Skip to main content
Log in

Stimulation of cholinogenesis in human fetal nerve cell cultures

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The aim of the study was to obtain a neural cell population enriched in culture with cholinergic neurons and their determined precursors. It has been established that the joint application of retinoic acid and acetylcholine appears to be the most efficient combination of neuroinductors, stimulating the differentiation of cholinergic neurons from neural stem cells. During the entire period of culturing, the amount of ChAT+-positive cells increased reliably to 21.1 ± 6.2% from 5.3 ± 2.9, whereas the ir concentration in the control samples was 9.1 ± 4.8% of the total cell count. The cell population enriched with cholinergic neurons and their determined precursors correlated well with the increased acetylcholinesterase activity. Thus, the addition of retinoic acid and acetylcholine stimulate both neurogenesis and cholinogenesis in human fetal neural stem cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perry, E.K., Jonson, M., Ekonomou, A., et al., Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and partly related to cholinergic pathology, Neurobiol. Dis, 2012, vol. 47, no. 2, pp. 155–162.

    Article  PubMed  CAS  Google Scholar 

  2. Lauder, J.M. and Schambra, U.B., Morphogenic roles of acetylcholine, Environ. Health Persp., 1999, vol. 107, pp. 65–69.

    CAS  Google Scholar 

  3. Schammbra, U.B., Sulik, K.K., Petrusz, P., and Lauder, J.M., Ontogeny of cholinergic neurons in the mouse fore-brain, J. Comp. Neurol., 1989, vol. 288, pp. 101–140.

    Article  Google Scholar 

  4. Barald, K.F. and Berg, D.K., Hight affinity uptake by spinal cord neurons in dissociated cell cultures, Dev. Biol., 1978, vol. 65, pp. 90–99.

    Article  PubMed  CAS  Google Scholar 

  5. Honegger, P. and Richelson, E., Neurotransmitter synthesis, storage and release by aggregating cell cultures of rat brain, J. Brain Res., 1979, vol. 162, pp. 89–101.

    Article  CAS  Google Scholar 

  6. Coleman, B.A. and Palmer, T., Regulation of acetyl-cholinesterase expression during neuronal differentiation, J. Biol. Chem., 1996, vol. 271, no. 8, pp. 4410–4416.

    Article  PubMed  CAS  Google Scholar 

  7. El Omri, A., Han, J., Kawada, K., et al., Luteolin enhances cholinergic activities in PC12 cells through ERK1/2 and PI3K/Akt pathways, J. Brain Res., 2012, vol. 1437, no. 9, pp. 16–25.

    Article  Google Scholar 

  8. Janiesch, P.C., Kruger, H.S., Poshel, B., et al., Cholinergic control in developing prefrontal-hippocampal networks, J. Neurosci., 2011, vol. 31, no. 49, pp. 17955–17970.

    Article  PubMed  CAS  Google Scholar 

  9. Janacait, G.M., Pratt, L., Acevedo, C., and Ni, L., Microglial regulation of cholinergic differentiation in the basal forebrain, Dev. Neurobiol., 2012, vol. 72, no. 6, pp. 857–864.

    Article  Google Scholar 

  10. Allard, S., Leon, W.C., Pakavathkumar, P., et al., Impact of the NGF maturation and degradation pathway on the cortical cholinergic system phenotype, J. Neurosci., 2012, vol. 8, no. 6, pp. 2002–2012.

    Article  Google Scholar 

  11. Kotasova, H., Vesela, I., Kucera, J., et al., Posphoinositide-3-kinase inhibition enables retinoic-acid-induced neurogenesis in monolayer culture of embryonic stem cells, J. Cell Biochem., 2012, vol. 113, no. 2, pp. 563–570.

    Article  PubMed  CAS  Google Scholar 

  12. Bourdeaut, F., Janoueix-Lerosey, I., Lucchesi, C., et al., Cholinergic switch associated with morphological differentiation in neuroblastoma, J. Pathol., 2009, no. 4, pp. 463–472.

