu. Rev. Plant. Physiol., 1977, vol. 28, pp. 71–88.

    Article  CAS  Google Scholar 

  124. Maser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D.J., Kubo, N., Yamagami, M., Nishimura, M., Uozumi, N., Robertson, W., Sussman, M.R., and Schroeder, J.I., Altered Shoot/Root Na+ Distribution and Bifurcating Salt Sensitivity in Arabidopsis by Genetic Disruption of the Na+ Transporter AtHKT11, FEBS Lett., 2002, vol. 531, pp. 157–161.

    Article  PubMed  CAS  Google Scholar 

  125. Berthomieu, P., Conejero, G., Nublat, A., Brackenbury, W.J., Lambert, C., Savio, C., Uozumi, N., Oiki, S., Yamada, K., Cellier, F., Gosti, F., Sentenac, H., and Casse, F., Functional Analysis of AtHKT1 in Arabidopsis Shows That Na+ Recirculation by the Phloem Is Crucial for Salt Tolerance, EMBO J., 2003, vol. 22, pp. 2004–2014.

    Article  PubMed  CAS  Google Scholar 

  126. Davenport, R.J., Munoz-Mayor, A., Jha, D., Essah, P.A., Rus, A., and Tester, M., The Na+ Transporter AtHKT1; 1 Controls Retrieval of Na+ from the Xylem in Arabidopsis, Plant Cell. Environ., 2007, vol. 30, pp. 497–507.

    Article  PubMed  CAS  Google Scholar 

  127. Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huang, W., Chao, D.Y., Zhu, M.Z., Wang, Z.Y., Luan, S., and Lin, H.X., A Rice Quantitative Trait Locus for Salt Tolerance Encodes a Sodium Transporter, Nat. Genet., 2005, vol. 37, pp. 1141–1146.

    Article  PubMed  CAS  Google Scholar 

  128. Lan, W.Z., Wang, S., Li, L., Buchanan, B.B., Lin, H., Gao, J., and Luan, S., A Rice High-Affinity Potassium Transporter (HKT) Conceas a Calcium-Permeable Cation Channel, Proc. Nat. Acad. Sci. U.S.A., 2010, vol. 107, pp. 7089–7094.

    Article  CAS  Google Scholar 

  129. Huang, S., Spielmeyer, W., Lagudah, E.S., James, R.A., Platten, J.D., Dennis, E.S., and Munns, R., A Sodium Transporter (HKT7) is a Candidate for NAX1, a Gene for Salt Tolerance in Durum Wheat, Plant Physiol., 2006, vol. 142, pp. 1718–1727.

    Article  PubMed  CAS  Google Scholar 

  130. Byrt, C.S., Platten, J.D., Spielmeyer, W., James, R.A., Lagudah, E.S., Dennis, E.S., Tester, M., and Munns, R., HKT1:5-Like Cation Transporters Linked To Na Exclusion Loci in Wheat, Nax2 and Kna1, Plant Physiol., 2007, vol. 143, pp. 1918–1928.

    Article  PubMed  CAS  Google Scholar 

  131. Sze, H., Padmanaban, S., Cellier, F., Honys, D., Cheng, N.H., Bock, K.W., Conejero, G., Li, X., Twell, D., Ward, J., and Hirschi, K., Expression Pattern of a Novel Gene Family AtCHX Highlights Their Potential Roles in Osmotic Adjustment and K+ Homeostasis in Pollen Biology, Plant Physiol., 2004, vol. 136, pp. 2532–2547.

    Article  PubMed  CAS  Google Scholar 

  132. Maathuis, F.J., Fiatov, V., Herzyk, P., Krijger, G.C., Axelsen, K.B., Chen, S., Green, B.J., Li, Y., Madagan, K.L., Sanchez-Fernandez, R., Forde, B.G., Palmgren, M.G., Rea, P.A., Williams, L.E., Sanders, D., and Amtmann, A., Transcriptome Analysis of Root Transporters Reveals Participation of Multiple Gene Families in the Response to Cation Stress, Plant J., 2003, vol. 35, pp. 675–692.

    Article  PubMed  CAS  Google Scholar 

  133. Cellier, F., Conejero, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., and Casse, F., Characterization of AtCHX17, a Member of the Cation/H+ Exchanger CHX Family, from A. thaliana Suggests a Role in K+ Homeostasis, Plant J., 2004, vol. 39, pp. 834–846.

    Article  PubMed  CAS  Google Scholar 

  134. Song, C.P., Guo, Y., Qui, Q.S., Lambert, G., Galbraith, D.W., Jagendorf, A., and Zhu, J.K., A Probable Na+ (K+)/H+ Exchanger on the Chloroplast Envelope Functions in pH Homeostasis and Chloroplast Development in Arabidopsis thaliana, Proc. Nat. Acad. Sci. USA, 2004, vol. 101, pp. 10211–10216.

    Article  PubMed  CAS  Google Scholar 

  135. Hall, D., Evans, A.R., Newbury, H.J., and Pritchard, J., Functional Analysis of CHX21: A Putative Sodium Transporter in Arabidopsis, J. Exp. Bot., 2006, vol. 57, pp. 1201–1210.

