Skip to main content
Log in

Molecular markers and plant breeding

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The achievements of modern biotechnology allow to modernize significantly the traditional plant breeding. The use of molecular codominant markers reduces considerably the quantity of breeding material and promotes the selection of genotypes, which posses desirable genes in the homozygous state. Molecular marking systems of agronomically important simple and quantitative traits have been developed using mono- and multiloci systems. Markers of the plant type and development rate, alleles of the storage protein genes, Wx-genes, short-stem genes, etc., have been created and tested at the South Biotecnology Center, National Academy of Agricultural Sciences. The technology of the application of DNA-typing for the identification and registration of varieties that has been developed in the South Biotecnology Center is of great importance for the systematization of germplasm sources and the protection of the rights of breeders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sivolap, Yu., Microevolution and development theory and practice of plant improvement, Molecular Phylogenetics: 2nd Inter. Conf. Moscow, 2010, p. 69.

    Google Scholar 

  2. Sivolap, Yu.M., Verbitskaya, T.G., Kozhukhova, N.E., et al., Ispol’zovanie PTsR-analiza v genetiko-selektsionnykh issledovaniyakh: Nauch. metod. rukovodstvo (The Use of PCR Analysis in Genetic and Breeding Research: Scientific Methodical Guide), Kiev: Agrar. Nauka, 1998.

    Google Scholar 

  3. Sivolap, Yu.M., Plant genome in genetic and breeding studies, in Advances and Problems of Genetics, Selection, and Biotechnology: Collected Scientific Papers, Kyiv: Logos, 2007, vol. 1, pp. 168–172.

    Google Scholar 

  4. Ruane, J. and Sonnino, A., Marker-assisted selection as a tool for genetic improvement of crops, livestock, forestry and fish in developing countries: an overview of the issues, in Marker-Assisted Selection, Rome: FAO, 2007, pp. 3–15.

    Google Scholar 

  5. Sivolap, Yu.M., DNA typing, identification, and registration of varieties of agricultural crops in Ukraine, in Plant Genome: Proc. VI Inst. Conf., Odessa, 201, p. 54.

  6. Barton, N., Pleiotropic models of quantitative variation, Genetics, 1990, vol. 124, pp. 773–782.

    PubMed  CAS  Google Scholar 

  7. Mather, K., Variation and selection of polygenic characters, J. Genet., 1941, vol. 41, pp. 159–193.

    Article  Google Scholar 

  8. Mukai, T. and Cockerham, C., Spontaneous mutation rates at enzyme loci in Drosophila melanogaster, Proc. Nat. Acad. Sci. U.S.A., 1977, vol. 74, pp. 2514–2517.

    Article  CAS  Google Scholar 

  9. Robertson, D.S., A possible technique for isolating genomic DNA for quantitative traits in plants, J. Theor. Biol., 1985, vol. 117, pp. 1–10.

    Article  CAS  Google Scholar 

  10. Mather, K., The genetical theory of continuous variation, Hered. Suhl., 1949, vol. 5, pp. 1020–1035.

    Google Scholar 

  11. Rokitskii, P.F., Vvedenie v statisticheskuyu genetiku (Introduction to Statistical Genetics), Minsk: Vysheish. Shk., 1974.

    Google Scholar 

  12. Sivolap, Yu.M., Kalendar’, R.N., Netsvetaev, V.P., and Chaplya, A.E., Marker analysis of some barley QTL by RAPD and isozymes, Tsitol. Genet., 1997, vol. 31, no. 4, pp. 39–45.

    CAS  Google Scholar 

  13. Domenyuk, V.P., Belousov, A.A., and Sivolap, Yu.M., DNA mapping of quantitative traits of maize, Tsitol. Genet., 2002, vol. 36, no. 6, pp. 9–15.

    CAS  Google Scholar 

  14. Beaumont, V. and Rocherford, T., Comparison of RAPD and RFLP markers for mapping F2 generation in maize, Theor. Aprl. Genet., 1996, vol. 93, pp. 606–612.

    Article  CAS  Google Scholar 

  15. Jannink, J.-L. and Jansen, R., Mapping epistatic quantitative trait loci with one dimensional genome searches, Genetics, 2001, vol. 157, pp. 445–454.

    PubMed  CAS  Google Scholar 

  16. Axenovich, T.I., Svischeva, G.R., and Aulchenko, Yu.S., Mapping of quantitative trait loci in animals: partitioning of variances, Russ. J. Genet., 2000, vol. 36, no. 7, pp. 814–820.

    CAS  Google Scholar 

  17. Hayes, P.M., Liu, B.H., Knapp, S.J., and Chen, F., Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm, Theor. Appl. Genet., 1993, vol. 87, pp. 392–401.

    Article  Google Scholar 

  18. Sene, M., Thevenot, C., Hoffmann, D., Benetrix, F., Causse, M., and Prioul, L., QTLs for grain dry milling properties, composition and vitreousness in maize recombinant inbred lines, Theor. Appl. Genet., 2001, vol. 102, pp. 591–599.

    Article  CAS  Google Scholar 

  19. Austin, D., Lee, M., Veldboom, L., and Hallauer, A., Genetic mapping in maize with hybrid progeny across testers and generations: grain yield and grain moisture, Crop Sci., 2000, vol. 40, pp. 30–39.

    Article  Google Scholar 

  20. Duble, C.M., Melchiger, A.E., Kuntze, L., Stork, A., and Lubberstedt, T., Molecular mapping and gene action of Scm1 and Scm2, two major QTL contribution to SCMV resistance in maize, Plant Breed., 2000, vol. 119, no. 4, pp. 299–303.

