Skip to main content
Log in

From Qutn to Bt cotton: Development, adoption and prospects. A review

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Cotton has unique history of domestication, diversification, and utilization. Globally it is an important cash crop that provides raw material for textile industry. The story of cotton started from human civilization and the climax arrived with the efforts of developing transgenic cotton for various traits. Though conventional breeding brought steady improvement in developing resistance against biotic stresses but recent success story of gene transfer from Bacillus thuringiensis into cotton showed game changing effects on cotton cultivation. Amongst various families of insecticidal proteins Bt Cry-toxins received more attention because of specificity against receptors on the cell membranes of insect midgut epithelial cells. Rapid Bt cotton adoption by farmers due to its economic and environmental benefits has changed the landscape of cotton cultivation in many countries. But the variable expression of Bt transgene in the newly developed Bt cotton genotypes in tropical environment is questionable. Variability of toxin level in different plant parts at various life stage of plant is an outcome of genotypic interaction with environmental factors. Temporal gene expression of Cry1Ac is also blamed for the epigenetic background in which transgene has been inserted. The presence of genotypes with sub-lethal level of Bt toxin might create resistance in Lepidopteron insects, limiting the use of Bt cotton in future, with the opportunity for other resistance development strategies to get more attention like gene stacking. Until the farmers get access to more recent technology, best option is to delay the development of resistance by applying Insect Resistance Management (IRM) strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khaleequr, R., Arshiya, S., and Shafeequr, R., Gossypium herbaceum Linn: an ethnopharmacologicala review, J. Pharm. Sci. Inn., 2012, vol. 5, pp. 1–5.

    Google Scholar 

  2. Wendel, J.F. and Cronn, R.C., Polyploidy and the evolutionary history of cotton, Adv. Agron., 2003, vol. 78, pp. 139–186.

    Article  Google Scholar 

  3. Zhang, H.B., Li, Y., Wang, B., and Chee, P.W., Recent advances in cotton genomics, Int. J. Plant Genom., 2008, vol. 2008, p. 742304.

    Google Scholar 

  4. Chen, Z.J., Scheffler, B.E., Dennis, E., et al., Toward sequencing cotton (Gossypium) genomes, Plant Physiol., 2007, vol. 145, no. 4, pp. 1303–1310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Brown, H. and Ware, J., Cotton, New York, 1958.

    Google Scholar 

  6. Gledhill, D., The Names of Plants, Cambridge: Univ. Press, 2008.

    Google Scholar 

  7. Fryxell, P., A revised taxonomic interpretation of Gossypium L. (Malvaceae), Rheedea, 1992, vol. 2, no. 2, pp. 108–165.

    Google Scholar 

  8. Brubaker, C., Paterson, A., and Wendel, J., Comparative genetic mapping of allotetraploid cotton and its diploid progenitors, Genome, 1999, vol. 42, no. 2, pp. 184–203.

    Article  CAS  Google Scholar 

  9. Mei, M., Syed, N., Gao, W., et al., Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium), Theor. Appl. Genet., 2004, vol. 108, no. 2, pp. 280–291.

    Article  CAS  PubMed  Google Scholar 

  10. Iqbal, M., Reddy, O., El-Zik, K., and Pepper, A., A genetic bottleneck in the evolution under domestication of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting, Theor. Appl. Genet., 2001, vol. 103, no. 4, pp. 547–554.

    Article  CAS  Google Scholar 

  11. Wendel, J.F., New world tetraploid cottons contain old world cytoplasm, Proc. Nat. Acad. Sci. USA, 1989, vol. 86, no. 11, pp. 4132–4136.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cronn, R.C., Small, R.L., Haselkorn, T., and Wendel, J.F., Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes, Am. J. Bot., 2002, vol. 89, no. 4, pp. 707–725.

    Article  CAS  PubMed  Google Scholar 

  13. Senchina, D.S., Alvarez, I., Cronn, R.C., et al., Rate variation among nuclear genes and the age of polyploidy in Gossypium, Mol. Biol. Evol., 2003, vol. 20, no. 4, pp. 633–643.

    Article  CAS  PubMed  Google Scholar 

  14. Han, Z.-G., Guo, W.-Z., Song, X.-L., and Zhang, T.-Z., Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboretum in allotetraploid cotton, Mol. Genet. Genom., 2004, vol. 272, no. 3, pp. 308–327.

    Article  CAS  Google Scholar 

  15. Wendel, J.F., Brubaker, C.L., and Percival, A.E., Genetic diversity in Gossypium hirsutum and the origin of upland cotton, Am. J. Bot., 1992, vol. 79, no. 11, pp. 1291–1310.

    Article  Google Scholar 

  16. Fryxell, P.A., The natural history of the cotton tribe (Malvaceae, tribe Gossypieae), Texas: Univ. Press, 1978.

    Google Scholar 

  17. Abdalla, A., Reddy, O., El-Zik, K., and Pepper, A., Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP, Theor. Appl. Genet., 2001, vol. 102, pp. 222–229.

    Article  CAS  Google Scholar 

  18. Wendel, J.F., Rowley, R., and Stewart, J.M., Genetic diversity and phylogenetic relationships of the Brazilian endemic cotton, Gossypium mustelinum (Malvaceae), Plant Syst. Evol., 1994. vol. 192, nos. 1/2, pp. 49–59.

    Article  Google Scholar 

  19. Bowman, D., Attributes of public and private cotton breeding programs, J. Cotton Sci., 2000, vol. 4, no. 2, pp. 130–136.

    Google Scholar 

  20. Bowman, D.T., Bourland, F.M., Myers, G.O., et al., Visual selection for yield in cotton breeding programs, J. Cotton. Sci., 2004, vol. 8, no. 2, pp. 62–68.