    Article  PubMed  CAS  Google Scholar 

  136. Senadheera, P., Singh, R., and Maathuis, F.J.M., Differentially Expressed Membrane Transporters in Rice Roots May Contribute to Cultivar Dependent Salt Tolerance, J. Exp. Bot., 2009, vol. 60, pp. 2553–2563.

    Article  PubMed  CAS  Google Scholar 

  137. White, P.J. and Broadley, M.R., Chloride in Soil and Its Uptake and Movement within the Plant: a Review, Ann. Bot., 2001, vol. 88, pp. 967–988.

    Article  CAS  Google Scholar 

  138. De Angeli, A., Thomine, S., Frachisse, J.M., Ephritikhinea, G., Gambale, F., and Barbier-Brygooa, H., Anion Channels and Transporters in Plant Cell Membranes, FEBS Lett., 2007, vol. 581, pp. 2367–2374.

    Article  PubMed  CAS  Google Scholar 

  139. Isayenkov, S., Isner, J.C., and Maathuis, F.J.M., Plant Vacuolar Ion Channels, FEBS Lett., 2010, vol. 584, pp. 1982–1988.

    Article  PubMed  CAS  Google Scholar 

  140. Hechenberger, M., Schwappach, B., Fischer, W.N., et al., A Family of Putative Chloride Channels from Arabidopsis and Functional Complementation of a Yeast Strain with a CLC Gene Disruption, J. Biol. Chem., 1996, vol. 271, pp. 33632–33638.

    Article  PubMed  CAS  Google Scholar 

  141. Diedhiou, C.J., Mechanisms of Salt Tolerance: Sodium, Chloride and Potassium Homeostasis in Two Rice Lines with Different Tolerance to Salinity Stress, PhD Thesis, University of Bielefeld, 2006.

  142. Colmenero-Flores, J.M., Martinez, G., Gamba, G., Vazquez, N., Iglesias, D.J., Brumos, J., and Talon, M., Identification and Functional Characterization of Cation-Chloride Cotransporters in Plants, Plant J., 2007, vol. 50, pp. 278–292.

    Article  PubMed  CAS  Google Scholar 

  143. Marmagne, A., Vinauger-Douard, M., Monachello, D., et al., Two Members of the Arabidopsis CLC (Chloride Channel) Family, AtCLCe and AtCLCf, Are Associated with Thylakoid and Golgi Membranes, Respectively, J. Exp. Bot., 2007, vol. 58, pp. 3385–3393.

    Article  PubMed  CAS  Google Scholar 

  144. Diedhiou, C.J. and Golldack, D., Salt-Dependent Regulation of Chloride Channel Transcripts in Rice, Plant Sci., 2006, vol. 170, pp. 793–800.

    Article  CAS  Google Scholar 

  145. Venema, K., Bever, A., Marin-Manzano, M.C., Rodriguez-Rosales, M.P., and Donaire, J.P., A Novel Intracellular K+/H+ Antiporter Related to Na+/H+ Antiporters Is Important for K+ Ion Homeostasis in Plants, J. Biol. Chem., 2003, vol. 278, pp. 22453–22459.

    Article  PubMed  CAS  Google Scholar 

  146. Mian, A.A., Senadheera, P., and Maathuis, F.J.M., Improving Crop Salt Tolerance; Anion and Cation Transporters as Genetic Engineering Targets, Plant Stress, 2011, vol. 5, pp. 64–72.

    Google Scholar 

  147. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Arabidopsis AtMYC2 (BHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling, Plant Cell, 2003, vol. 15, pp. 63–78.

    Article  PubMed  CAS  Google Scholar 

  148. Seki, M., Umezawa, T., Urano, K., and Shinozaki, K., Regulatory Metabolic Networks in Drought Stress Responses, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 296–302.

    Article  PubMed  CAS  Google Scholar 

  149. Trujillo, L., Menendez, C., Ochogavia, M.E., Hernandez, I., Borras, O., Rodriguez, R., Coll, Y., Arrieta, J.G., Banguela, A., Ramirez, R., and Hernandez, L., Engineering Drought and Salt Tolerance in Plants using SodERF3, a Novel Sugarcane Ethylene Responsive Factor, Biotech. Aplicada, 2009, vol. 26, pp. 168–171.

    Google Scholar 

  150. Apse, M.P. and Blumwald, E., Engineering Salt Tolerance in Plants, Curr. Opin. Biotechnol., 2002, vol. 13, pp. 146–150.

    Article  PubMed  CAS  Google Scholar 

  151. Bartels, D. and Sunkar, R., Drought and Salt Tolerance in Plants, Critical Rev. Plant Sci., 2005, vol. 24, pp. 1–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Isayenkov.

Additional information

Original Ukrainian Text © S.V. Isayenkov, 2012, published in Tsitologiya i Genetika, 2012, Vol. 46, No. 5, pp. 50–71.

About this article

Cite this article

Isayenkov, S.V. Physiological and molecular aspects of salt stress in plants. Cytol. Genet. 46, 302–318 (2012). https://doi.org/10.3103/S0095452712050040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452712050040

Keywords

Navigation