Skip to main content
Log in

Genetic variability of tall junipers (Juniperus excelsa Bieb.) on the northern and southern boundaries of their natural distribution

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The genetic structure, subdivision, and differentiation of six populations of tall junipers (Juniperus excelsa Bieb.) in the Crimean Mountains and one population in Lebanon were investigated using 18 polymorphic allozyme loci as genetic markers. A high level of genetic variability of J. excelsa was established at the northern and southern boundaries of their natural habitats. The mean values of the main indicators of genetic polymorphism were P99 = 1.000, A = 3.167, HE = 0.370, and HO = 0.405. The subdivision and differentiation of populations were low (FST = 0.032, DN = 0.026), indicating the similarity of their gene pools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbero, M., Lebreton, P., and Quezel, P., Sur les affinites biosystematiques et phytoecologiques de Juniperus thurifera L. et de Juniperus excelsa m. Bieb., Ecol. Mediterranea, 1994, vol. 20, pp. 21–37.

    Google Scholar 

  2. Farjon, A., A Monograph of Cupressaceae and Sciadopitys, Kew: Royal Bot. Gardens, 2005.

    Google Scholar 

  3. Korshikov, I.I. and Nikolaeva, A.V., Variability of seed production of Grecian juniper (Juniperus excelsa Bieb.) in Crimean Mountains over years, Avtokhton. Introduk. Roslyny, 2011, vol. 7, pp. 78–82.

    Google Scholar 

  4. Santos, T., Telleria, J.L., and Virgos, E., Dispersal of Spanish juniper Juniperus thurifera by birds and mammals in a fragmented landscape, Ecogeography, 1999, vol. 22, pp. 193–204.

    Article  Google Scholar 

  5. Korshikov, I.I. and Nikolaeva, A.V., Genetic control of allozymes from juniper tall (Juniperus excelsa Bieb.) of Crimea, Cytol. Genet., 2007, vol. 41, no. 4, pp. 15–19.

    Article  CAS  Google Scholar 

  6. Davis, B.J., Disk Electrophoresis. 2. Methods and application to human serum proteins, Ann. N. Y. Acad. Sci., 1964, vol. 121, pp. 404–427.

    Article  PubMed  CAS  Google Scholar 

  7. Korochkin, L.I., Serov, O.L., Pudovkin, A.I., et al., Genetika izofermentov (Isozyme Genetics), Moscow: Nauka, 1977.

    Google Scholar 

  8. Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, pp. 283–292.

    Article  Google Scholar 

  9. Zhivotovskii, L.A., Populyatsionnaya biometriya (Population Biometry), Moscow: Nauka, 1991.

    Google Scholar 

  10. Swofford, D.L. and Selander, R.B., Biosys-1: a Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics, J. Hered., 1981, vol. 72, no. 4, pp. 281–283.

    Google Scholar 

  11. Peakall, R. and Smouse, P.E., GenAlex V 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288–295.

    Article  Google Scholar 

  12. Douaihy, B., Vendramin, G., Boratynski, A., Machon, N., and Bou Dagher-Kharrat, M., High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region, AoB Plants, 2011, plr 003.

    Google Scholar 

  13. Yanbaev, Yu.A., Red’kina, N.N., and Mullagulov, R.Yu., Allozyme variability of Savin juniper Juniperus sabina L. in the southern Urals, Khvoin. Boreal. Zony, 2007, vol. 24, nos. 2/3, pp. 325–328.

    Google Scholar 

  14. Mullagulova, E.R., Red’kina, N.N., and Mullagulov, R.Yu., Genetic differentiation Savin juniper samples of different height, in Problemy i perspektivy razvitiya innovatsionnoi deyatel’nosti v agropromyshlennom proizvodstve. Ch. 3. Ratsional’noe ispol’zovanie i okhrana zemel’nykh, lesnykh i vodnykh resursov: Materialy Vseros. nauch.-prakt. konf. v ramkakh XVII Mezhdu-nar. spets. vystavki “Agro-Kompleks 2007” (Problems and Prospects of the Development of Innovations in Agricultural Production. Part 3. Sustainable Use and Protection of Land, Forest, and Water Resources: Proc. All-Russia Sci.-Pract. Conf. at the XVII Sci.-Pract. Special Exhibition “Agro-Complex 2007”), Ufa, 2007, pp. 216–218.

