Skip to main content
Log in

Cytoskeleton orientation in epidermis cells of roots generated de novo in leaf explants under clinorotation

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The anatomy, cytoskeleton orientation, and thickness of the cell wall of the root growth zones generated de novo in vitro under clinorotation (simulated microgravity) were studied. The anatomical structure of the roots generated de novo from the cambium cells of the leaf explant petiole is similar to the structure of embryonic roots. The root cell differentiation in vitro during the clinorotation does not differ from the control in main features. Changes in the tubulin cytoskeleton orientation under clinorotation were detected in the epidermis of distal elongation zone (that is apparently associated with specific physiological properties of the cells in this zone). A tendency towards the thinning of the root cell walls in vitro under conditions of simulated microgravity was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blancaflor, E.B., The cytoskeleton and gravitropism in higher plants, J. Plant Growth Regul., 2002, vol. 21, no. 2, pp. 120–136.

    Article  CAS  PubMed  Google Scholar 

  2. Sampathkumar, A., Lindeboom, J.J., Debolt, S., Gutierrez, R., Ehrhardt, D.W., Ketelaar, T., and Persson, S., Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis, Plant Cell, 2011, vol. 23, no. 6, pp. 2302–2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun, T., Li, S., and Ren, H., Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells, Front. Plant Sci., 2013, vol. 4, p. 512.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Skagen, E.B., Cortical microtubule reorganization in protoplasts isolated from Brassica napus hypocotyl is affected by gravity, J. Gravit. Physiol., 1998, vol. 5, no. 1, pp. 117–120.

    Google Scholar 

  5. Papaseit, C., Pochon, N., and Tabony, J., Micro-tubule self-organization is gravity-dependent, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 15, pp. 8364–8368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kalinina, I., Shevchenko, G., and Kordyum, E., Tubulin cytoskeleton in Arabidopsis thaliana root cells under clinorotation, Microgravity Sci. Technol., 2009, vol. 21, nos. 1–2, pp. 187–190.

    Article  CAS  Google Scholar 

  7. Pozhvanov, G.A., Suslov, D.V., and Medvedev, S.S., Actin cytoskeleton rearrangements during the gravitropic response of Arabidopsis roots, Cell Tissue Biol., 2013, vol. 7, no. 2, pp. 185–191.

    Article  Google Scholar 

  8. Kordyum, E.L., Talalayev, O.S., and Sarnatska, V.V., Space phytobiology: urgent trends and new models, Ecol. Noospherol., 2009, vol. 20, nos. 3–4, pp. 7–14.

    Google Scholar 

  9. Kittang, A.I., Iversen, T.H., Fossum, K.R., Mazars, C., Carnero-Diaz, E., Boucheron-Dubuisson, E., Le Disquet, I., Legue, V., Herranz, R., Pereda-Loth, V., and Medina, F.J., Exploration of plant growth and development using the European modular cultivation system facility on the international space station, Plant Biol., 2014, vol. 16, no. 3, pp. 528–538.

    Article  PubMed  Google Scholar 

  10. Labuz, J., Krzeszowiec, W., and Gabrys, H., Threshold change in expression of GFP–FABD2 fusion protein during development of Arabidopsis thaliana leaves, Acta Biol. Crac. Ser. Bot., 2010, vol. 52, no. 2, pp. 103–107.

    Google Scholar 

  11. Marc, J., Granger, C.L., Brincat, J., Fisher, D.D., Kao, Th., Mc Cubbin, A.G., and Cyr, R.J., A GFPMAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells, Plant Cell, 1998, vol. 10, no. 11, pp. 1927–1940.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yemets, A.I., Krasylenko, Yu.A., Sheremet, Yu.A., and Blume, Ya.B., Microtubule reorganization as a response to implementation of NO signals in plant cells, Cytol. Genet., 2009, vol. 43, no. 2, pp. 73–79.

    Article  Google Scholar 

  13. Kordyum, E.L., Sarnatska, V.V., Talalaiev, A.S., and Ovcharenko, Yu.V., In vitro root development in Arabidopsis thaliana wild type and scr mutants under clinorotation, J. Gravit. Physiol., 2008, vol. 15, no. 1, pp. 165–166.

    Google Scholar 

  14. Carde, J.P., Electron microscopy of plant cell membranes, Methods Enzymol., 1987, vol. 148, pp. 599–622.

    Article  CAS  Google Scholar 

  15. Baran, E. and Warry, F., Simple Data Analysis for Biologists, Phnom Penh: World Fish Center and the Fisheries Administration, 2008.

    Google Scholar 

  16. Bulavin, I.V., Rhizogenesis of Arabidopsis thaliana wild type and scr mutant in vitro, Ukr. Bot. J., 2014, vol. 71, no. 1, pp. 78–82.

    Article  Google Scholar 

  17. Ishikawa, H. and Evans, M.L., Specialized zones of development in roots, Plant Physiol., 1995, vol. 109, no. 3, pp. 725–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baluska, F., Kubica, S., and Hauskrecht, M., Postmitotic “isodiametric” cell growth in the maize root apex, Planta, 1990, vol. 181, no. 3, pp. 269–274.

    Article  CAS  PubMed  Google Scholar 

  19. Blancaflor, E.B. and Hasenstein, K.H., The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize, Plant Physiol., 1997, vol. 113, no. 4, pp. 1447–1455.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kozeko, L.Y., Shevchenko, G.V., Artemenko, O.A., Martyn, G.G., and Kordyum, E.L., Actin organization and gene expression in Beta vulgaris seedlings under clinorotation, J. Gravit. Physiol., 2005, vol. 12, no. 1, pp. 187–188.