    Google Scholar 

  21. Berger, G., Hague, S.S., Smith, C.W., et al., Development of sea Island/Upland (SIUP) germplasm with unique fiber properties, J. Cotton Sci., 2011, vol. 15, pp. 260–264.

    CAS  Google Scholar 

  22. Smith, C.W., Cantrell, R.G., Moser, H.S., and Oakley, S.R., History of cultivar development in the United States, in Cotton: Origin, History, Technology, and Production, New York, 1999, vol. 4, p. 99.

    Google Scholar 

  23. Percy, R.G. and Turcotte, E., Early-maturing, shortstatured American pima cotton parents improve agronomic traits of interspecific hybrids, Crop Sci., 1991, vol. 31, no. 3, pp. 709–712.

    Article  Google Scholar 

  24. Percy, R.G. and Turcotte, E.L., Interspecific hybrid fiber characteristics of cotton altered by unconventional Gossypium barbadense L. fiber genotypes, Crop Sci., 1992, vol. 32, no. 6, pp. 1437–1441.

    Article  Google Scholar 

  25. Percival, A., Wendel, J., and Stewart, J., Taxonomy and germplasm resources, in Cotton: Origin, History, Technology, and Production, New York, 1999. pp. 33–64.

    Google Scholar 

  26. Cupl, T. and Harrel, D., Breeding Quality Cotton at the Pee Dee Experiment Station Florence, SC., US Department of Agriculture, ARS, 1974.

    Google Scholar 

  27. Bolek, Y., Status of genome mapping and use in cotton improvement, J. Sci. Engineer., 2003, vol. 6, pp. 72–79.

    Google Scholar 

  28. Razaq, M., Aslam, M., Shad, S.A., and Naeem, M., Evaluation of some new promising cotton strains against bollworm complex, Evalluation, 2004, vol. 15, no. 3, pp. 313–318.

    Google Scholar 

  29. Kumar, S., Chadra, A., and Pandey, K., Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy, J. Environ. Biol., 2008, vol. 29, no. 5, pp. 641–653.

    CAS  PubMed  Google Scholar 

  30. Elbehri, A. and Macdonald, S., Estimating the impact of transgenic Bt cotton on West and Central Africa: a general equilibrium approach, World Develop., 2004, vol. 32, no. 12, pp. 2049–2064.

    Article  Google Scholar 

  31. Yudelman, M., Ratta, A., and Nygaard, D.F., Pest management and food production: looking to the future, Int. Food Policy Res. Inst. Washington, 1998.

    Google Scholar 

  32. Sinclair, T.R., Purcell, L.C., and Sneller, C.H., Crop transformation and the challenge to increase yield potential, Trends Plant Sci., 2004, vol. 9, no. 2, pp. 70–75.

    Article  CAS  PubMed  Google Scholar 

  33. Fraley, R.T., Rogers, S.G., Horsch, R.B., et al., Expression of bacterial genes in plant cells, Proc. Nat. Acad. Sci. U.S.A., 1983, vol. 80, pp. 4803–4807.

    Article  CAS  Google Scholar 

  34. De La Riva, G.A., González-Cabrera, J., VázquezPadryn, R., and Ayra-Pardo, C., Agrobacterium tumefaciens: a natural tool for plant transformation, Elect. J. Biotechnol., 1998, vol. 1, no. 3, pp. 24–25.

    Google Scholar 

  35. Sun, H.-J., Uchii, S., Watanabe, S., and Ezura, H., A highly efficient transformation protocol for microtom, a model cultivar for tomato functional genomics, Plant Cell Physiol., 2006, vol. 47, no. 3, pp. 426–431.

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi, Y., Dotson, M., and Keen, N.T., Plant transformation: a simple particle bombardment device based on flowing helium, Plant. Mol. Biol., 1992, vol. 18, no. 4, pp. 835–839.

    Article  CAS  PubMed  Google Scholar 

  37. Yao, Q., Cong, L., Chang, J.L., et al., Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment, J. Exp. Bot., 2006, vol. 57, no. 14, pp. 37373–3746.

    Article  CAS  Google Scholar 

  38. Potrykus, I., Bilang, R., Futterer, J., et al., Genetic engineering of crop plants, in Agricultural Biotechnology, Altman, A., Ed., New York, 1998. pp. 119–159.

    Google Scholar 

  39. Somers, D.A., Olhoft, P.M., Makarevitch, I.F., and Svitashev, S.K., Mechanisms(s) of transgene locus formation, in Genetically Modified Crops, Their Development, Uses, and Risks, Liang, G.H., Skinner, D.Z., Eds., Food Products Press, 2004. pp. 17–69.

    Google Scholar 

  40. Xue, Q.Z., Zhang, X.Y., and Zhang, Y., Development of biotech crops in China, in Plant Biotechnology: Current and Future Applications of Genetically Modified Crops, Halford, N., Ed., John Wiley and Sons, 2006. pp. 53–67.

    Chapter  Google Scholar 

  41. Bartlett, J.G., Alves, S.C., Snmedley, M., et al., Highthroughput Agrobacterium-mediated barley transformation, Plant Meth., 2008. vol. 4, no. 1, p. 22.

    Article  CAS  Google Scholar 

  42. Trfira, T., Jensen, C.S., Wang, W., et al., Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation, Plant Mol. Biol. Report., 1997, vol. 15, no. 3, pp. 219–235.

    Article  Google Scholar 

  43. Daud, M., Variath, M., Ali, S., et al., Genetic transformation of bar gene and its inheritance and segregation behavior in the resultant transgenic cotton germplasm (br001), Pak. J. Bot., 2009, vol. 41, no. 5, pp. 2167–2178.

