Skip to main content
Log in

Obtaining the transgenic lines of finger millet Eleusine coracana (L.). with dinitroaniline resistance

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The current data is dedicated to the study of bioballistic and Agrobacterium-mediated transformation of finger millet with the constructs carrying the mutant α-tubulin gene (TUAml), isolated from R-biotype goosegrass (Eleusine indica L.), for the decision of problem of dinitroaniline-resistance. It was found that 10 μM of trifluralin is optimal for the selection of transgene plants of finger millet. PCR analysis of transformed lines confirmed the transgenic nature of plants. The analysis of seed of T1 of transgenic lines confirmed heterozygous character of inheritance of trifluralin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, V.D., Rao, K.V., Reddy, T.P., and Kishor, P.B.K., Chapter 8. Finger millet, in Compendium of Transgenic Crop Plants: Transgenic Cereals and Forage Grasses, Kole, Ch. and Hall, T.C., Eds., Blackwell, 2008, pp. 191–198.

    Google Scholar 

  2. Dida, M.M. and Devos, K.M., Finger millet, in Genome Mapping and Molecular Breeding in Plants, vol. 1: Cereals and Millets, Kole, C., Ed., Berlin: Springer, 2006, pp. 327–337.

    Google Scholar 

  3. Yemets, A.I., Bayer, G.Ya., Klimkina, L.A., et al., Introduction to in vitro culturing and regeneration of Eleusine coracana (L.) Gaertn. cultivar Tropikanka, Fiziol. Biokhim. Rast., 2003, vol. 35, pp. 1–8.

    Google Scholar 

  4. Stadnichuk, N.O., Bayer, G.Ya., Yemets, et al., UA Patent 09551, 2008.

  5. Bayer, G.Ya., Yemets, A.I., Stadnichuk, N.A., et al., Somaclonal variability as a source for creation of new varieties of finger millet (Eleusine coracana (L.) Gaertn.), Cytol. Genet., 2007, vol. 41, no. 4, pp. 204–208.

    Article  Google Scholar 

  6. Radchuk, V., Radchuk, R., Pirko, Y., et al., A comalonal line SE7 of finger millet (Eleusine coracana) exhibits modified cytokinin homeostasis and increased grain yield, J. Exp. Bot., 2012, vol. 63, no. 15, pp. 5497–5506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Yemets, A.I. and Blume, Ya.B., Mutant genes of plant tubulins as selective marker genes for genetic engineering, Cytol. Genet., 2007, vol. 41, no. 3, pp. 156–166.

    Article  Google Scholar 

  8. Blume, Ya.B., Yemets, A.I., Nyporko, A.Yu., and Baird, W.V., Structural modelling of plant β-tubulin interaction with dinitroanilines and phosphoroamidates, Cell Biol. Int., 2003, vol. 27, pp. 171–174.

    Article  CAS  PubMed  Google Scholar 

  9. Morejohn, L.C. and Fosket, D.E., The biochemistry of compounds with anti-microtubule activity in plant cells, Pharm. Ther., 1991, vol. 51, pp. 217–230.

    Article  CAS  Google Scholar 

  10. Anthony, R.G. and Hussey, P.J., Dinitroaniline herbicide resistance and the microtubule cytoskeleton, Trends Plant Sci., 1999, vol. 4, pp. 112–116.

    Article  PubMed  Google Scholar 

  11. Yemets, A.I. and Blume, Ya.B., Resistance to herbicides with antimicrotubular activity: from natural mutants to transgenic plants, Russ. J. Plant Physiol., 1999, vol. 46, no. 6, pp. 789–796.

    CAS  Google Scholar 

  12. Ozheredov, S.P., Yemets, A.I., Brytsun, V.M., et al., Screening of new 2,4- and 2,6-dinitroaniline derivates for phytotoxicity and antimitotic activity, Cytol. Genet., 2008, vol. 43, no. 5, pp. 297–304.

    Article  Google Scholar 

  13. Yemets, A.I., Radchuk, V.V., Pakhomov, A.V., and Blume, Ya.B., Biolistic transformation of soybean using a new selectable marker gene conferring resistance to dinitroanilines, Cytol. Genet., 2008, vol. 42, no. 6, pp. 413–419.

    Article  Google Scholar 

  14. Yemets, A.I., Radchuk, V.V., Bayer, O.A., et al., The development of transformation vectors based upon a modified plant α-tubulin gene as the selectable marker, Cell Biol. Int., 2008, vol. 32, pp. 566–570.

    Article  CAS  PubMed  Google Scholar 

  15. Yemets, A.I., Baer, O.A., Radchuk, V.V., and Blume, Ya.B., Agrobacterium-mediated transformation of flax with a mutant tubulin gene responsible for resistance to dinitroaniline herbicides, Russ. J. Genet., 2009, vol. 45, no. 9, pp. 1377–1385.

    Google Scholar 

  16. Tanasienko, I.V., Yemets, A.I., Pirko, Y.V., et al., Generation of transgenic barley lines producing human lactoferrin using mutant alpha-tubulin gene as the selective marker, Cytol. Genet., 2011, vol. 45, no. 1, pp. 1–6.

