Skip to main content
Log in

Phytotoxicity of colloidal solutions of metal-containing nanoparticles

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Phytotoxicity of colloidal solutions of metal-containing nanoparticles (Ag, Cu, Fe, Zn, Mn) was investigated using a standard Allium cepa (L.) test system. Toxicity of experimental solutions at the organism level was evaluated in terms of biomass growth of onion roots, and cytotoxicity was estimated by proliferative activity of root meristem cells. The colloidal solutions of metal nanoparticles inhibited the growth of Allium cepa (L.) roots due to their ability to penetrate into cells and interact with their components and, thus, to inhibit mitosis. According to our results, cytotoxicity of test solutions decreases in the following order: Cu ≥ Zn ≥ Ag ≥ Fe. Solution of Mn-containing nanoparticles contributed to root growth reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caruthers, S.D., Wickline, S.A., and Lanza, G.M., Nanotechnological applications in medicine, Curr. Opin. Biotechnol., 2007, vol. 18, pp. 26–30.

    Article  PubMed  CAS  Google Scholar 

  2. Scrinis, G. and Lyons, K., The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems, Int. J. Sociol. Food Agric., 2007, vol. 15, pp. 22–44.

    Google Scholar 

  3. Donaldson, K. and Stone, V., in Particulate Matter Properties and Effects upon Health, Maynard, A.L. and Howards, C.V., Eds., Oxford: Bios, 1999.

  4. Jia, G., Wang, H., Yan, L., et al., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol., 2005, vol. 39, no. 5, p. 1378.

    Article  CAS  Google Scholar 

  5. Soto, K.F., Carrasco, A., Powell, T.G., et al., Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy, J. Nanopart. Res., 2005, vol. 7, p. 145.

    Article  CAS  Google Scholar 

  6. Kahru, A., Dubourguier, H.C., Blinova, I., et al., Biotests and biosensor for ecotoxicology of metal oxide nanoparticles: a minireview, Sensors, 2008, vol. 8, pp. 5153–5170.

    Article  PubMed Central  CAS  Google Scholar 

  7. Castiglione, M. and Cremonini, R., Nanoparticles and higher plants, Caryologia, 2009, vol. 62, pp. 161–165.

    Article  Google Scholar 

  8. Gubbins, E.J., Batty, L.C., and Lead, J.R., Phytotoxicity of silver nanoparticles to Lemna minor (L.), Environ. Pollut., 2011, vol. 159, no. 6, pp. 1551–1559.

    Article  PubMed  CAS  Google Scholar 

  9. Kumari, M., Mukherjee, A., and Chandrasekaran, N., Genotoxicity of silver nanoparticles in Allium cepa, Sci. Total Environ., 2009, vol. 407, pp. 5243–5246.

    Article  PubMed  CAS  Google Scholar 

  10. Kumari, M., Sudheer, KhanS., Pakrashi, S., et al., Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa, J. Haz. Mat., 2011, vol. 190, pp. 613–612.

    Article  CAS  Google Scholar 

  11. Grant, W.F., Chromosome aberration assays in Allium, Mutat. Res., 1982, vol. 99, no. 3, pp. 273–291.

    Article  PubMed  CAS  Google Scholar 

  12. Taran, N.Yu., Batsmanova, L.M., Lopat’ko, K.G., et al., The effect of nonionic colloidal solution of biogenic metal nanoparticles on the content of metal elements in plant tissues, Fizika Zhivogo, 2011, vol. 19, no. 2, pp. 9–11.

    CAS  Google Scholar 

  13. Lopat’ko, K.G., UA Patent 38459, 2009.

  14. Fiskesjo, G., The Allium-test as a standard in environmental monitoring, Hereditas, 1985, vol. 102, pp. 99–112.

    Article  PubMed  CAS  Google Scholar 

  15. Wilkins, D.A., The measurement of tolerance to edaphic factors by means of root length, New Phytol., 1978, vol. 80, pp. 623–633.

    Article  CAS  Google Scholar 

  16. Fiskesjo, G., in Plants for Environmental Studies, Wang, W., Gorsuch, J.W., Hughes, J.S., Eds., New York: CRC Lewis Publ., 1997.

  17. Pausheva, Z.P., Praktikum po tsitologii rastenii (A Practical Course in Plant Cytology), Moscow: Agropromizdat, 1988.

    Google Scholar 

  18. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  19. Lin, D. and Xing, B., Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 2007, vol. 150, pp. 243–250.

    Article  PubMed  CAS  Google Scholar 

  20. Lin, D. and Xing, B., Root uptake and phytotoxicity of ZnO nanoparticles, Environ. Sci. Technol., 2008, vol. 42, pp. 5580–5585.

    Article  PubMed  CAS  Google Scholar 

  21. Brunner, T.J., Wick, P., Manser, P., et al., In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility, Environ. Sci. Technol., 2006, vol. 40, pp. 4374–4381.

    Article  PubMed  CAS  Google Scholar 

  22. Nair, R., Varghese, S.H., Nair, B.G., et al., Nanoparticulate material delivery to plants, Plant Sci., 2010, vol. 179, pp. 154–163.

    Article  CAS  Google Scholar 

  23. McLeod, R.D., Some effects of 2,4,5-trichlorophenoxy acetic acid on the mitotic cycle of lateral root apical meristems of V. faba, Chromosoma, 1969, vol. 27, p. 227.

    Google Scholar 

  24. Garcia, A., Espinosa, R., Delgado, L., et al., Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests, Desalination, 2011, vol. 269, pp. 136–141.

    CAS  Google Scholar 

  25. Lee, W.-M., An, Y.-J., Yoon, H., and Kweon, H.-S., Toxicity and bioavailability of copper nanoparticles to terrestrial plants Phaseolus radiatus (mung bean) and Triticum aestivum (wheat); plant agar test for water-insoluble nanoparticles, Environ. Toxicol. Chem., 2008, vol. 27, pp. 1915–1921.

    Article  PubMed  CAS  Google Scholar 

  26. Ktitorova, I.N., Skobeleva, O.V., and Agal’tsov, K.G., Biophysical parameters as informative tools for elucidating the causes of root growth retardation under stressful conditions, Russ. J. Plant Physiol., 2012, vol. 59, no. 1, pp. 120–129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye. O. Konotop.

Additional information

Original Ukrainian Text © Ye.O. Konotop, M.S. Kovalenko, V.Z. Ulynets, A.O. Meleshko, L.M. Batsmanova, N.Yu. Taran, 2014, published in Tsitologiya i Genetika, 2014, Vol. 48, No. 2, pp. 37–42.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konotop, Y.O., Kovalenko, M.S., Ulynets, V.Z. et al. Phytotoxicity of colloidal solutions of metal-containing nanoparticles. Cytol. Genet. 48, 99–102 (2014). https://doi.org/10.3103/S0095452714020054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714020054

Keywords

Navigation