    Google Scholar 

  13. Bozhkova, V.P., Brezhestovskii, L.A., Buravlev, V.M., et al., Rukovodstvo po kul’tivirovaniyu nervnoi tkani (Culturing Nervous Tissue: A Guide), Moscow: Nauka, 1988.

    Google Scholar 

  14. Svendsen, C.N., Borg, M.G., Armstrong, R.E., et al., A new method for the rapid and long-term growth of human neural precursor cells, J. Neurosci. Meth., 1998, vol. 85, pp. 141–152.

    Article  CAS  Google Scholar 

  15. Minguell, J.J., Fierro, F.A., Epunan, M.J., et al., Nonstimulated human uncommitted mesenchymal stem cells express cell markers of mesenchymal and neuronal lineages, Stem Cells Dev., 2005, vol. 14, no. 4, pp. 408–414.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, X., Zhu, Y., and Gao, W., Isolation of neural stem cells from the spinal cords of low temperature preserved abortus, J. Neurosci. Meth., 2006, vol. 157, no. 1, pp. 64–70.

    Article  Google Scholar 

  17. Ellman, G.L., Courtney, K.D., Andres, V., et al., A new and rapid colorimetric determination of acetylcholinesterase activity, Pharmacology, 1961, vol. 7, pp. 88–95.

    CAS  Google Scholar 

  18. Tsimbalyuk, V.I., Vasil’eva, I.G., Oleksenko, N.P., Chopik, N.G., Tsyubko, O.I., and Galanta, O.S., Study of differentiation potential of acetylcholinergic neurons in the stem cell culture of human embryonic brain, Ukr. Nevrol. Zh., 2010, no. 2, pp. 94–97.

    Google Scholar 

  19. Carpenter, M.K., Cui, X., Hu, Z., et al., In vitro expansion of a multipotent population of human neural precursor cells, Exp. Neurol., 1999, vol. 158, pp. 265–278.

    Article  PubMed  CAS  Google Scholar 

  20. Asai, D. and Remolana, N., Tubulin isotype usage in vivo: a unique spatial distribution of the minor neural-specific p-tubulin isotype in pheocromocytoma cells, Dev. Biol., 1989, vol. 132, pp. 398–409.

    Article  PubMed  CAS  Google Scholar 

  21. Frankfurter, A., Binder, L.I., and Rebhun, L., Limited tissue distribution of a novel β-tubulin isoform, J. Cell Biol., 1986, vol. 103, p. 273.

    Google Scholar 

  22. Maltman, D.J., Christie, V.B., Collings, J.C., et al., Proteomic profiling of the stem cell response to retinoic acid and synthetic retinoid analogues: identification of major retinoid-inducible proteins, Mol. Biosyst., 2009, vol. 5, no. 5, pp. 458–471.

    Article  PubMed  CAS  Google Scholar 

  23. Nilbratt, M., Friberg, L., Mousavi, M., et al., Retinoic acid and nerve growth factor induce differential regulation of nicotinic acetylcholine receptor subunit expression in SN56 cells, J. Neurosci. Res., 2007, vol. 85, no. 3, pp. 504–514.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Oleksenko.

Additional information

Original Ukrainian Text © V.I. Tsymbalyuk, I.G. Vasil’eva, N.P. Oleksenko, N.G. Chopik, O.I. Tsyubko, O.S. Galanta, 2013, published in Tsitologiya i Genetika, 2013, Vol. 47, No. 3, pp. 54–59.

About this article

Cite this article

Tsymbalyuk, V.I., Vasil’eva, I.G., Oleksenko, N.P. et al. Stimulation of cholinogenesis in human fetal nerve cell cultures. Cytol. Genet. 47, 174–178 (2013). https://doi.org/10.3103/S0095452713030109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452713030109

Keywords

Navigation