Skip to main content
Log in

Superoxide dismutase activity in transgenic canola

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Superoxide dismutase (SOD) activity was investigated in leaves of transgenic canola plants which expressed heterologous genes of different origin, namely 1—herbicide resistance genes (bar and simultaneously bar and epsps); 2—DesC desaturase gene (desC) of cyanobacterium Synechococcus vulcanus; 3—human interferon α2b gene (huIFN-α2b); 4—esxA::fbpB ΔTMD fused gene, encoding ESAT-6 and Ag85b Mycobacterium tuberculosis proteins, inducing immune response against tuberculosis; 5—cyp11A1 gene of cytochrome P450SCC from bovine adrenal cortex mitochondria. Introduction of herbicide resistance genes as well as desaturase gene of cyanobacterium and mycobacterium’s genes did not change leaf SOD activity. At the same time it was shown that cyp11A1 and huIFN-α2b canola have increased leaf SOD activity up 58 and 33%, respectively, compared with control ones in non-stress conditions. It may be a prerequisite for improved resistance of these plants to the stressors of different origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diaz-Vivancos, P., Barba-Espin, G., Clemente-Moreno, M.J., and Hernandez, J.A., Characterization of the antioxidant system during the vegetative development of pea plants, Biol. Plant., 2010, vol. 54, no. 1, pp. 76–82.

    Article  CAS  Google Scholar 

  2. Matamoros, M.A., Loscos, J., Dietz, K.-J., et al., Function of antioxidant enzymes and metabolites during mutation of pea fruits, J. Exp. Bot., 2010, vol. 61, no. 1, pp. 87–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Shugaev, A.G., Lashtabega, D.A., Shugaeva, N.A., and Vyskrebentseva, E.I., Activities of antioxidant enzymes in mitochondria of growing and dormant sugar beet roots, Russ. J. Plant Physiol, 2011, vol. 58, no. 3, pp. 387–393.

    Article  CAS  Google Scholar 

  4. Jin, S.H., Li, X.Q., and Jia, X.I., Genotypic differences in the responses of gas exchange, chlorophyll fluorescence, and antioxidant enzymes to aluminium stress in Festuca arundinacea, Russ. J. Plant Physiol., 2011, vol. 58, no. 4, pp. 560–566.

    Article  CAS  Google Scholar 

  5. Zou, W., Chen, Y., and Lu, C., Differences in biochemical responses to cold stress in two contrasting varieties of rape seed (Brassica napus L.), For. Stud. China, 2007, vol. 9, no. 2, pp. 142–146.

    Article  CAS  Google Scholar 

  6. Gupta, S.A., Heinen, J.I., Holaday, A.S., et al., Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, no. 4, pp. 1629–1633.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gupta, S.A., Webb, R.P., Holaday, A.S., and Allen, R.D., Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants), Plant Physiol., 1993, vol. 103, no. 4, pp. 1067–1073.

    PubMed Central  PubMed  Google Scholar 

  8. McKersie, B.D., Bowley, S.R., Harjanto, E., and Leprince, O., Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase, Plant Physiol., 1996, vol. 111, no. 4, pp. 1177–1181.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. McKersie, B.D., Bowley, S.R., and Jones, K.S., Winter survival of transgenic alfalfa overexpressing superoxide dismutase, Plant Physiol., 1999, vol. 119, no. 3, pp. 839–847.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Samis, K., Bowley, S.R., and McKersie, B.D., Pyramid Mn-superoxide dismutase transgenes to improve persistence and biomass production in alfalfa, J. Exp. Bot., 2002, vol. 53, no. 372, pp. 1343–1350.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, F.-Z., Wang, Q.-B., Kwon, S.-Y., et al., Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase, J. Plant Physiol., 2005, vol. 162, no. 4, pp. 465–472.

    Article  CAS  PubMed  Google Scholar 

  12. Tseng, M.J., Liu, C.-W., and Yiu, J.-C., Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts, Plant Physiol. Biochem., 2007, vol. 45, nos. 10/11, pp. 822–833.

    Article  CAS  PubMed  Google Scholar 

  13. Gusta, L.V., Benning, N.T., Wu, G., et al., Superoxide dismutase: an all-purpose gene for agri-biotechnology, Mol. Breed, 2009, vol. 24, no. 2, pp. 103–115.

    Article  CAS  Google Scholar 

  14. Gill, T., Kumar, S., Ahuja, P.S., and Sreenivasulu, Y., Over-expression of Potentilla superoxide dismutase improves salt stress tolerance during germination and growth in Arabidopsis thaliana, J. Plant Genet. Transgen., 2010, vol. 1, no. 1, pp. 1–10.

    Google Scholar 

  15. Sakhno, L.O., Gocheva, E.A., Komarnitskii, I.K., and Kuchuk, N.V., Stable expression of the promotorless bar gene in transformed rapeseed plants, Cytol. Genet., 2008, vol. 42, no. 1, pp. 16–22.

    Article  Google Scholar 

  16. Sakhno, L.O., Komarnitskii, I.K., Maistrov, P.D., and Kuchuk, M.V., Creation of glyphosate resistant canola by synthetic epsps gene introduction, in Factors of Experimental Evolution of Organisms, Kyiv: Logos, 2011, vol. 11, pp. 388–393.

    Google Scholar 

  17. Sakhno, L.O., Gerasymenko, I.M., Komarnitskii, I.K., et al., Creation of glyphosate-resistant Brassica napus L. plants expressing DesC desaturase of Cyanobacterium synechococcus vulcanus, Biopolym. Cell, 2012, vol. 28, no. 6, pp. 449–455.

