Skip to main content
Log in

Induced cytomictic variations and syncyte formation during microsporogenesis in Phaseolus vulgaris L.

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The intercellular translocation of chromatin material along with other cytoplasmic contents among the proximate meiocytes lying in close contact with each other commonly referred as cytomixis was reported during microsporogenesis in Phaseolus vulgaris L., a member of the family Fabaceae. The phenomenon of cytomixis was observed at three administered doses of gamma rays viz. 100, 200, and 300 Gy respectively in the diploid plants of Phaseolus vulgaris L. The gamma rays irradiated plants showed the characteristic feature of inter-meiocyte chromatin/chromosomes transmigration through various means such as channel formation, beak formation or by direct adhesion between the PMC’s (Pollen mother cells). The present study also reports the first instance of syncyte formation induced via cytomictic transmigration in Phaseolus vulgaris L. Though the frequency of syncyte formation was rather low yet these could play a significant role in plant evolution. It is speculated that syncyte enhances the ploidy level of plants by forming 2n gametes and may lead to the production of polyploid plants. The phenomenon of cytomixis shows a gradual inclination along with the increasing treatment doses of gamma rays. The preponderance of cytomixis was more frequent during meiosis I as compared to meiosis II. An interesting feature noticed during the present study was the channel formation among the microspores and fusion among the tetrads due to cell wall dissolution. The impact of this phenomenon is also visible on the development of post-meiotic products. The formation of heterosized pollen grains; a deviation from the normal pollen grains has also been reported. The production of gametes with unbalanced chromosomes is of utmost importance and should be given more attention in future studies as they possess the capability of inducing variations at the genomic level and can be further utilized in the improvement of germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnoldy, W., Beitrage zur Morphologie der Gymnospermen. 4. Was sind die “Keimbläschen” oder “Hofmeisters-Körperchen” in der Eizelle der Abietineen?, Flora, 1900, vol. 87, pp. 194–204.

    Google Scholar 

  2. Koernicke, M., Uber ortsveranderung von Zellkarnern S.B. Niederhein, Ges Natur-U Heilkunde Bonn A, 1901.

  3. Gates, R.R., Pollen formation in Oenothera gigas, Ann. Bot., 1911, vol. 25, no. 4, pp. 909–940.

    Google Scholar 

  4. Gottschalk, W., Chromosome and nucleus migration during microsporogenesis of Pisum satium, Nucleus, 1970, vol. 13, no. 1, pp. 1–9.

    Google Scholar 

  5. Bellucci, M., Roscini, C., and Mariani, A., Cytomixis in pollen mother cells of Medicago sativa L, J. Hered., 2003, vol. 94, no. 6, pp. 512–516.

    Article  CAS  PubMed  Google Scholar 

  6. Haroun, S.A., Al Shehri, A.M., and Al Wadie, H.M., Cytomixis in the microsporogenesis of Vicia faba L. (Fabaceae), Cytologia, 2004, vol. 69, no. 1, pp. 7–11.

    Article  Google Scholar 

  7. Singhal, V.K. and Kumar, P., Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeate Royle), J. Biosci., 2008, vol. 33, no. 3, pp. 371–380.

    CAS  Google Scholar 

  8. Kumar, G. and Yadav, R.S., Induction of cytomixis affects microsporogenesis in Sesamum indicum L. (Pedaliaceae), Russ. J. Dev. Biol., 2012, vol. 43, pp. 209–214.

    Article  CAS  Google Scholar 

  9. Rana, P.K., Kumar, P., and Singhal, V.K., Spindle irregularities, chromatin transfer, and chromatin stickiness during male meiosis in Anemone tetrasepala (Ranunculaceae), Turk. J. Bot., 2013, vol. 37, no. 1, pp. 167–176.

    Google Scholar 

  10. Sarvella, P., Cytomixis and loss of chromosomes in meiotic and somatic cells of Gossypium, Cytologia, 1958, vol. 23, pp. 14–24.

    Article  Google Scholar 

  11. Tarkowska, J., Cytomixis in the epidermis of scales and leaves and in the meristems of root apex of Allium cepa L., Byul. Izobr., 1960, vol. 29, no. 1, pp. 149–168.

    Google Scholar 

  12. Koul, K.K., Cytomixis in pollen mother cells of Alopecurus arundinaceus Poir, Cytologia, 1990, vol. 55, no. 1, pp. 169–173.

    Article  Google Scholar 

  13. Cooper, D.D., The transfer of deoxyribose nucleic acid from the tapetum to the microsporocytes at onset of meiosis, Am. Natur., 1952, vol. 86, pp. 219–229.

    Article  CAS  Google Scholar 

  14. Klyuchareva, M.V., Extrusion of nuclear material in proembryos in graminaceous plants, Dokl. Akad. Nauk SSSR, 1983, vol. 269, no. 2, pp. 509–512.

