Skip to main content
Log in

In vitro regeneration ability of diploid and autotetraploid plants of Cichorium intybus L.

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Polyploidy has played a significant role in the evolutionary history of plants and is a valuable tool for obtaining useful characteristics. Because of the novelty of polyploids, comparison of their in vitro culture responses with diploids would be notable. In this study, leaf explants from diploid, autotetraploid and mixoploid plants of Cichorium intybus L. were cultured in vitro on the similar media and under same conditions. The ploidy level of the obtained calluses and regenerants were determined by flow cytometry analysis. The callogenic response of leaf explants cultured on the callus induction medium did not depend on the ploidy level of their parental plants. According to the flow cytometry analysis, the increased ploidy levels (4x) and (8x) were observed in the callus cultures with diploid and tetraploid origin, respectively. A considerable difference was observed between the ploidy level of mixoploid plants and their calluses, indicating the dominance of diploid cells in the callus tissue. The results showed that polyploidy led to the loss of organogenic potential as the tetraploid origin calluses failed to regenerate, while the diploid origin calluses successfully regenerated to whole plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wendel, J. and Doyle, J., Polyploidy and evolution in plants, in Plant Diversity and Evolution. Genotypic and Phenotypic Variation in Higher Plants, Henry, R.J., Ed., CAB Int., 2005, pp. 97–117.

    Chapter  Google Scholar 

  2. Masterson, J., Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms, Science, 1994, vol. 264, pp. 421–424.

    Article  CAS  PubMed  Google Scholar 

  3. Adams, K.L. and Wendel, J.F., Polyploidy and genome evolution in plants, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 135–140.

    Article  CAS  PubMed  Google Scholar 

  4. Predieri, S., Mutation induction and tissue culture in improving fruits, Plant Cell Tissue Organ. Cult., 2001, vol. 64, pp. 185–210.

    Article  CAS  Google Scholar 

  5. Mulabagal, V. and Tsay, H.S., Plant cell cultures an alternative and efficient source for the production of biologically important secondary metabolites, J. Appl. Sci. Eng. Tech., 2004, vol. 2, pp. 29–48.

    Google Scholar 

  6. Palomino, G., Dolezel, J., Cid, R., et al., Nuclear genome stability of Mammillaria san-angelensis (Cactaceae) regenerants induced by auxins in long-term in vitro culture, Plant Sci., 1999, vol. 141, pp. 191–200.

    Article  CAS  Google Scholar 

  7. Mishiba, K., Okamoto, T., and Mii, M., Increasing ploidy level in cell suspension cultures of Doritaenopsis by exogenous application of 2,4-dichlorophenoxyacetic acid, Physiol. Plant., 2001, vol. 112, pp. 142–148.

    Article  CAS  PubMed  Google Scholar 

  8. Nontaswatsri, C. and Fukai, S., Regenerative callus of dianthus “Telstar Scarlet” showing mixoploidy produce diploid plants, Plant Cell Tussue Organ. Cult., 2005, vol. 83, pp. 351–355.

    Article  CAS  Google Scholar 

  9. Fras, A. and Maluszynska, J., The correlation between the chromosome variation in callus and genotype of explants of Arabidopsis thaliana, Genetics, 2004, vol. 121, pp. 145–154.

    Google Scholar 

  10. Karp, A., The origins and causes of chromosome instability in plant, in Kew Chromosome Conference III, Brandham, P.E., Ed., London, 1988, pp. 185–192.

    Google Scholar 

  11. Ono, Y., Takahata, Y., and Kaizuma, N., Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica napus), Plant Cell Rep., 1994, vol. 14, pp. 13–17.

    Article  CAS  PubMed  Google Scholar 

  12. Garcia, E. and Martinez, S., Somatic embryogenesis in Solanum tuberosum L. cv. Desiree from stem nodal sections, J. Plant Physiol., 1995, vol. 145, pp. 526–530.

    Article  Google Scholar 

  13. Profumo, P., Gastaldo, P., Caffaro, L., et al., Callus induction and plantlet regeneration in Cirhorium intybus L.: 2. Effect of different hormonal treatments, Protoplasma, 1985, vol. 126, pp. 215–220.

    Article  CAS  Google Scholar 

  14. Pieron, S., Belaizi, M., and Boxus, P., Nodule culture, a possible morphogenetic pathway in Cichorium intybus L. propagation, Sci. Hort., 1993, vol. 53, pp. 1–11.

    Article  Google Scholar 

  15. Vesseur, J., Dubois, J., Hilbert, J.L., and Couillerot, J.P., in Biotechnology and Agricultural Forestry: Somatic Embryogenesis and Synthetic Seeds II, Bojaj, Y.P.S., Ed., Berlin: Springer, 1995, pp. 125–137.

  16. Belletre, A., Coullerot, J.P., and Vasseur, J., Effects of glycerol on somatic embryogenesis in Cichorium leaves, Plant Cell Rep., 1999, vol. 19, pp. 26–31.

    Article  Google Scholar 

  17. Rehman, R.U., Israr, M., Srivastava, P.S., et al., In vitro regeneration of witloof chicory (Cichorium intybus L.) from leaf explants and accumulation of esculin, In Vitro Cell Dev. Biol. Plant, 2003, vol. 39, pp. 142–146.

