Skip to main content
Log in

Structural organization of 5S ribosomal DNA in Rosa rugosa

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

For studying the molecular organization of the genomic region coding for 5S rRNA in the diploid species Rosa rugosa, several 5S rDNA repeat units were cloned and sequenced. An analysis of the obtained sequences revealed that in the genome only one length variant of the 5S rDNA repeated unit is present that contains intact promoter elements in the intergenic spacer (IGS) and appears to be transcriptionally active. In addition, a limited number of 5S rDNA pseudogenes were detected with a complete loss of the IGS and a portion of the coding region. The high level of sequence similarity (from 93.7 to 97.5%), revealed by comparing the IGS of the major 5S rDNA variants of East Asian R. rugosa and North American R. nitida, indicates a relatively recent divergence of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volkov, R.A., Zanke, C., Panchuk, I.I., and Hemleben, V., Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding, Theor. Appl. Genet., 2001, vol. 103, pp. 1273–1282.

    Article  CAS  Google Scholar 

  2. Komarova, N.Y., Grimm, G.W., Hemleben, V., and Volkov, R.A., Molecular evolution of 35S rDNA and taxonomic status of Lycopersicon within Solanum sect. Petota, Plant. Syst. Evol., 2008, vol. 276, nos. 1/2, pp. 59–71.

    Article  CAS  Google Scholar 

  3. Goncharov, N.P., Golovnina, K.A., and Kondratenko, E.Y., Taxonomy and molecular phylogeny of natural and artificial wheat species, Breed. Sci., 2009, vol. 59, pp. 492–498.

    Article  CAS  Google Scholar 

  4. Martinez-Azorin, M., Crespo, M., Juan, A., and Fay, M., Molecular phylogenetics of subfamily Ornithogaloideae (Hyacinthaceae) based on nuclear and plastid DNA regions, including a new taxonomic arrangement, Ann. Bot., 2010, vol. 107, pp. 1–37.

    Article  Google Scholar 

  5. Shulaev, V., Korban, S., Sosinski, B., et al., Multiple models for Rosaceae genomics, Plant Physiol., 2008, vol. 147, pp. 985–1003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Volkov, R.A., Panchuk, I.I., Borisjuk, L.G., and Borisjuk, M.V., Plant rDNA: organization, evolution, and use, Cytol. Genet., 2003, vol. 37, no. 1, pp. 68–72.

    Google Scholar 

  7. Blattner, F.E., Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hodeum (Poaceae; Triticeae), Breed. Sci., 2009, vol. 59, pp. 471–480.

    Article  CAS  Google Scholar 

  8. Volkov, R.A., Kozeretska, I.A., Kyryachenko, S.S., et al., Molecular evolution and variability of ITS1-ITS2 in populations of Deschampsia Antarctica from two regions of the maritime Antarctic, Pol. Sci., 2010, vol. 4, no. 3, pp. 469–478.

    Article  Google Scholar 

  9. Wisseman, V., The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy, Bot. J. Linn. Soc., 2005, vol. 147, pp. 275–290.

    Article  Google Scholar 

  10. Grimm, G.W. and Denk, T., The reticulate origin of modern plane trees (Platanus, Platanaceae): a nuclear marker puzzle, Taxon, 2010, vol. 59, no. 1, pp. 134–147.

    Google Scholar 

  11. Poczai, P. and Hyvonen, J., Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects, Mol. Biol. Rep., 2010, vol. 37, pp. 1897–1912.

    Article  CAS  PubMed  Google Scholar 

  12. Denk, T. and Grimm, G., The oaks of Western Eurasia: traditional classifications and evidence form two nuclear markers, Taxon, 2010, vol. 59, pp. 351–366.

    Google Scholar 

  13. Cloix, C., Tutois, S., Mathieu, O., et al., Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms, Genome Res., 2000, vol. 10, pp. 679–690.

    Article  CAS  PubMed  Google Scholar 

  14. Coen, E.S., Thoday, J.M., and Dover, G., Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster, Nature, 1982, vol. 295, no. 5850, pp. 564–568.

    Article  CAS  PubMed  Google Scholar 

  15. Fulnecek, J., Lim, K.Y., Leitch, A.R., et al., Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species, Heredity, 2002, vol. 88, pp. 19–25.

    Article  CAS  PubMed  Google Scholar 

  16. Lim, K.Y., Werlemark, G., Matyasek, R., et al., Evolutionary implication of permanent odd polyploidy in the stable sexual, pentaploid of Rosa canina L., Heredity, 2005, vol. 94, pp. 501–506.

    Article  CAS  PubMed  Google Scholar 

  17. Tynkevich, Yu.O., Serbenyuk, M.P., and Volkov, R.A., Polymorphism of 5S rDNA of species of the genus Rosa L., Nauk. Visn. Cherniv. Univ., 2009, no. 455, pp. 142–144.

    Google Scholar 

  18. Tynkevich, Yu.O. and Volkov, R.A., Structural organization of 5S ribosomal DNK of Rosa nitida Wild, Visn. Ukr. Tovar. Genet. Selekts., 2011, vol. 9, no. 2, pp. 276–282.

    Google Scholar 

  19. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory, 1989.

    Google Scholar 

  20. Panchuk, I.I. and Volkov, R.A., A Practical Course in Molecular Genetics, Chernivtsi: Ruta, 2007.

    Google Scholar 

  21. DNASTAR, 1998. MegAlign 3.18 Edit. Software distributed by DNASTAR Inc., Madison, WI, USA.

    Google Scholar 

  22. Higgins, D.H., Bleasby, A.J., and Fuchs, R., CLUSTAL V: improved software for multiple sequence alignment, Bioinformatics, 1992, vol. 8, pp. 189–191.

    Article  CAS  Google Scholar 

  23. Altschul, S.F., Madden, T.L., Schaffer, A.A., et al., Gapped BLAST and psiBLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Singh, D. and Ahuja, P.S., 5S rDNA gene diversity in tea (Camellia sinensis (L.) O. Kuntze) and its use for variety identification, Genome, 2006, vol. 49, pp. 91–96.

    Article  CAS  PubMed  Google Scholar 

  25. Cherevatov, O.V. and Volkov, R.A., Organization of 5S ribosomal DNA of Melitaea trivia, Cytol. Genet., 2011, vol. 45, no. 2, pp. 115–120.

    Article  Google Scholar 

  26. Douet, J. and Tourmente, S., Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis, Heredity, 2007, vol. 99, pp. 5–13.

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki, H., Moriwaki, K., and Sakura, S., Sequences and evolutionary analysis of mouse 5S rDNAs, Mol. Biol. Evol., 1994, vol. 11, pp. 704–710.

    CAS  PubMed  Google Scholar 

  28. Takahata, N. and Kumura, M., A model of evolutionary base substitutions and its application with special reference to rapid change of pseudogenes, Genetics, 1981, vol. 98, pp. 641–657.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Volkov.

Additional information

Original Ukrainian Text © Y.O. Tynkevich, R.A. Volkov, 2014, published in Tsitologiya i Genetika, 2014, Vol. 48, No. 1, pp. 3–9.

About this article

Cite this article

Tynkevich, Y.O., Volkov, R.A. Structural organization of 5S ribosomal DNA in Rosa rugosa . Cytol. Genet. 48, 1–6 (2014). https://doi.org/10.3103/S0095452714010095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714010095

Keywords

Navigation