    Google Scholar 

  15. Guzicka, M. and Wozny, A., Cytomixis in shoot apex of Norway spruce (Picea abies L. Karst.), Trees, 2004, vol. 18, no. 6, pp. 722–724.

    Article  Google Scholar 

  16. Liu, H., Guo, G.-Q., He, Y.-K., Lu, Y.-P., and Zheng, G.-C., Visualization on intercellular movement of chromatin in intact living anthers of transgenic tobacco expressing histone 2B–CFP fusion protein, Caryologia, 2007, vol. 60, nos. 1/2, pp. 1–20.

    Article  Google Scholar 

  17. Falistocco, E., Tosti, T., and Falcinelli, M., Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes, J. Heredity, 1995, vol. 86, no. 6, pp. 448–453.

    Google Scholar 

  18. Lattoo, S.K., Khan, S., Bamotra, S., and Dhar, A.K., Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb.) Jacq.—an additional strategy and possible implications, J. Biosci., 2006, vol. 31, no. 5, pp. 629–637.

    Article  CAS  PubMed  Google Scholar 

  19. de Nettancourt, D. and Grant, W.F., La cytogenetiquede Lotus (Leguminosae). III. Un cas de Cytomixie dans un hybride interspecifique, Cytologia, 1964, vol. 29, no. 2, pp. 191–195.

    Article  Google Scholar 

  20. Salesses, G., Sur le phenomene de cytomixie chez des hybrids triploids de prunier. Consequences genetiques possible, Ann. Amelior. Plant., 1970, vol. 20, pp. 383–388.

    Google Scholar 

  21. Mantu, D.E. and Sharma, A.K., Cytomixis in pollen mother cells of an apomictic ornamental Ervatamia diraricata Linn., Alston, Cytologia, 1983, vol. 48, no. 1, pp. 201–207.

    Article  Google Scholar 

  22. Semyarkhina, S.Y.A. and Kuptsou, M.S., Cytomixis in various forms of sugar beet, Vests I ANBSSE Ser. Biyal., 1974, vol. 4, pp. 43–47.

    Google Scholar 

  23. Singhal, V.K., Gill, B.S., and Dhaliwal, R.S., Status of chromosomal diversity in the hardwood tree species of Punjab state, J. Cytol. Genet., 2007, vol. 8, pp. 67–83.

    Google Scholar 

  24. Kravchenko, L.N., Features of Meiosis in Wheat and Its Hybrids, Kishinev: Shtiintsa, 1977.

    Google Scholar 

  25. Kravets, E.A., Nature, significance and cytological consequences of cytomixis, Nytol. Genet., 2012, vol. 46, no. 3, pp. 188–195.

    Google Scholar 

  26. Zhang, W.C., Yan, W.M., and Lou, C.H., Mechanism of intercellular movement of protoplasm in wheat nucellus, Sci. China Chem., 1985, vol. 28, no. 11, pp. 1175–1187.

    Google Scholar 

  27. Ventela, S., Toppari, J., and Parvinen, M., Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing, Mol. Biol. Cell, 2003, vol. 14, no. 7, pp. 2768–2780.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kwiatkowska, M., Poplonska, K., and Wojtczak, A., Chara tomentosa antheridial plasmodesmata at various stages of spermatogenesis, Biol. Plant., 2003, vol. 46, no. 2, pp. 233–238.

    Article  Google Scholar 

  29. McLean, B.G., Hempel, F.D., and Zambryski, P.C., Plant intercellular communication via plasmodesmata, Plant Cell, 1997, vol. 9, no. 7, pp. 1043–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Milyaeva, E.D., On the problem of cytomixis during microsporogenesis, Byull. Gl. Bot Sada AN SSSR, 1965, vol. 59, pp. 53–57.

    Google Scholar 

  31. Mursalimov, S.R., Baiborodin, S.I., Sidorchuk, Yu.V., Shumny, V.K., and Deineko, E.V., Characteristics of the cytomictic channel formation in Nicotiana tabacum L. pollen mother cells, Cytol. Genet., 2010, vol. 44, no. 1, pp. 14–18.

    Article  Google Scholar 

  32. Heslop-Harrison, J., Cytoplasmic connexions between angiosperm meiocytes, Ann. Bot., 1966, vol. 30, no. 2, pp. 221–222.

    Google Scholar 

  33. Wang, X.Y., Yu, C.H., Li, X., Wang, C.Y., and Zheng, G.C., Ultrastructural aspects and possible origin of cytoplasmic channels providing intercellular connection in vegetative tissues of anthers, Fiziol. Rast., 2004, vol. 51, no. 1, pp. 110–120.