    CAS  Google Scholar 

  44. Wilkins, T.A., Mishra, R., and Trolinder, N.L., Agrobacterium-mediated transformation and regeneration of cotton, J. Food Agricult. Environ., 2004, vol. 2, pp. 179–187.

    Google Scholar 

  45. Wilkins, T.A., Rajasekaran, K., and Anderson, D.M., Cotton biotechnology, Crit. Rev. Plant Sci., 2000, vol. 19, no. 6, pp. 511–550.

    Article  CAS  Google Scholar 

  46. Duck, N. and Evola, S., Use of transgenes to increase host plant resistance to insects, opportunities and challenges, in Advances in Insect Control. The Role of Transgenic Plants, Carozzi, N. and Koziel, M., Eds., Taylor and Francis, 1997. pp. 1–24.

    Google Scholar 

  47. Chlan, C.A., Lin, J., Cary, J.W., and Cleveland, T.E., A procedure for biolistic transformation and regeneration of transgenic cotton from meristematic tissue, Plant Mol. Biol. Report., 1995, vol. 13, no. 1, pp. 31–37.

    Article  Google Scholar 

  48. Keller, G., Spatola, L., Mccabe, D., et al., Transgenic cotton resistant to herbicide bialaphos, Transgenic Res., 1997, vol. 6, no. 6, pp. 385–392.

    Article  CAS  Google Scholar 

  49. Rajasekaran, K., Hudspeth, R., Cary, J., et al., Highfrequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures, Plant Cell. Rep., 2000, vol. 19, no. 6, pp. 539–545.

    Article  CAS  Google Scholar 

  50. Zhou, G.Y., Weng, J., Zeng, Y., et al., Introduction of exogenous DNA into cotton embryos, in Methods in Enzymology, vol. 101: Recombination DNA, Part C, Wu, R., et al., Eds., New York: Acad. Press, 1983. pp. 433–481.

    Chapter  Google Scholar 

  51. Pray, C.E., Huang, J., Hu, R., and Rozelle, S., Five years of Bt cotton in China—the benefits continue, Plant J., 2002, vol. 31, no. 4, pp. 423–430.

    Article  CAS  PubMed  Google Scholar 

  52. Carlini, C.R. and Grossi-de-Sá, M.F., Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides, Toxicon, 2002, vol. 40, no. 11, pp. 1515–1539.

    Article  CAS  PubMed  Google Scholar 

  53. Harrison, R.L. and Bonning, B.C., Proteases as insecticidal agents, Toxins, 2010, vol. 2, no. 5, pp. 935–953.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Hosseininaveh, V., Bandani, A., and Hosseininaveh, F., Digestive proteolytic activity in the Sunn pest, Eurygaster inegriceps, J. Insect Sci., 2009, vol. 9, p. 70.

    Article  PubMed Central  Google Scholar 

  55. Hilder, V.A., Gatehouse, A.M., and Boulter, D., Potential for exploiting plant genes to genetically engineer insect resistance, exemplified by the cowpea trypsin inhibitor gene, Pesticide Sci., 1989, vol. 27, no. 2, pp. 165–171.

    Article  CAS  Google Scholar 

  56. Showalter, A.M., Heuberger, S., Tabashnik, B.E., and Carriure, Y., A primer for using transgenic insecticidal cotton in developing countries, J. Insect Sci., 2009, vol. 9, no. 22, pp. 1–39.

    Article  Google Scholar 

  57. Macedo, M.L.R., Damico, D.C.S., Freire, M.D.G.M., et al., Purification and characterization of an n-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculates (Coleoptera: Bruchidae) and Anagasta kuehniella (Lepidoptera: Pyralidae), J. Agric. Food Chem., 2003, vol. 51, no. 10, pp. 2980–2986.

    Article  PubMed  CAS  Google Scholar 

  58. De Oliveira, C.F.R., Luz, L.A., Paiva, P.M.G., et al., Evaluation of seed coagulant Moringa oleifera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects, Proc. Biochem., 2011, vol. 46, no. 2, pp. 498–504.

    Article  CAS  Google Scholar 

  59. Tinjuangjun, P., Snowdrop lectin gene in transgenic plants: its potential for Asian agriculture, AgBiotechNetcom, 2002. vol. 4.

    Google Scholar 

  60. Macedo, M.L.R., Durigan, R.A., Silva, D.S., et al., Adenanthera pavonina trypsin inhibitor retard growth of Ephetia kuehniella (Lepidoptera: Pyralidae), Arch. Insect Biochem. Physiol., 2010, vol. 73, pp. 213–231.

    CAS  PubMed  Google Scholar 

  61. Milner, R.J., History of Bacillus thuringiensis, Agric., Ecosyst. Environ., 1994, vol. 49, no. 1, pp. 9–13.

    Article  Google Scholar 

  62. Ibrahim, M.A., Griko, N., Junker, M., and Bulla, L.A., Bacillus thuringiensis: a genomics and proteomics perspective, Bioeng. Bugs, 2010, vol. 1, no. 1, pp. 31–50.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Beegle, C.C. and Yamamoto, T., Invitation paper (CP Al-exander Fund): history of Bacillus thuringiensis Berliner research and development, Can. Entomol., 1992, vol. 124, no. 4, pp. 587–616.

    Article  Google Scholar 

  64. Edge, J.M., Benedict, J.H., Carroll, J.P., and Reding, H.K., Bollgard cotton: an assessment of global economic, environmental, and social benefits, J. Cotton Sci., 2001, vol. 5, no. 2, pp. 121–136.

    Google Scholar 

  65. Quaim, M. and Zolberman, D., Yield effects of genetically modified crops in developing countries, Science, 2003, vol. 299, no. 5608, pp. 900–902.

