Skip to main content
Log in

Construction and applications of a mycorrhizal arbuscular specific cDNA library

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

To exploit the potential benefits of mycorrhizas, we need to investigate the processes that occur in these symbiotic interactions, particularly in the arbuscular compartment where nutrients are exchanged between the plant and the fungus. Progress in this area is restricted due to the intricacy and complexity of this plant-fungus interface and many techniques that have been employed successfully in other plants and animal systems cannot be used. An effective approach to study processes in arbuscules is to examine transcript composition and dynamics. We applied laser capture microdissection (LCM) to isolate approximately 3000 arbuscules from Glomus intraradices colonised Medicago truncatula roots. Total RNA was extracted from microdissected arbuscules and subjected to T7 RNA polymerase-based linear amplification. Amplified RNA was then used for construction of a cDNA library. The presence and level of enrichment of mycorrhiza-specific transcripts was determined by quantitative Real-time and conventional PCR. To improve enrichment a cDNA library subtraction was performed. Complementation of yeast mutants deficient in the uptake of potassium, phosphate, sulphate, amino acids, ammonium and of a Mn2+ sensitive strain, demonstrates the functionality of our cDNA library.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schussler, A., Schwarzrott, D., and Walker, C., A new fungal phylum, the Glomeromycota: phylogeny and evolution, Mycol. Res., 2001, vol. 105, no. 12, pp. 1413–1421.

    Google Scholar 

  2. Harrison, M.J., Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 361–389.

    Article  CAS  PubMed  Google Scholar 

  3. Gianinazzi-Pearson, V., Dumas-Gadot, E., Gollotte, A., Tahiri-Alaoui, A., and Gianinazzi, S., Cellular and molecular defense-related root responses to invasion by arbuscular mycorrhizal fungi, New Phytol., 1996, vol. 133, no. 1, pp. 45–57.

    Article  Google Scholar 

  4. Cordier, C., Pozo, M., Barea, J., Gianinazzi, S., and Gianinazzi-Pearson, V., Cell defence responses associated with localized and systemic resistance to Phytophtora parasitica induced in tomato by an arbuscular mycorrhizal fungus, Mol. Plant Microbe Interact., 1998, vol. 11, no. 10, pp. 1017–1028.

    Article  CAS  Google Scholar 

  5. Forbes, P.J., Millam, S., Hooker, J.E., and Harrier, L.A., Transformation of the arbuscular mycorrhiza Gigaspora rosea by particle bombardment, Mycol. Res., 1998, vol. 102, no. 4, pp. 497–501.

    Article  Google Scholar 

  6. Auge, R.M., Water relations, drought and vesiculararbuscular mycorrhiza symbiosis, Mycorrhiza, 2001, vol. 11, no. 1, pp. 3–42.

    Google Scholar 

  7. Shutzendubel, A. and Polle, A., Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization, J. Exp. Bot., 2002, vol. 53, no. 372, pp. 1351–1365.

    Article  Google Scholar 

  8. Smith, F. and Smith, S., Structural diversity in (vesicular)-arbuscular mycorrhizal symbiosis, New Phytol., 1997, vol. 137, no. 3, pp. 373–388.

    Article  Google Scholar 

  9. Marschner, H. and Dell, B., Nutrient uptake in mycorrhizal symbiosis, Plant Soil, 1994, vol. 159, no. 1, pp. 89–102.

    CAS  Google Scholar 

  10. Emmert-Buck, M.R., Bonner, R.F., Smith, P.D., Chuaqui, R.F., Zhuang, Z.P., Goldstein, S.R., Weiss, R.A., and Liotta, L.A., Laser capture microdissection, Science, 1996, vol. 274, no. 5289, pp. 998–1001.

    Article  CAS  PubMed  Google Scholar 

  11. Bonner, R.F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S., and Liotta, L.A., Laser capture microdissection: molecular analysis of tissue, Science, 1997, vol. 278, no. 5342, pp. 1481–1483.

    Article  CAS  PubMed  Google Scholar 

  12. Asano, T., Masumura, T., Kusano, H., Kikuchi, S., Kurita, A., Shimada, H., and Kadowaki, K., Construction of specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem, Plant J., 2002, vol. 32, no. 3, pp. 401–408.

    Article  CAS  PubMed  Google Scholar 

  13. Nakazono, M., Qiu, F., Borsuk, L.A., and Schnable, P.S., Laser capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize, Plant Cell, 2003, vol. 15, no. 3, pp. 583–596.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kerk, N.M., Ceserani, T., Tausta, S.L., Sussex, I.M., and Nelson, T.M., Laser capture microdissection of cells from plant tissues, Plant Physiol., 2003, vol. 132, no. 1, pp. 27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Casson, S., Spencer, M., and Lindsey, K., Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis, Plant J., 2005, vol. 42, no. 1, pp. 111–123.

    Article  CAS  PubMed  Google Scholar 

  16. Inada, N. and Wildermuth, M.C., Novel tissue preparation method and cell-specific marker for laser microdissection of Arabidopsis mature leaf, Planta, 2005, vol. 221, no. 1, pp. 9–16.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, K., Zhang, S., Lee, S., Tsai, G., Kim, K., Huang, H., Chilcott, C., Zhu, T., and Feldman, L.J., Transcription profile analyses identify genes and pathways central to root cap functions in maize, Plant. Mol. Biol., 2006, vol. 60, no. 3, pp. 343–363.