    Google Scholar 

  34. Whelan, E.D.P., Discontinuities in the callose wall, intermeiocyte connections and cytomixis in angiosperm meiocytes, Can. J. Bot., 1974, vol. 52, no. 6, pp. 1219–1224.

    Google Scholar 

  35. Guo, G.-Q. and Zheng, G.-Ch., Hypothesis for the functions of intercellular bridges in male germ cell development and its cellular mechanisms, J. Theor. Biol., 2004, vol. 229, no. 1, pp. 139–146.

    Article  CAS  PubMed  Google Scholar 

  36. Amma, C.K.S., Namboodiri, A.N., Panikkar, A.O.N., and Sethuraj, M.R., Radiation induced male sterility in Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell. Arg., Cytologia, 1990, vol. 55, no. 4, pp. 547–551.

    Article  Google Scholar 

  37. Bedi, Y.S., Cytomixis in woody species, Proc. Indian Acad. Sci. (Plant Sci.), 1990, vol. 100, no. 4, pp. 233–238.

    Google Scholar 

  38. Dwivedi, N.K., Sikdar, A.K., Jolly, M.S., Susheelamma, B.N., and Suryanarayana, N., Induction of tetraploidy in colchicine-induced mutant of mulberry. 1. Morphological and cytological studies in cultivar Kanva-2, Indian J. Genet., 1988, vol. 48, no. 3, pp. 305–311.

    Google Scholar 

  39. Bhat, T.A., Sahba, P., and Khan, A.H., MMS-induced cytomixis in pollen mother cells of broad bean (Vicia faba L.), Turk. J. Bot., 2006, vol. 30, no. 4, pp. 273–279.

  40. Takats, S.T., Chromatin extrusion and DNA transfer during microsporogenesis, Chromosoma, 1959, vol. 10, pp. 430–453.

    Article  Google Scholar 

  41. Morisset, P., Cytomixis in the pollen mother cells of Ononis (Leguminosae), Can. J. Genet. Cytol., 1978, vol. 20, no. 3, pp. 383–388.

    Article  Google Scholar 

  42. Mandal, G.D., Nandi, A.K., and Das, A.B., Cytomixis and associated meiotic abnormalities in pollen mother cells of Chlorophytum tuberosum (Roxb.) Baker, Cytologia, 2013, vol. 78, no. 2, pp. 157–162.

    Article  Google Scholar 

  43. Levan, A., Syncyte formation in the pollen mother cells of haploid Phleum pretense, Hereditas, 1941, vol. 27, pp. 243–252.

    Article  Google Scholar 

  44. Sarbhoy, R.K., Spontaneous occurrence of cytomixis and syndiploidy in Cyamopsis tetragonoloba (L.) Taub, Cytologia, 1980, vol. 45, no. 3, pp. 375–379.

    Article  Google Scholar 

  45. Caetano-Pereira, C.M., Pagliarini, M.S., and Brasil, E.M., Cell fusion and chromatin degeneration in an inbred line of maize, Genet. Mol. Biol., 1999, vol. 22, no. 1, pp. 69–72.

    Article  Google Scholar 

  46. Mendes-Bonato, A.B., Pagliarini, M.S., Silva, N., and Valle, C.B., Meiotic instability in invader plants of signal grass Brachiaria decumbens Stapf (Gramineae), Genet. Mol. Biol., 2001, vol. 23, no. 2, pp. 619–625.

    Google Scholar 

  47. Kim, J.S., Oginuma, K., and Tobe, H., Syncyte formation in the microsporangium of Chrysanthemum (Asteraceae): a pathway to infraspecific polyploidy, J. Plant Res., 2009, vol. 122, no. 4, pp. 439–444.

    Article  PubMed  Google Scholar 

  48. Wang, R.R.-C., Coenocytism, ameiosis, and chromosome diminution in intergeneric hybrids in the perennial Triticeae, Genome, 1988, vol. 30, no. 5, pp. 766–775.

    Article  Google Scholar 

  49. Yen, C., Yan, J.L., and Sun, G.L., Intermeiocyte connections and cytomixis in intergeneric hybrid of Roegneria ciliaris (Trin.) Nevski with Psathyrostachys huashanica Keng, Cytologia, 1993, vol. 58, no. 2, pp. 187–193.

    Article  Google Scholar 

  50. Ghaffari, S.M., Occurrence of diploid and polyploidy microspores in Sorghum bicolor (Poaceae) is the result of cytomixis, Afr. J. Biotechnol., 2006, vol. 5, no. 16, pp. 1450–1453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chaudhary.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Chaudhary, N. Induced cytomictic variations and syncyte formation during microsporogenesis in Phaseolus vulgaris L.. Cytol. Genet. 50, 121–127 (2016). https://doi.org/10.3103/S0095452716020109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716020109

Keywords

Navigation