    Google Scholar 

  15. Red’kina N.N. Optimization of conservation of biological diversity of medicinal plants on the population basis, Extended Abstract of Doctoral (Biol.) Dissertation, Orenburg, 2008.

    Google Scholar 

  16. Gerard, J., Oostermeijer, B., and De Knegt, B., Genetic population structure of the wind-pollinated, dioecious shrub Juniperus communis in fragmented Dutch heathlands, Plant Species Biol., 2004, vol. 19, pp. 175–184.

    Article  Google Scholar 

  17. Khantemirova, E.V. and Semirikov, V.L., Genetic variation of some varieties of common juniper Juniperus communis L. inferred from analysis of allozyme loci, Genetika, 2010, vol. 46, no. 5, pp. 546–554.

    CAS  Google Scholar 

  18. Montserrat, J.M. and Romio, A., High level of genetic differentiation of Juniperus phoenicea L. (Cupressaceae) in the Mediterranean region: geographic implications, Plant Syst. Evol., 2009, vol. 277, nos. 3/4, pp. 163–172.

    Google Scholar 

  19. Allphin, L., Hunt, A.F., and Anderson, V.J., Genetic diversity low reproductive success in isolated populations of Utah juniper (Juniperus osteosperma, Cupressaceae), Western North Amer. Natur., 2007, vol. 67, no. 3, pp. 323–337.

    Article  Google Scholar 

  20. Lewandowski, A., Boratynski, A., and Mejnartowicz, L., Low level of isoenzyme variation in an island population of Juniperus oxycedrus subsp. macrocarpa (sm. ex sibth.) ball, Byul. Izobr., 1996, vol. 65, nos. 3/4, pp. 335–338.

    CAS  Google Scholar 

  21. Fady-Welterlen, B., Is there really more biodiversity in Mediterranean forest ecosystems, Taxon, 2005, vol. 54, pp. 905–910.

    Article  Google Scholar 

  22. Dagher-Kharrat, M., Mariette, S., Lefeevre, F., Fady, B., Grenier-de March, G., Plomion, C., and Savoure, A., Geographical diversity and genetic relationships among Cedrus species estimated by AFLP, Tree Genetics Genomes, 2007, vol. 3, pp. 275–285.

    Article  Google Scholar 

  23. Hamrick, J.L., Godt, M.J.W., and Sherman-Broyles, S.L., Factors influencing levels of genetic diversity in woody plant species, New Forests, 1992, vol. 6, pp. 95–124.

    Article  Google Scholar 

  24. Austerlitz, F., Mariette, S., Machon, N., Gouyon, P.-H., and Godelle, B., Effects of colonization processes on genetic diversity: differences between annual plants and tree species, Genetics, 2000, vol. 154, pp. 1309–1321.

    PubMed  CAS  Google Scholar 

  25. Grinik, P.I., Stetsenko, M.P., Shnaider, O.G., Listopad, O.G., and Boreiko, V., The Oldest Trees of Ukraine: A Register, Kyiv: Logos, 2010.

    Google Scholar 

  26. Huh, M.K. and Huh, H.W., Genetic diversity and population structure of Juniperus rigida (Cupressaceae) and Juniperus coreana, Evol. Ecol., 2000, no. 2, pp. 87–98.

    Google Scholar 

  27. Beskaravainyi, M.M., Generative organs of relict trees as food items of vertebrates in the southern coast of Crimea, in Ekosistemy Kryma, ikh optimizatsiya i okhrana: Tem. sb. nauch. rabot (Ecosystems of the Crimea, their Optimization and Conservation: Collected Scientific Papers), 2002, vol. 12, pp. 69–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Korshikov.

Additional information

Original Russian Text © I.I. Korshikov, A.V. Nikolaeva, 2013, published in Tsitologiya i Genetika, 2013, Vol. 47, No. 3, pp. 33–41.

About this article

Cite this article

Korshikov, I.I., Nikolaeva, A.V. Genetic variability of tall junipers (Juniperus excelsa Bieb.) on the northern and southern boundaries of their natural distribution. Cytol. Genet. 47, 156–163 (2013). https://doi.org/10.3103/S0095452713030043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452713030043

Keywords

Navigation