    Article  CAS  Google Scholar 

  66. Warren, G.W., Koziel, M.G., Mullins, M.A., et al., Intellectual Property Organization patent WO, 1994, 94/21795.

    Google Scholar 

  67. Yu, C.G., Mullins, M.A., Warren, G.W., et al., The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects, Appl. Environ. Microbiol., 1997, vol. 63, no. 2, pp. 532–536.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Schnepf, E., Crickmore, N., van Rie, J., et al., Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 3, pp. 775–806.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Lee, M.K., Walters, F.S., Hart, H., et al., The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from of CrylAd-endotoxin, Appl. Environ. Microbiol., 2003, vol. 69, no. 8, pp. 4648–4657.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Carozzi, N.B., Warren, G.W., Desai, N., et al., Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco, Plant. Mol. Biol., 1992, vol. 20, pp. 539–548.

    Article  CAS  PubMed  Google Scholar 

  71. Bravo, A., Gill, S.S., and Soberón, M., Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control, Toxicon, 2007, vol. 49, no. 4, pp. 423–435.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. De Maagd, R.A., Bosch, D., and Stiekema, W., Bacillus turingiensis toxin-mediated resistance in plants, Trends Plant Sci., 1999, vol. 4, no. 1, pp. 9–13.

    Article  PubMed  Google Scholar 

  73. Höfte, H. and Whiteley, H., Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol. Rev., 1989, vol. 53, no. 2, pp. 242–255.

    PubMed Central  PubMed  Google Scholar 

  74. Ahsan, R. and Altaf, Z., Development, adoption and performance of Bt cotton in Pakistan: a review, Pakistan J. Agric. Res., 2009, vol. 2, no. 12, pp. 73–85.

    Google Scholar 

  75. Bakhsh, A., Shahzad, K., and Husnain, T., Variation in the spatio-temporal expression of insecticidal genes in cotton, Czech. J. Genet. Plant. Breed., 2011, vol. 47, no. 1, pp. 1–9.

    CAS  Google Scholar 

  76. Kranthi, K.R., Naidu, S., Dhawad, C., et al., Temporal and intra-plant variability of CrylAc expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera), Curr. Sci., 2005, vol. 89, no. 2, pp. 291–298.

    CAS  Google Scholar 

  77. Bulla, L.A., Rhodes, R.A., and St. Julian, G., Bacteria as insect pathogens, Annu. Rev. Microbiol., 1975, vol. 29, no. 1, pp. 163–190.

    Article  CAS  PubMed  Google Scholar 

  78. Adang, M., Firoozabady, E., Klein, J., et al., Expression of a Bacillus thuringiensis insecticidal crystal protein gene in tobacco plants, in Molecular strategies for crop protection: UCLA Symp. on molecular and cellular biology, New York, 1987. p. 48.

    Google Scholar 

  79. Gawron-Burke, C., Chambers, J., Jelen, A., et al., Molecular biology and genetics of Bacillus thuringiensis, in V Int. Col. on Invertebrate Pathology and Microbial Control. Proc. and abstracts, 1990. pp. 456–460.

    Google Scholar 

  80. Ceron, J., Covarrubias, L., Quintero, R., et al., PCR analysis of the cryI insecticidal crystal family genes from Bacillus thuringiensis, Appl. Environ. Microbiol., 1994, vol. 60, no. 1, pp. 353–356.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Yamamoto, T., Identification of entomocidal toxins of Bacillus thuringiensis by high performance liquid chromatography, J. Gen. Microbiol., 1983, vol. 29, no. 8, pp. 2595–2603.

    Google Scholar 

  82. Widner, W.R. and Whiteley, H., Location of the dipteran specificity region in a lepidopteran-dipteran crystal protein from Bacillus thuringiensis, J. Bactetiol., 1990, vol. 172, no. 6, pp. 2826–2832.

    CAS  Google Scholar 

  83. Aronson, A.I., The two faces of Bacillus thuringiensis: insecticidal proteins and post-exponential survival, Mol. Microbiol., 1993, vol. 7, no. 4, pp. 489–496.

    Article  CAS  PubMed  Google Scholar 

  84. Herrnstadt, C., Soares, G.G., Wilcox, E.R., and Edwards, D.L., A new strain of with activity against coleopteran insects, Nat. Biotechnol., 1986, vol. 4, no. 4, pp. 305–308.

    Article  CAS  Google Scholar 

  85. Adams, L.F., Brown, K., and Whiteley, H., Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter, J. Bacteriol., 1991, vol. 173, no. 12, pp. 3846–3854.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Sekar, V., Thompson, D.V., Maaroney, M.J., et al., Molecular cloning and characterization of the insecticidal crystal protein gene of Bacillus thuringiensis var. tenebrionis, Proc. Nat. Acad. Sci. USA, 1987, vol. 84, no. 20, pp. 7036–7040.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Hurley, J.J., Newton, A.C., Parker, P.J., et al., Taxonomy and function of C1 protein kinase C homology domains, Protein. Sci., 1997, vol. 6, no. 2, pp. 477–480.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Koni, P.A. and Ellar, D.J., Biochemical characterization of Bacillus thuringiensis cytolytic d-endotoxins, Arch. Microbiol., 1994, vol. 140, no. 8, pp. 1869–1880.

    Article  CAS  Google Scholar 

  89. Tailor, R., Tippett, J., Gibb, G., et al., Identification and characterization of a novel Bacillus thuringiensis dendotoxin entomocidal to coleopteran and lepidopteran larvae, Mol. Microbiol., 1992, vol. 6, no. 9, pp. 1211–1217.