    Article  CAS  PubMed  Google Scholar 

  18. Klink, V.P., Alkharouf, N., MacDonald, M., and Matthews, B., Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode), Plant. Mol. Biol., 2005, vol. 59, no. 6, pp. 965–979.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X., Wang, H., Li, Y., Tang, Y., Liu, Y., Hu, X., Jia, P., Ying, K., Feng, Q., Guan, J., Jin, C., Zhang, L., Lou, L., Zhou, Z., and Han, B., Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap, J. Biotechnol., 2004, vol. 109, no. 3, pp. 217–226.

    Article  CAS  PubMed  Google Scholar 

  20. Murata, J. and Luca, V.D., Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus, Plant J., 2005, vol. 44, no. 4, pp. 581–594.

    Article  CAS  PubMed  Google Scholar 

  21. Nakada, M., Komatsu, M., Ochiai, T., Ohtsu, K., Nakazono, M., Nishizawa, N.K., Nitta, K., Nishiyama, R., Kameya, T., and Kanno, A., Isolation of MaDEF from Muscari armeniacum and analysis of its expression using laser microdissection, Plant Sci., 2006, vol. 170, no. 1, pp. 143–150.

    Article  CAS  Google Scholar 

  22. Ramsay, K., Wang, Z., and Jones, M.G., Using laser capture microdissection to study gene expression in early stages of giant cells induced by root-knot nematodes, Mol. Plant. Pathol., 2004, vol. 5, no. 6, pp. 587–592.

    Article  CAS  PubMed  Google Scholar 

  23. Sanders, M.P., Biu, A.N., Le, B.H., and Goldberg, R.B., Differentiation and degeneration of cell that play a major role in tobacco anther dehiscence, Sex. Plant Reprod., 2005, vol. 17, no. 5, pp. 219–241.

    Article  Google Scholar 

  24. Wu, Y., Machado, A.C., White, R.G., Llewellyn, D.G., and Dennis, E.S., Expression profiling identifies genes expressed early during lint fibre initiation in cotton, Plant Cell Physiol., 2006, vol. 47, no. 1, pp. 107–127.

    Article  CAS  PubMed  Google Scholar 

  25. Nelson, T., Tausta, S.L., Candotra, N., and Liu, T., Laser microdissection of plant tissue: what you see is what you get, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 181–201.

    Article  CAS  PubMed  Google Scholar 

  26. McCain, S. and Davies, M.S., The influence of background solution on root responses to aluminium in Holcus lanatus L., Plant Soil, 1983, vol. 73, no. 3, pp. 425–430.

    Article  CAS  Google Scholar 

  27. Maier, W., Peipp, H., Shmidt, J., Wray, V., and Strack, D., Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas, Plant Physiol., 1995, vol. 109, no. 2, pp. 465–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marini, A.M., Soussi-Boudekou, S., Vissers, S., and Andre, B., A family of ammonium transporters in Saccharomyces cerevisiae, Mol. Cell Biol., 1997, vol. 17, no. 8, pp. 4282–4293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith, F.W., Hawkesford, M.J., Prosser, I.M., and Clarkson, D.T., Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane, Mol. Gen. Genet., 1995, vol. 247, no. 6, pp. 709–715.

    Article  CAS  PubMed  Google Scholar 

  30. Lapinskas, P.J., Cunningham, K.W., Liu, X.F., Fink, G.R., and Culotta, V.C., Mutations in pmr1 suppress oxidative damage in yeast cells lacking superoxide dismutase, Mol. Cell. Biol., 1995, vol. 15, no. 3, pp. 1382–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schachtman, D., Kumar, R., Schroeder, J., and Marsh, E., Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 20, pp. 11079–11084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harrison, M.J., Dewbre, G.R., and Liu, J., A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi, Plant Cell, 2002, vol. 14, no. 10, pp. 2413–2429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doll, J., Hause, B., Demchenko, K., Pawlowski, K., and Krajinski, F., A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene, Plant Cell Physiol., 2003, vol. 44, no. 11, pp. 1208–1214.

    Article  CAS  PubMed  Google Scholar 

  34. Rhody, D., Stommel, M., Roeder, C., Mann, P., and Franken, P., Differential RNA accumulation of two beta-tubulin genes in arbuscular mycorrhizal fungi, Mycorrhiza, 2003, vol. 13, no. 3, pp. 137–142.

    Article  CAS  PubMed  Google Scholar 

  35. Lanfranco, L., Wyss, P., Marzachi, C., and Bonfante, P., Generation of RAPD-PCR primers for the identification of isolates of Glomus mosseae, an arbuscular mycorrhiza fungus, Mol. Ecol., 1995, vol. 4, no. 1, pp. 61–68.

    CAS  Google Scholar 

  36. Hohnjec, N., Vieweg, M., Puhler, A., Becker, A., and Kuster, H., Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza, Plant Physiol., 2005, vol. 137, no. 4, pp. 1283–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao, W., Epstein, C., Liu, H., De Loghery, C., Ge, N., Lin, J., Diao, R., Cao, H., Long, F., Zhang, X., Chen, Y., Wright, P.S., Busch, S., Wenck, M., Wong, K., Saltzman, A.G., Tang, Z., Liu, L., and Zilberstein, A., Comparing gene discovery from Affymetrix GeneChip microarrays and Clontech PCR-select cDNA subtraction: a case study, BMC Genom., 2004, vol. 5, no. 1, p. 26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Isayenkov.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isayenkov, S., Maathuis, F.J.M. Construction and applications of a mycorrhizal arbuscular specific cDNA library. Cytol. Genet. 50, 79–88 (2016). https://doi.org/10.3103/S0095452716020043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716020043

Keywords

Navigation