    Google Scholar 

  21. Kalinina, Ia.M., Microtubules in epidermal and cortical root cells of Brassica rapa under clinorotation, Tsitol. Genet., 2006, vol. 40, no. 5, pp. 21–27.

    PubMed  Google Scholar 

  22. Shevchenko, G.V., Kalinina, Ya., and Kordyum, E.L., Interrelation between microtubules and microfilaments in the elongation zone of Arabidopsis root under clinorotation, Adv. Space Res., 2007, vol. 39, no. 7, pp. 1171–1175.

    Article  Google Scholar 

  23. Kalinina, Ia., Microtubules spatial alterations in root cells of Brassica rapa under clinorotation, Cell Biol. Int., 2008, vol. 32, no. 5, pp. 581–583.

    Article  CAS  PubMed  Google Scholar 

  24. Kordyum, E.L., Shevchenko, G.V., Kalinina, I.M., Demkiv, O.T., and Khorkavtsiv, Y.D., The role of the cytoskeleton in plant cell gravisensitivity, in The Plant Cytoskeleton: A Key Tool for Agro-Biotechnology, Blume, Ya.B. et al., Eds., Dordrecht: Springer, 2008, pp. 173–196.

    Google Scholar 

  25. Ishikawa, H. and Evans, M.L., The role of the distal elongation zone in the response of maize roots to auxin and gravity, Plant Physiol., 1993, vol. 102, no. 4, pp. 1203–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Baluska, F., Volkmann, D., and Barlow, P.W., A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications, J. Plant Growth Regul., 2001, vol. 20, no. 2, pp. 170–181.

    Article  CAS  Google Scholar 

  27. Fasano, J.M., Massa, G.D., and Gilroy, S., Ionic signaling in plant responses to gravity and touch, J. Plant Growth Regul., 2002, vol. 21, no. 2, pp. 71–88.

    Article  CAS  PubMed  Google Scholar 

  28. Shevchenko, G.V., Interaction of microtubules and microfilaments in the zone of distal elongation of Arabidopsis thaliana roots, Cytol. Genet., 2009, vol. 43, no. 4, pp. 223–229.

    Article  Google Scholar 

  29. Blancaflor, E.B. and Hasenstein, K.H., Organization of cortical microtubules in graviresponding maize roots, Planta, 1993, vol. 191, no. 2, pp. 231–237.

    CAS  PubMed  Google Scholar 

  30. Blancaflor, E.B. and Hasenstein, K.H., Time course and auxin sensitivity of cortical microtubule reorientation in maize roots, Protoplasma, 1995, vol. 185, pp. 72–82.

    Article  CAS  PubMed  Google Scholar 

  31. Bringmann, M., Landrein, B., Schudoma, C., Hamant, O., Hauser, M.-T., and Persson, S., Cracking the elusive alignment hypothesis: the microtubule–cellulose synthase nexus unraveled, Trends Plant Sci., 2012, vol. 17, no. 11, pp. 666–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Endler, A. and Persson, S., Cellulose synthases and synthesis in Arabidopsis, Mol. Plant, 2011, vol. 4, no. 2, pp. 199–211.

    Article  CAS  PubMed  Google Scholar 

  33. Nedukha, A.I., Effects of microgravity on the structure and function of plant cell walls, Int. Rev. Cytol., 1997, vol. 170, pp. 39–77.

    Article  CAS  PubMed  Google Scholar 

  34. Laurinavichius, R.S., Yarochus, A.V., and Marchukajtis, A., Metabolism of pea plants grown under space flight conditions, in Biologicheskie issledovaniya na orbitalnikh stanziyakh Salyut (Biological Studies at Salyut Space Stations), Dubinin, N.P.,Ed., Moscow: Nauka, 1984, pp. 96–102.

    Google Scholar 

  35. Nedukha, E.M., Kordyum, E.L., Ovruts’ka, I.I., and Matveyeva, N.A., Effects of clinorotation on polysaccharide content in regenerated walls of Brassica oleracea L. protoplasts, Dopov. Nats. Akad. Nauk Ukraine, 1996, vol. 4, pp. 129–132.

    Google Scholar 

  36. Shevchenko, G.V. and Kordyum, E.L., Organization of cytoskeleton during differentiation of gravisensitive root sites under clinorotation, Adv. Space Res., 2005, vol. 35, no. 2, pp. 289–295.

    Article  CAS  PubMed  Google Scholar 

  37. Correll, M.J., Pyle, T.P., Millar, K.D., Sun, Y., Yao, J., Edelmann, R.E., and Kiss, J.Z., Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes, Planta, 2013, vol. 238, no. 3, pp. 519–535.

    Article  CAS  PubMed  Google Scholar 

  38. Kwon, T., Sparks, J.A., Nakashima, J., Allen, S.N., Tang, Y., and Blancaflor, E.B., Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development, Am. J. Bot., 2015, vol. 102, no. 1, pp. 21–35.

    Article  CAS  PubMed  Google Scholar 

  39. Hoson, T., Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space, Life (Basel), 2014, vol. 4, no. 2, pp. 205–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bulavin.

Additional information

Original Russian Text © I.V. Bulavin, 2016, published in Tsitologiya i Genetika, 2016, Vol. 50, No. 2, pp. 58–64.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulavin, I.V. Cytoskeleton orientation in epidermis cells of roots generated de novo in leaf explants under clinorotation. Cytol. Genet. 50, 128–133 (2016). https://doi.org/10.3103/S009545271602002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271602002X

Keywords

Navigation