    Article  CAS  PubMed  Google Scholar 

  90. Mahon, R., Finnergan, J., Olsen, K., and Lawrence, L., Environmental stress and the efficacy of Bt cotton, Aust. Cotton. Grower, 2002, vol. 23, no. 2, pp. 18–21.

    Google Scholar 

  91. Poongothai, S., Ilavarasan, R., and Karrunakaran, C., Cry 1Ac levels and biochemical variations in Bt cotton as influenced by tissue maturity and senescence, J. Plant. Breed. Crop Sci., 2010, vol. 2, no. 5, pp. 96–103.

    CAS  Google Scholar 

  92. Adamczyk, J., Hardee, D., Adams, L., and Sumerford, D., Correlating differences in larval survival and development of bollworm (Lepidoptera: Noctuidae) and fall armyworm (Lepidoptera: Noctuidae) to differential expression of Cry1A (c) d-endotoxin in various plant parts among commercial cultivars of transgenic Bacillus thuringiensis cotton, J. Econ. Entomol., 2001, vol. 94, no. 1, pp. 284–290.

    Article  CAS  PubMed  Google Scholar 

  93. Wan, P., Zhang, Y., Wu, K., and Huang, M., Seasonal expression profiles of insectieidal protein and control efficacy against Helicoverpa armigera for Bt cotton in the Yangtze River valley of China, J. Econ. Entomol., 2005, vol. 98, no. 1, pp. 195–201.

    Article  CAS  PubMed  Google Scholar 

  94. Abel, C.A. and Adamezyk, J.J., Relative concentration of Cry1A in maize leaves and cotton bolls with diverse chlorophyll content and corresponding larval development of fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) on maize whorl leaf profiles, J. Econ. Entomol., 2004, vol. 97, no. 5, pp. 1737–1744.

    Article  CAS  PubMed  Google Scholar 

  95. Dong, H. and Li, W., Variability of endotoxin expression in Bt transgenic cotton, J. Agron. Crop Sci., 2007, vol. 193, no. 1, pp. 21–29.

    Article  CAS  Google Scholar 

  96. Xia, L., Xu, Q., and Guo, S., Bt insecticidal gene and its temporal expression in transgenic cotton plants, Acta Agron. Sin., 2005, vol. 31, no. 2, pp. 197–202.

    CAS  Google Scholar 

  97. Chen, S., Wu, J., Zhou, B., et al., On the temporal and spatial expression of Bt toxin protein in Bt transgenic cotton, Acta Gossypii Sin., 2000, vol. 12, pp. 189–193.

    Google Scholar 

  98. Wu, K., Guo, Y., Lv, N., et al., Efficacy of transgenic cotton containing a cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) in northern China, J. Econ. Entomol., 2003, vol. 96, no. 4, pp. 1322–1328.

    Article  CAS  PubMed  Google Scholar 

  99. Coviella, C.E., Stipanovic, R.D., and Trumble, J.T., Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants, J. Exp. Bot., 2002, vol. 53, no. 367, pp. 323–331.

    Article  CAS  PubMed  Google Scholar 

  100. Chen, D., Ye, G., Yang, C., et al., The effect of high temperature on the insecticidal properties of Bt cotton, Environ. Exp. Bot., 2005, vol. 53, no. 3, pp. 333–342.

    Article  Google Scholar 

  101. Benedict, J.H., Sachs, E.S., Altman, D.W., et al., Field performance of cottons expressing transgenic Cry1A insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae), J. Econ. Entomol., 1996, vol. 89, pp. 230–238.

    Article  Google Scholar 

  102. Adamczyk, J.J. and Meredith, W.R., Genetic basis for variability of Cry1Ac expression among commercial transgenic Bacillus thuringiensis (Bt) cotton cultivars in the United States, J. Cotton Sci., 2004, vol. 8, pp. 17–23.

    CAS  Google Scholar 

  103. Olsen, K., Daly, J., Holt, H., and Finnegan, E., Season-long variation in expression of Cry1Ac gene and efficacy of Bacillus thuringiensis toxin in transgenic cotton against Helicoverpa armigera (Lepidoptera: Noctuidae), J. Econ. Entomol., 2005, vol. 98, no. 3, pp. 1007–1017.

    Article  CAS  PubMed  Google Scholar 

  104. Pettigrew, W. and Adamczyk, J., Nitrogen fertility and planting date effects on lint yield and Cry1Ac (Bt) endotoxin production, Agron. J., 2006, vol. 98, no. 3, pp. 691–697.

    Article  CAS  Google Scholar 

  105. Hardee, D.D. and Herzog, G.A., 50th Annual Conference report on cotton insect research and control, in Proc. Beltwide Cotton Confm. New Orleans, 1997. pp. 809–834.

    Google Scholar 

  106. Benedict, J.H. and Altman, D.W., Commercialization of transgenic cotton expressing insecficidal crystal protein, in Genetic Improvement of Cotton, Emerging Technologies, Jenkins, J.J. and Saha, S., Eds., Enfield: Sci. Publ., 2001, vol. 1, p. 137.

    Google Scholar 

  107. Purcell, J.P. and Lerlakk, F.J., Global impact of insectresistant (Bt) cotton, AgBioForum, 2004. vol. 7, nos. 1/2, pp. 27–30.

    Google Scholar 

  108. Green, W., De Billot, M., Joffe, T., et al., Indigenous plants and weeds on the Makhathini Flats as refuge hosts to maintain bollworm population susceptibility to transgenic cotton (BollgardTM), Afr. Entomol., 2003, vol. 11, no. 1, pp. 21–29.

    Google Scholar 

  109. Ismael, Y., Bennett, R., and Morse, S., Do small-scale Bt cotton adopters in South Africa gain an economic advantage, in 6th Int. ICABR Conf., Ravello, 2002. pp. 1–16.