    Article  Google Scholar 

  18. Bennici, A., Schiff, S., and Mori, B., Morphogenic effect of colchicine in Cichorium intybus L. root explants cultured in vitro, Caryologia, 2006, vol. 59, pp. 284–290.

    Article  Google Scholar 

  19. Velayutham, P., Ranjithakumari, B.D., and Baskaran, P., An efficient in vitro plant regeneration system for Cichorium intybus L.—an important medicinal plant, J. Agric. Technol., 2007, vol. 2, no. 2, pp. 287–298.

    Google Scholar 

  20. Ghotbi, Ravandi, E., Rezanejad, F., Zolala, J., and Dehghan, E., The effects of chromosome-doubling on selected morphological and phytochemical characteristics of Cichorium intybus L., J. Hor. Sci. Biotech., 2013, vol. 88, pp. 701–709.

    Google Scholar 

  21. Sengupta, J., Mitra, G.C., and Sharma, A.K., Study of chromosomes in two callus lines and in regenerated plants of Kallstroemia pubescens (G. Don) Dandy, Cotylogia, 1987, vol. 52, pp. 767–770.

    Article  Google Scholar 

  22. Maluszynska, J., B chromosomes of Crepid capillaries (L.) Waller. in vivo and in vitro, Pr. Nauk. Uniw. Slask. Katowicach, 1990.

    Google Scholar 

  23. Wyman, J., Brassard, N., Flipo, D., and Lalibert, S., Ploidy level stability of callus tissue, axillary and adventitious shoots of Larix eurolepis Henry regenerated in vitro, Plant Sci., 1992, vol. 85, pp. 189–196.

    Article  CAS  Google Scholar 

  24. Ezura, H. and Oosawa, K., Selective regeneration of plants from diploid and tetraploid cells in adventitious shoot cultures of melon Cucumis melo L., Plant Tissue Cult. Lett., 1994, vol. 11, no. 1, pp. 26–33.

    Article  CAS  Google Scholar 

  25. Fras, A. and Poliploidalnos, C.W., Kulturze in vitro Arabidopsis thaliana, Ph.D. Dissertation, Katowice: Univ. Silesia, 2001.

    Google Scholar 

  26. Nilanthi, D., Chen, X., Zhao, F., et al., Induction of tetraploids from petiole explants through colchicine treatments in Echinacea purpurea L., J. Biomed. Biotechnol., 2009, Article ID343485.

    Google Scholar 

  27. Tai, W., Multipolar meiosis in diploid crested wheatgrass Agropyrum cristatum, Am. J. Bot., 1970, vol. 57, pp. 1160–1169.

    Article  Google Scholar 

  28. Risso-Pascotto, C., Pagliarini, M.S., and Do, ValleC.B., Multiple spindles and cellularization during microsporogenesis in an artificially induced tetraploid accession of Brachiaria ruziziensis (Gramineae), Plant Cell Rep., 2005, vol. 23, pp. 522–527.

    Article  CAS  PubMed  Google Scholar 

  29. Kubalakova, M., Dolezel, J., and Lebeda, A., Ploidy instability of embryogenic cucumber (Cucumis sativus L.) callus culture, Biol. Plant., 1996, vol. 38, no. 3, pp. 475–480.

    Article  Google Scholar 

  30. Sun, Q., Sun, H., Bell, R.L., et al., Variation of phenotype, ploidy level and organogenic potential of in vitro regenerated polyploids of Pyrus communis, Plant Cell Tissue Organ. Cult., 2011, vol. 107, pp. 131–140.

    Article  Google Scholar 

  31. Comai, L., The advantages and disadvantages of being polyploidy, Nat. Rev. Genet., 2005, vol. 6, pp. 836–846.

    Article  CAS  PubMed  Google Scholar 

  32. Compton, M.E. and Preece, J.E., Exudation and explant establishment, IAPTC Newslett., 1986, vol. 50, pp. 9–18.

    Google Scholar 

  33. Laukkanen, H., Haggman, H., Kontunen-Soppela, S., and Hohtola, A., Tissue browning of in vitro cultures of Scots pine: role of peroxidase and polyphenol oxidase, Physiol. Plant., 1999, vol. 106, pp. 337–343.

    Article  CAS  Google Scholar 

  34. Arnaldos, T.L., Munoz, R., Ferrer, M.A., and Calderon, A.A., Changes in phenol content during strawberry (Fragaria ananasa, cv. chandler) callus culture, Physiol. Plant., 2001, vol. 113, pp. 315–322.

    Article  CAS  Google Scholar 

  35. Jacq, B., Tetu, T., Sangwan, R.S., et al., Plant regeneration from sugarbeet (Beta vulgaris L.) hypocotyls cultures in vitro and flow cytometric nuclear DNA analysis of regenerants, Plant Cell Rep., 1992, vol. 11, pp. 329–333.

    Article  CAS  PubMed  Google Scholar 

  36. Kasperek, G., Artificial polyploids of the pea, Pisum Newslett., 1986, vol. 18, p. 32.

    Google Scholar 

  37. Gottschalk, W., Tetraploidy following X-radiation, Pisum Newslett., 1988, vol. 20, pp. 14–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ghotbi Ravandi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghotbi Ravandi, E., Rezanejad, F. & Dehghan, E. In vitro regeneration ability of diploid and autotetraploid plants of Cichorium intybus L.. Cytol. Genet. 48, 166–170 (2014). https://doi.org/10.3103/S0095452714030050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714030050

Keywords

Navigation