    Article  CAS  Google Scholar 

  18. Sakhno, L.O., Kvasko, O.Y., Olevinska, Z.M., et al., Creation of transgenic Brassica napus L. plants expressing human alpha 2b interferon gene, Cytol. Genet., 2012, vol. 46, no. 6, pp. 342–3346.

    Article  Google Scholar 

  19. Sakhno, L.O., Gocheva, E.A., Gerasimenko, I.M., et al., Introduction of esat-6 and ag85b genes encoding proteins-inductors of immune response against Mycobacterium tuberculosis into rapeseed genome, in IXth Int. Conf. “Plant Cell Biology in Vitro and Biotechnology”, Zvenigorod, Russia, 2008, pp. 334–335.

    Google Scholar 

  20. Sakhno, L.O., Morgun, B.V., Kvasko, O.Y., and Kuchuk, M.V., Transformed canola plants expressing mammalian cyp11A1 gene of cytochrome P450SCC, Biotechnol. Acta, 2010, vol. 3, no. 5, pp. 74–82.

    Google Scholar 

  21. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497.

    Article  CAS  Google Scholar 

  22. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, no. 2, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  23. Bayer, W.F. and Fridovich, I., Assaying for superoxide dismutase activity some large consequences of minor changes in conditions, Anal. Biochem., 1987, vol. 161, no. 2, pp. 559–566.

    Article  Google Scholar 

  24. Thompson, C.J., Movva, N.R., Tizard, R., et al., Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopius, EMBO J., 1987, vol. 6, no. 9, pp. 2519–2523.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Funke, T., Han, H., Healy-Fried, M.L., et al., Molecular basis for the herbicide resistance of Roundup Ready crops, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 35, pp. 13010–13015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Krieb, R. and Zeng, Q., WO02/36831 Canola Event pv-bngt04/(rt73) and Compositions and Methods for Detection Thereof, PCT filed October 22, 2001, PCT Pub. Date May 10, 2002.

    Google Scholar 

  27. Los, D.A. and Murata, N., Structure and expression of fatty acid desaturases, Biochim. Biophys. Acta, 1998, vol. 1394, no. 1, pp. 3–15.

    Article  CAS  PubMed  Google Scholar 

  28. Popov, V.N., Kipaikina, N.V., Astakhova, N.V., and Trunova, T.I., Specific features of oxidative stress in the chilled tobacco plants following transformation with the desC gene for acyl-lipid 9-desaturase from Synechococcus vulacanus, Rus. J. Plant Physiol., 2006, vol. 53, no. 4, pp. 469–473.

    Article  CAS  Google Scholar 

  29. Belisle, J.T., Vissa, V.D., Sievert, T., et al., Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis, Science, 1997, vol. 276, no. 5317, pp. 1420–1422.

    Article  CAS  PubMed  Google Scholar 

  30. Andersen, P., Andersen, A.B., Surensen, A.L., and Nagai, S., Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice, J. Immunol., 1995, vol. 154, no. 7, pp. 3359–3372.

    CAS  PubMed  Google Scholar 

  31. Chung, B.C., Matteson, K.J., Voutilainen, R., et al., Human cholesterol side-chain cleavage enzyme, P450SCC: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta, Proc. Natl. Acad. Sci. U.S.A., 1986, vol. 83, no. 23, pp. 8962–8966.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Novikova, L.A., Yfaletrov, A.V., Kovaleva, I.E., et al., From structure and functions of steroidogenic enzymes to new technologies of gene engineering, Biochemistry (Moscow), 2009, vol. 74, no. 13, pp. 1482–1504.

    Article  CAS  Google Scholar 

  33. Al-Shabanah, O.A., Mansour, M.A., and Elmazar, M.M., Enhanced generation of leukotriene b4 and superoxide radical from calcium ionophore (A23187) stimulated human neutrophils after priming with interferon-alpha, Res. Commun. Mol. Pathol. Pharmacol., 1999, vol. 106, nos. 1/2, pp. 1115–128.

    Google Scholar 

  34. Lu, G., Shimizu, I., Cui, X., et al., Interferon-alpha enhances biological defense activities against oxidative stress in cultured rat hepatocytes and hepatic stellate cells, J. Med. Invest., 2002, vol. 49, nos. 3/4, pp. 172–181.

    PubMed  Google Scholar 

  35. Basu, U., Good, A.G., and Taylor, J., Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium, Plant Cell Environ., 2001, vol. 24, no. 12, pp. 1269–1278.

    Article  CAS  Google Scholar 

  36. Kingston, A.H. and Foyer, C.H., Overexpression of Mn-superoxide dismutase in maize leaves leads to increased monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase activities, J. Exp. Bot., 2000, vol. 51, no. 352, pp. 1867–1877.

    Article  Google Scholar 

  37. Rai, A.C., Singh, M., and Shah, K., Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants, Plant Physiol. Biochem., 2012, vol. 61, pp. 108–114.

    Article  Google Scholar 

  38. Deng, B. and Dong, H., Ectopic expression of riboflavin-binding protein gene TsRfBP paradoxically enhances both plant growth and drought tolerance in transgenic Arabidopsis thaliana, J. Plant Growth Reg., 2013, vol. 32, no. 1, pp. 170–181.

    Article  CAS  Google Scholar 

  39. Guan, Z.J., Guo, B., Huo, Y.I., et al., Morphological and physiological characteristics of transgenic cherry tomato mutant with HBsAg gene, Russ. J. Genet., 2011, vol. 47, no. 8, pp. 923–930.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Sakhno.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhno, L.O., Slyvets, M.S. Superoxide dismutase activity in transgenic canola. Cytol. Genet. 48, 145–149 (2014). https://doi.org/10.3103/S0095452714030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714030104

Keywords

Navigation