    Google Scholar 

  110. Ismael, Y., Bennett, R.M., and Morse, S., Benefits from Bt cotton use by smallholder farmers in South Africa, AgBioForum, 2002. vol. 5.

    Google Scholar 

  111. Morse, S., Bennet, R., and Ismael, Y., Environmental impact of genetically modified cotton in South Africa, Agric. Ecosyst. Environ., 2006, vol. 117, no. 4, pp. 277–289.

    Article  Google Scholar 

  112. Khan, S.M., Saeed, I., Shah, M., et al., Integration of tolerance of Bt cotton varieties with insecticides against spotted bollworm, Earias insulana (BOISD.) and E. vittela (FAB) (Noctuidae: Lepidoptera), Sarhad J. Agric., 2012, vol. 28, pp. 57–62.

    Google Scholar 

  113. Hayee, A., Cultivation of Bt Cotton: Pakistan’s Experience. Action Aid, Islamabad, Pakistan, 2005.

    Google Scholar 

  114. Ali, S., Shah, S.H., Ali, G.M., et al., Bt Cry toxin expression profile in selected Pakistani cotton genotypes, Curr. Sci., 2012. vol. 102, no. 12, p. 1632.

    CAS  Google Scholar 

  115. Zafar, Y., Development of agriculture biotechnology in Pakistan, J. AOAC Int., 2007, vol. 90, no. 5, pp. 1500–1507.

    CAS  PubMed  Google Scholar 

  116. Ali, S., Hameed, S., Masood, S., et al., Status of Bt cotton cultivation in major growing areas of Pakistan, Pak. J. Bot., 2010, vol. 42, no. 3, pp. 1583–1594.

    Google Scholar 

  117. Ali, M.S., The natural refuge policy for Bt cotton (Gossypium L.) in Pakistan—a situation analysis, Acta Agrobot., 2013, vol. 66, no. 2, pp. 3–12.

    Article  Google Scholar 

  118. Sabir, H.M., Tagir, S.H., and Khan, M.B., Bt cotton and its impact on cropping pattern in Punjab, Pak. J. Soc. Sci., 2011, vol. 31, no. 1, pp. 127–134.

    Google Scholar 

  119. Walker, K., Mendelsohn, M., Matten, S., et al., The role of microbial Bt products in US crop protection, J. New Seeds, 2003, vol. 5, no. 1, pp. 31–51.

    Article  Google Scholar 

  120. Federici, B.A., Effects of Bt on non-target organisms, J. New Seeds, 2003, vol. 5, no. 1, pp. 11–30.

    Article  Google Scholar 

  121. Carpenter, J., Felsot, A., Goode, T., et al., Comparative environmental impacts of biotechnology-derived and traditional soybean, corn, and cotton crops. Council for Agricultural Science and Technology, Ames, Iowa, wwwcast-scienceorg., Sponsored by the United Soybean Board, wwwunitedsoybeanorg., 2002.

    Google Scholar 

  122. Head, G., Freeman, B., Moar, W., et al., Natural enemy abundance in commercial Bollgard and conventional cotton fields, Proc. Beltwide Cotton Conf., 2001, vol. 2, pp. 796–798.

    Google Scholar 

  123. Head, G., Moar, W., Eubanks, M., et al., A multiyear, large-scale comparison of arthropod populations on commercially managed Bt and non-Bt cotton fields, Environ. Entomol., 2005, vol. 34, no. 5, pp. 1257–1266.

    Google Scholar 

  124. Wu, K. and Guo, Y., Influences of Bacillus thuringiensis Berliner cotton planting on population dynamics of the cotton aphid, Aphis gossypii glover, in northern China, Environ. Entomol., 2003, vol. 32, no. 2, pp. 312–318.

    Article  Google Scholar 

  125. Walter, C., Fladung, M., and Boerjan, W., The 20-year environmental safety record of GM trees, Nat. Biotechnol., 2010, vol. 28, no. 7, pp. 656–658.

    Article  CAS  PubMed  Google Scholar 

  126. Kapur, M., Bhatia, R., Pandey, G., et al., A case study for assessment of microbial community dynamics in genetically modified Bt cotton crop fields, Curr. Microbiol., 2010, vol. 61, no. 2, pp. 118–124.

    Article  CAS  PubMed  Google Scholar 

  127. Randhawa, G.J., Singh, M., and Grover, M., Bioinformatic analysis for allergenicity assessment of Bacillus thuringiensis cry proteins expressed in insect-resistant food crops, Food Chem. Toxicol., 2011, vol. 49, no. 2, pp. 356–362.

    Article  CAS  PubMed  Google Scholar 

  128. Chen, M., Shelton, A., and Ye, G.-Y., Insect-resistant genetically modified rice in China: from research to commercialization, Ann. Rev. Entomol., 2011, vol. 56, pp. 81–101.

    Article  CAS  Google Scholar 

  129. Stewart, S., Reed, J., Luttrell, R., and Harris, F., Cotton insect control strategy project: comparing Bt and conventional cotton management and plant bug control strategies five locations in Mississipp. 1995–1997, Proc. Beltwide Cotton Conf., 1998, vol. 2, pp. 1199–1203.

    Google Scholar 

  130. Malone, L.A. and Pham-Deligue, M.-H., Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.), Apidologie, 2001, vol. 32, no. 4, pp. 287–304.

    Article  CAS  Google Scholar 

  131. O’Callaghan, M., Glare, T.R., Burgess, E.P., and Malone, L.A., Effects of plants genetically modified for insect resistance on nontarget organisms, Ann. Rev. Entomol., 2005, vol. 50, pp. 271–292.

