Skip to main content
Log in

Does the pattern of clonal evolution in the karyotype of patients with acute myeloid leukemia and myelodysplastic syndromes depend on the type of the primary chromosomal aberrations?

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The aim of our study was to assess if the type of primary chromosomal aberrations (CA) of the karyotype of patients with Acute myeloid leukemia (AML) and Myelodysplastic syndromes (MDS) determines the way and the rate of karyotype development. Conventional cytogenetic analysis was carried out on 248 AML and 105 MDS patients at diagnosis. Clonal evolution (CE) was found in 40% (51 of 128) of AML patients and in 47.5% (19 of 40) of MDS patients having CA in their karyotype. The first pattern we established was for the most frequent CA which initiate CE in 28 patients with a complex karyotype. These CA were non-balanced rearrangements in the following regions: 5q, 7q, 11q, 3q, monosomy 5, monosomy 7. The second pattern of CE was regarding the most frequent aneuploidias (+8, +11, +21, −Y), and the third pattern concerned balanced CA. We found significant difference in the distribution of karyotypes in different stages of progression between the first and the other two groups (p < 0.001). No statistical difference was found between the patterns in the second and the third group CA (p > 0.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowley, J.D., Chromosome abnormalities in the acute phase of CML, Virch. Arch. B Cell Pathol., 1978, vol. 29, nos. 1/2, pp. 57–63.

    CAS  Google Scholar 

  2. Testa, J.R., Mintz, U., Rowley, J.D., et al., Evolution of karyotypes in acute nonlymphocytic leukemia, Cancer Res., 1979, vol. 39, no. 9, pp. 3619–3627.

    CAS  PubMed  Google Scholar 

  3. de Souza Fernandez, T., Ornellas, M.H., Oreto de Carvalho, L., et al., Chromosomal alterations associated with evolution from myelodysplastic syndrome to acute myeloid leukemia, Leuk. Res., 2000, vol. 24, no. 10, pp. 839–848.

    Article  PubMed  Google Scholar 

  4. Pedersen-Bjergaard, J., Andersen, M.T., and Andersen, M.K., Genetic pathways in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. hematology, Amer. Soc. Hematol Educ. Program, 2007, pp. 392–397.

    Google Scholar 

  5. Estey, E., Keating, M.J., Pierce, S., and Stass, S., Change in karyotype between diagnosis and first relapse in acute myelogenous leukemia, Leukemia, 1995, vol. 9, no. 6, pp. 972–976.

    CAS  PubMed  Google Scholar 

  6. Meyer, N. and Penn, L.Z., Reflecting on 25 years with MYC, Nat. Rev. Cancer, 2008, vol. 8, no. 12, pp. 976–990.

    Article  CAS  PubMed  Google Scholar 

  7. Haase, D., Germing, U., Schanz, J., et al., New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients, Blood, 2007, vol. 110, no. 13, pp. 4385–4395.

    Article  CAS  PubMed  Google Scholar 

  8. Rucker, F.G., Bullinger, L., Schwaenen, C., et al., Disclosure of candidate genes in acute myeloid leukemia with complex karyotypes using microarray-based molecular characterization, J. Clin. Oncol., 2006, vol. 24, no. 24, pp. 3887–3894.

    Article  PubMed  Google Scholar 

  9. Poppe, B., Vandesompele, J., Schoch, C., et al., Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies, Blood, 2004, vol. 103, no. 1, pp. 229–235.

    Article  CAS  PubMed  Google Scholar 

  10. Sawyer, J.R., Husain, M., Pravdenkova, S., et al., A role for telomeric and centromeric instability in the progression of chromosome aberrations in meningioma patients, Cancer, 2000, vol. 88, no. 2, pp. 440–453.

    Article  CAS  PubMed  Google Scholar 

  11. Poppe, B., De Paepe, A., and Speleman, F., Acquired chromosomal rearrangements targeting selected transcription factors: contribution of molecular cytogenetic and expression analyses to the identification of clinically and biologically relevant subgroups in hematological malignancies, Verh. K. Acad. Geneeskd. Belg., 2007, vol. 69, no. 1, pp. 47–64.

    CAS  PubMed  Google Scholar 

  12. Knudson, A.G., Hethcote, H.W., and Brown, B.W., Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma, Proc. Nat. Acad. Sci. USA, 1975, vol. 72, pp. 5116–5120.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Cavelier, C., Didier, C., Prade, N., et al., Constitutive activation of the DNA damage signaling pathway in acute myeloid leukemia with complex karyotype: potential importance for checkpoint targeting therapy, Cancer Res., 2009, vol. 69, no. 22, pp. 8652–8661.