    Article  Google Scholar 

  17. Yamamoto, E., Zeng, L., and Baird, W.V., α-Tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica, Plant Cell, 1998, vol. 10, pp. 297–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Radchuk, V.V., Sreenivasulu, N., Blume, Y., and Weschke, W., Distinct tubulin genes are differentially expressed during barley grain development, Physiol. Plant., 2007, vol. 131, pp. 571–580.

    Article  CAS  PubMed  Google Scholar 

  19. Yemets, A.I., Klimkina, L.A., Tarassenko, L.V., and Blume, Ya.B., Efficient callus formation and plant regeneration from dinitroaniline-resistant and susceptible biotypes of Eleusine indica (L.), Plant Cell Rep., 2003, vol. 21, pp. 503–510.

    CAS  PubMed  Google Scholar 

  20. Yemets, A.I., Kundel’chuk, O.P., Smertenko, A.P., et al., Transfer of amiprophosmethyl-resistance from a nicotiana plumbaginifolia mutant by somatic hybridization, Theor. Appl. Genet., 2000, vol. 100, pp. 847–857.

    Article  CAS  Google Scholar 

  21. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1980.

    Google Scholar 

  22. Finer, J.J. and McMullen, M.D., Transformation of soybean via particle bombardment of embryogenic suspension culture tissue, In Vitro Cell. Dev. Biol., 1990, vol. 27, pp. 175–182.

    Article  Google Scholar 

  23. Abumhadi, N., Trifonova, A., Takumi, S., and Nakamura, C., Development of the particle inflow gun and optimizing the particle bombardment method for efficient genetic transformation in mature embryos of cereals, Biotech. Biotechnol. Equip., 2001, vol. 15, p. 87.

    Google Scholar 

  24. Danilova, S.F. and Dolgikh, Yu.I., The Stimulatory effect of the antibiotic cefotaxime on plant regeneration in maize tissue culture, Russ. J. Plant Physiol., 2004, vol. 52, no. 559–562, pp. 559–562.

    Article  Google Scholar 

  25. Kumar, S.V. and Rajam, M.V., Polyamines enhance Agrobacterium tumefaciens vir gene induction and T-DNA transfer, Plant Sci., 2005, vol. 168, pp. 475–480.

    Article  CAS  Google Scholar 

  26. Anthony, R.G., Waldin, T.R., Ray, J.A., et al., Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin, Nature, 1998, vol. 393, no. 6682, pp. 260–263.

    Article  CAS  PubMed  Google Scholar 

  27. Gupta, P., Raghuvanhi, S., and Tyagi, A.K., Assessment of the efficiency of various gene promoters via biolistics in leaf and various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echiochloa crusgalli, Plant Biotechnol., 2001, vol. 18, pp. 275–282.

    Article  CAS  Google Scholar 

  28. Latha, A.M., Rao, K.V., and Reddy, V.D., Production of transgenic plant resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.), Plant Sci., 2005, vol. 169, pp. 657–667.

    Article  CAS  Google Scholar 

  29. Li, W., Guo, G., and Zheng, G., Agrobacterium-mediated transformation state of the art and future prospect, Chin. Sci. Bull., 2000, vol. 45, pp. 1537–1546.

    Article  CAS  Google Scholar 

  30. Sood, P., Bhattacharya, A., and Sood, A., Problems and possibilities of monocot transformation, Biol. Plant., 2011, vol. 55, pp. 1–15.

    Article  CAS  Google Scholar 

  31. Eapen, S. and George, L., Influence of phytohormones, carbohydrates, aminoacids, growth supplements and antibiotics on somatic embryogenesis and plant differentiation in finger millet, Plant Tissue. Organ. Cult., 1990, vol. 22, pp. 87–93.

    Article  CAS  Google Scholar 

  32. Zakharchenko, N.S., Kalyaeva, M.A., and Bur’yanov, Ya.I., Induction of agrobacterial T-DNA processing by exudates of monocotyledonous plants, Russ. J. Plant Physiol., 1999, vol. 46, no. 2, pp. 239–247.

    CAS  Google Scholar 

  33. Frame, B.R., Shou, H., Chikwamba, R.K., et al., Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system, Plant Physiol., 2002, vol. 129, pp. 13–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sharma, M., Kothari-Chajer, A., Jagga-Chugh, S., and Kothari, S.L., Factor influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn., Plant Cell Rep., 2011, vol. 105, pp. 93–104.

    CAS  Google Scholar 

  35. Ceasar, S.A. and Ignacimuthu, S., Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants, Plant Cell Rep., 2011, vol. 30, pp. 1759–1770.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Bayer.

Additional information

Original Russian Text © G.Ya. Bayer, A.I. Yemets, Ya.B. Blume, 2014, published in Tsitologiya i Genetika, 2014, Vol. 48, No. 3, pp. 3–11.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, G.Y., Yemets, A.I. & Blume, Y.B. Obtaining the transgenic lines of finger millet Eleusine coracana (L.). with dinitroaniline resistance. Cytol. Genet. 48, 139–144 (2014). https://doi.org/10.3103/S0095452714030025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714030025

Keywords

Navigation