    Article  CAS  Google Scholar 

  132. Flachowsky, G., Aulrich, K., Buhme, H., and Halle, I., Studies on feeds from genetically modified plants (GMP)—contributions to nutritional and safety assessment, Anim. Feed Sci. Technol., 2007, vol. 133, no. 1, pp. 2–30.

    Article  CAS  Google Scholar 

  133. Dhillon, M. and Sharma, H., Impact of Bt-engineered cotton on target and non-target arthropods, toxin flow through different trophic levels and seedcotton yield, Karnataka J. Agric. Sci., 2009, vol. 22, no. 3, pp. 462–466.

    Google Scholar 

  134. Sharma, H.C., Arora, R., and Pampapathy, G., Influence of transgenic cottons with Bacillus thuringiensis Cry1Ac gene on the natural enemies of Helicoverpa armigera, BioControl., 2007, vol. 52, no. 4, pp. 469–489.

    Article  Google Scholar 

  135. Romeis, J., Meissle, M., and Bigler, F., Transgenic crops expressing Bacillus thuringiensis toxins and biological control, Nat. Biotechnol., 2006, vol. 24, no. 1, pp. 63–71.

    Article  CAS  PubMed  Google Scholar 

  136. Sisterson, M.S. and Tabashnik, B.E., Simulated effects of transgenic Bt crops on specialist parasitoids of target pests, Environ. Entomol., 2005, vol. 34, no. 4, pp. 733–742.

    Article  Google Scholar 

  137. Wu, K. and Guo, Y., The evolution of cotton pest management practices in China, Ann. Rev. Entomol., 2005, vol. 50, pp. 31–52.

    Article  CAS  Google Scholar 

  138. Bellinger, R.G., Pest Resistance to Pesticides, Southern extension and research activity—information exchange group 1, Clemson Univ., 1996.

    Google Scholar 

  139. Ferré, J., Escriche, B., Bel, Y., and Rie, J., Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins, FEMS Microbiol. Lett., 1995. vol. 132, nos. 1/2, pp. 1–7.

    Article  Google Scholar 

  140. Marrone, P.G. and Macintosh, S.C., Resistance to Bacillus thuringiensis and resistance management, in Bacillus thuringiensis, and environmental biopesticides, Theory and practice, Entwistle, P.F., et al., Eds., New York, 1993. pp. 221–235.

    Google Scholar 

  141. Gould, F., Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology, Ann. Rev. Entomol., 1998, vol. 43, no. 1, pp. 701–726.

    Article  CAS  Google Scholar 

  142. Gryspeirt, A. and Grégoire, J.-C., Effectiveness of the high dose/refuge strategy for managing pest resistance to Bacillus thuringiensis (Bt) plants expressing one or two toxins, Toxins, 2012, vol. 4, no. 10, pp. 810–835.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Tabashnik, B.E., Gassmann, A.J., Crowder, D.W., and Carriure, Y., Insect resistance to Bt crops: evidence versus theory, Nat. Biothecnol., 2008, vol. 26, no. 2, pp. 199–202.

    Article  CAS  Google Scholar 

  144. Caprio, M., Summerford, D., and Simms, S., Evaluating transgenic plants for suitability in pest and resistance management programs, in Field Manual of Techniques in Invertebrate Pathology, Application and Evaluation of Pathogens for Control of Insects and Other Invertebrate Pests, Springer–Amsterdam, 2000. pp. 805–828.

    Chapter  Google Scholar 

  145. Carriere, Y., Ellers-Kirk, C., Kumar, K., et al., Longterm evaluation of compliance with refuge requirements for Bt cotton, Pest Manag. Sci., 2005, vol. 61, no. 4, pp. 327–330.

    Article  CAS  PubMed  Google Scholar 

  146. Sisterson, M.S., Antilla, L., Carriure, Y., et al., Effects of insect population size on evolution of resistance to transgenic crops, J. Econ. Entomol., 2004, vol. 97, no. 4, pp. 1413–1424.

    Article  PubMed  Google Scholar 

  147. Tabashnik, B., Gould, F., and Carriere, Y., Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability, J. Evol. Biol., 2004, vol. 17, no. 4, pp. 904–912.

    Article  CAS  PubMed  Google Scholar 

  148. Roush, R., Two-toxin strategies for management of insectieidal transgenic crops: can pyramiding succeed where pesticide mixtures have not?, Philos. Trans. Royal Soc. London. Ser. B, 1998, vol. 353, no. 1376, pp. 1777–1786.

    Article  CAS  Google Scholar 

  149. Zhao, J.-Z., Cao, J., Li, Y., et al., Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution, Nat. Biotechnol., 2003, vol. 21, no. 12, pp. 1493–1497.

    Article  CAS  PubMed  Google Scholar 

  150. Ferré, J. and van Rie, J., Biochemistry and genetics of insect resistance to Bacillus thuringiensis, Annu. Rev. Entomol., 2002, vol. 47, no. 1, pp. 501–533.

    Article  PubMed  Google Scholar 

  151. Monsanto. Yield Gard VT Triple TM, the stacked hybrids with enhanced trait performance, 2007. http://wwwfielderschoicedirectcom/more_info/YieldGardVT_Triple_Brochurepdf

  152. Bakhash, A., Rao, A.Q., and Shahid, A.A., Camv 35S is a developmental promoter being temporal and spatial in expression pattern of insecficidal genes (Cry1ac & Cry2a) in cotton, Austral. J. Basic Appl. Sci., 2010, vol. 4, no. 1, pp. 37–44.

    Google Scholar 

  153. Khab, G.A., Bakhsh, A., Riazuddin, S., and Husnain, T., Introduction of cry1ab gene in cotton (Gossypium hirsutum) enhances resistance against lepidopteran pest (hellicoverpa armigera), Span. J. Agric. Res, 2011, vol. 9, no. 1, pp. 296–302.