    Article  CAS  PubMed  Google Scholar 

  14. International System for Human Cytogenetic Nomenclature (ISCN, 2009), Shaffer, L.G., Slovak, M.L., and Campbell, L.J., Eds, Basel: S. Karger, 2009.

  15. Grimwade, D., Hills, R.K., Moorman, A.V., et al., Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials, Blood, 2010, vol. 116, no. 3, pp. 354–365.

    Article  CAS  PubMed  Google Scholar 

  16. Bochtler, T., Stolzel, F., Heilig, C.E., et al., Clonal heterogeneity as detected by metaphase karyotyping is an indicator of poor prognosis in acute myeloid leukemia, J. Clin. Oncol., 2013, vol. 31, no. 31, pp. 3898–3905.

    Article  PubMed  Google Scholar 

  17. Movafagh, A., Hajifathali, A., and Zamani, M., Secondary chromosomal abnormalities of de novo acute myeloid leukemia a first report from the Middle East, Asian. Pac. J. Cancer Prev., 2011, vol. 12, no. 11, pp. 2991–2994.

    PubMed  Google Scholar 

  18. Bernasconi, P., Klersy, C., Boni, M., et al., Does cytogenetic evolution have any prognostic relevance in myelodysplastic syndromes? A study on 153 patients from a single institution, Ann. Hematol., 2010, vol. 89, no. 6, pp. 545–551.

    Article  PubMed  Google Scholar 

  19. Wang, E.S., Sait, S.N., Gold, D., et al., Genomic, immunophenotypic, and NPM1/FLT3 mutational studies on 17 patients with normal karyotype acute myeloid leukemia (AML) followed by aberrant karyotype AML at relapse, Cancer Genet. Cytogenet., 2010, vol. 202, no. 2, pp. 101–107.

    Article  CAS  PubMed  Google Scholar 

  20. Andreieva, S.V., Drozdova, V.D., and Kavardakova, N.V., Phenomenon of evolution of clonal chromosomal abnormalities in childhood acute myeloid leukemia, Cytol. Genet., 2010, vol. 44, no. 3, pp. 160–169.

    Article  Google Scholar 

  21. GFCH. Cytogenetic analysis in patients with primary myelodysplastic syndromes in leukaemic transformation. A report on 94 cases. Groupe Francais de Cytogenetique Hematologique (GFCH), Hematol. Cell Ther., 1996, vol. 38, no. 2, pp. 177–181.

    Article  Google Scholar 

  22. Parkin, B., Ouillette, P., Li, Y., et al., Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia, Blood, 2013, vol. 121, no. 2, pp. 369–377.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jerez, A., Gondek, L.P., Jankowska, A.M., et al., Clinical and genomic correlates of 5q myeloid malignancies revisited, J. Clin. Oncol., 2012, vol. 30, no. 12, pp. 1343–1349.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Keefe, C.L., et al., New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia, J. Clin. Oncol., 2009, vol. 27, no. 31, pp. 5219–5226.

    Article  Google Scholar 

  25. Babicka, L., Ransdorfova, S., Brezinova, J., et al., Analysis of complex chromosomal rearrangements in adult patients with MDS and AML by multicolor FISH, Leuk. Res., 2007, vol. 31, no. 1, pp. 39–47.

    Article  CAS  PubMed  Google Scholar 

  26. Van Limbergen, H., Poppe, B., Michaux, L., et al., Identification of cytogenetic subclasses and recurring chromosomal aberrations in AML and MDS with complex karyotypes using M-FISH, Gen. Chromosom. Cancer, 2002, vol. 33, no. 1, pp. 60–72.

    Article  Google Scholar 

  27. Parkin, B., Erba, H., Ouillette, P., et al., Acquired genomic copy number aberrations and survival in adult acute myelogenous leukemia, Blood, 2010, vol. 116, no. 23, pp. 4958–4967.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Byrd, J.C., Mrozek, K., Dodge, R.K., et al., Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from cancer and leukemia group B (CALGB 8461), Blood, 2002, vol. 100, no. 13, pp. 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  29. Angelova, S., Jordanova, M., Spassov, B., et al., Amplification of c-MYC and MLL genes as a marker of clonal cell progression in patients with myeloid malignancy and trisomy of chromosomes 8 or 11, Balkan J. Med. Genet, 2011, vol. 14, no. 2, pp. 17–24.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Angelova.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelova, S., Spassov, B., Nikolova, V. et al. Does the pattern of clonal evolution in the karyotype of patients with acute myeloid leukemia and myelodysplastic syndromes depend on the type of the primary chromosomal aberrations?. Cytol. Genet. 49, 226–231 (2015). https://doi.org/10.3103/S0095452715040027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452715040027

Keywords

Navigation