    Article  Google Scholar 

  21. Ajmone, MarsanP., Monfredini, G., Ludwig, W., Melhinger, A., Pagnotto, G., and Motto, M., RFLP mapping of QTL for grain yield and agronomic traits, Maize Genetics Cooperation, News Lett., 1994, no. 68, pp. 13–14.

    Google Scholar 

  22. Ribaut, J., Jiang, C., Gonzales-de-Leon, D., Edmeades, G., and Hoisington, D., Identification of quantitative trait loci under drought conditions in tropical maize, Theor. Appl. Genet., 1997, vol. 94, pp. 887–896.

    Article  Google Scholar 

  23. Lubberstedt, T., Melchinger, A., Schon, C., Utz, H., and Klein, D., QTL mapping in testcrosses of European flint lines of maize. 2. Comparison of different testers for forage quality traits, Crop Sci., 1997, vol. 37, pp. 1913–1922.

    Article  Google Scholar 

  24. Wang, X.Y., Chen, P.D., and Zhang, S.Z., Pyramiding and marker-assisted selection for powdery mildew resistance genes in common wheat, Acta Genet. Sin., 2001, vol. 28, no. 7, pp. 640–646.

    PubMed  CAS  Google Scholar 

  25. Wang, J., Chapman, S.C., Bonnett, D.G., Rebetzke, G.J., and Crouch, J., Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection, Crop Sci., 2007, vol. 47, pp. 582–588.

    Article  Google Scholar 

  26. Van Sanford, D., Anderson, J., Costa, J., et al., Discovery and deployment of molecular markers linked to Fusarium head blight resistance: an integrated system for wheat and barley, Crop Sci., 2001, vol. 41, pp. 638–644.

    Article  Google Scholar 

  27. Balashova, I.A., Sivolap, Yu.M., Fait, V.I., and Stelmakh, A.F., Application of the rapd-method for creation of DNA-markers to Vrn genes, Cytol. Genet., 2001, vol. 35, no. 2, pp. 49–53.

    CAS  Google Scholar 

  28. Balashova, I.A., Fait, V.I., and Sivolap, Yu.M., Ppd-D1a gene mapping by ISSR-PCR, Visn. Odes. Nats. Univ., 2002, vol. 7, no. 1, pp. 100–104.

    Google Scholar 

  29. Sivolap, Yu.M. and Balashova, I.A., UA Patent No. 13466, 2006.

  30. Zavisha, K., Fait, V.I., Balashova, I.A., and Sivolap, Yu.M., Mapping of earliness genes of winter common wheat, in Advances and Problems of Genetics, Selection, and Biotechnology: Collected Scientific Papers, Kyiv, 2007, vol. 1, pp. 33–37.

    Google Scholar 

  31. Chebotar, S.V., Blagodarova, E., and Sivolap, Yu., Analysis of common wheat varieties and near isogenic lines by PCR with allele specific primers for gli-1 and glu-3 loci, Cytol. Genet., 2010, vol. 44, no. 6, pp. 22–33.

    Google Scholar 

  32. Stratula, O.R. and Sivolap, Yu.M., Allelic characteristics of β-amylase gene of the Ukrainian barley varieties, Cytol. Genet., 2007, vol. 40, no. 4, pp. 20–25.

    Google Scholar 

  33. Petrova, I.V., Chebotar, S.V., Rybalka, A.I., and Sivolap, Yu.M., Identification of wx genotypes in the winter wheat varieties, Cytol. Genet., 2007, no. 6, pp. 11–17.

    Google Scholar 

  34. Chebotar, S.V., Borner, A., and Sivolap, Yu.M., Analysis of the dwarfing genes in the genotypes of bread wheat cultivars of Ukraine, Cytol. Genet., 2006, vol. 40, no. 4, pp. 12–23.

    CAS  Google Scholar 

  35. Kozhukhova, N.E., Sivolap, Yu.M., Varenik, B.F., and Sokolov, V.M., Marking of the loci encoding maize resistance to Fusarium, Cytol. Genet., 2007, vol. 41, no. 2, pp. 37–41.

    Article  CAS  Google Scholar 

  36. Galav, O.V., Babayants, L.T., and Sivolap, Yu.M., Identification and microsatellite mapping of the common wheat bunt resistance gene introgressed from Aegilops cylindrica into common wheat genes, SGI-NTsNS Collected Scientific Papers, 2009, no. 13 (53), pp. 30–36.

    Google Scholar 

  37. Solodenko, A.E., Troyanovs’ka, A.V., and Sivolap, Yu.M., UA Patent No. 56691, 2011.

  38. Shevchuk, A.Yu., Kozhukhova, N.E., and Sivolap, Yu.M., Molecular analysis of the genotypes of sorghum cultivated in Ukraine, Cytol. Genet., 2009, vol. 43, no. 2, pp. 47–53.

    Article  CAS  Google Scholar 

  39. Sivolap, Yu.M., Galaev, A.V., and Nesterets, V.G., Differentiation and identification varieties of wheat and triticale using DNA typing, Visn. Ukr. Tovar. Genet. Selekts., 2004, vol. 2, no. 1, pp. 3–15.

    Google Scholar 

  40. Sivolap, Yu.M., Volkodav, V.V., Bal’vins’ka, M.S., Kozhukhova, N.E., Solodenko, A.E., and Chebotar, S.V., Identification and registration of genotypes of common wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), maize (Zea mays L.), and sunflower (Helianthus annuus L.) by microsatellite locus analysis: guidelines, Odessa, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Sivolap.

Additional information

Original Russian Text © Yu.M. Sivolap, 2013, published in Tsitologiya i Genetika, 2013, Vol. 47, No. 3, pp. 71–80.

About this article

Cite this article

Sivolap, Y.M. Molecular markers and plant breeding. Cytol. Genet. 47, 188–195 (2013). https://doi.org/10.3103/S0095452713030080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452713030080

Keywords

Navigation