    Article  Google Scholar 

  154. Tohidfar, M., Ghareyazie, B., Mosavi, M., et al., Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a synthetic cry1Ab gene for enhanced resistance against Helliothis armigera, Iran. J. Biotechnol., 2008, vol. 6, no. 3, pp. 164–173.

    CAS  Google Scholar 

  155. Guo, J. and Zhang, T., Development of transgenic cotton expressing modified Bt and CpTI genes by pollen tube pathway mediated transformation, Proc. BIOCOMPUCHEM of 3rd WSWAS Int. Conf. on Computational Chemistry, 2009. pp. 105–109.

    Google Scholar 

  156. Wu, J., Luo, X., Zhang, X., et al., Development of insect-resistant transgenic cotton with chimeric TVip3A accumulating in chloroplasts, Transgenic Res., 2011, vol. 20, pp. 963–973.

    Article  PubMed  CAS  Google Scholar 

  157. Pushpa, R., Raveenderan, T.S., Rajeswari, S., et al., Genetic transformation of cry1EC gene into cotton (Gossypium hirsutum L.) for resistance against Spodoptera litura, Afr. J. Biotechnol., 2013, vol. 12, no. 15, pp. 1820–1827.

    CAS  Google Scholar 

  158. Liu, Z., Zhu, Z., and Zhang, T., Development of transgenic CryIA(c) + GNA cotton plants via pollen tube pathway method confers resistance to Helicoverpa armigera and Aphis gossypii Glover, Meth. Mol. Biol., 2013, vol. 958, pp. 199–210.

    Article  CAS  Google Scholar 

  159. Khan, G.A., Bakhsh, A., Ghazanfar, M., et al., Development of transgenic cotton lines harboring a pesticidal gene (cry1Ab), Emir. J. Food Agric., 2013, vol. 25, no. 6, pp. 434–442.

    Google Scholar 

  160. Wu, J., Zhang, X., Nie, Y., and Luo, X., High-efficiency transformation of Gossypium hirsutum embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants, Plant Breed., 2005, vol. 124, pp. 142–146.

    Article  CAS  Google Scholar 

  161. Nandeshwar, S.B., Moghe, S., Chakrabarty, P.K., et al., Agrobacterium-mediated transformation of cry1Ac gene into shoot-tip meristem of diploid cotton Gossypium arboreum cv. RG8 and regeneration of transgenic plants, Plant Mol. Biol. Report., 2009, vol. 27, pp. 5489–557.

    Article  CAS  Google Scholar 

  162. Rashid, B., Saleem, Z., Husnain, T., and Riazuddin, S., Transformation and inheritance of Bt genes in Gossypium hirsutum, J. Plant. Biol., 2008, vol. 51, no. 4, pp. 248–254.

    Article  CAS  Google Scholar 

  163. Guo, X., Huang, C., Jin, S., et al., Agrobacteriummediated transformation of Cry1C, Cry2A and Cry9C genes into Gossypium hirsutum and plant regeneration, Biol. Plant., 2007, vol. 51, no. 2, pp. 242–248.

    Article  CAS  Google Scholar 

  164. Wu, J. and Tian, Y., Development of insect-resistant transgenic cotton with chimeric tvip3a accumulating in chloroplasts, Meth. Mol. Biol., 2013, vol. 958, pp. 247–258.

    Article  CAS  Google Scholar 

  165. Bao-shan, K., Rui, Z., Deng-kui, P., et al., Synchronous expression of Cry1Ac and CpTi genes in transgenic cotton, Cotton Sci., 2005, vol. 17, no. 3, pp. 131–136.

    Google Scholar 

  166. Kharbikar, L.L., Dongre, A.B., and Dangat, S., Particle bombardment not a good approach for gene transfer into embryonic axes of cotton (Gossypium hirsutum L.) cultivars, WemedCentral Biotechnology, 2013. vol. 4, no. 8, p. WMC004305.

    Google Scholar 

  167. Rawat, P., Singh, A.K., Ray, K., et al., Detrimental effect of expression of Bt endotoxin Cry1Ac on in vitro regeneration, in vivo growth and development of tobacco and cotton transgenics, J. Biosci., 2011, vol. 36, no. 2, pp. 363–376.

    Article  CAS  PubMed  Google Scholar 

  168. Nian, G.H., He, W.J., Ying, C.X., et al., Cotton plant transformed with activated chimeric Cry1Ac and API-B genes, Acta Bot. Sin., 2003, vol. 45, no. 1, pp. 108–113.

    Google Scholar 

  169. Wu, J., Luo, X., Wang, Z., et al., Transgenic cotton expressing synthesized scorpion insect toxins Aa-HIT gene confers enhanced resistance to cotton bollworms (Heliothis armigera) larvae, Biotechnol. Lett., 2008, vol. 30, no. 3, pp. 547–554.

    Article  CAS  PubMed  Google Scholar 

  170. Song, X., Gu, Y., and Qin, G., Application of a transformation method via the pollen-tube pathway in agriculture molecular breeding, Sci. J, 2007, vol. 4, no. 1, pp. 77–79.

    CAS  Google Scholar 

  171. Cosa, B.D., Moar, W., Lee, S.B., et al., Overexpression of the Bt Cry2aa2 operon in chloroplasts leads to formation of insecticidal crystals, Nat. Biotechnol., 2001, vol. 19, pp. 71–74.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Malik.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, W., Abid, M.A., Cheema, H.M.N. et al. From Qutn to Bt cotton: Development, adoption and prospects. A review. Cytol. Genet. 49, 408–419 (2015). https://doi.org/10.3103/S0095452715060055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452715060055

Keywords

Navigation