Skip to main content
Log in

Sr33 and Sr35 gene homolog identification in genomes of cereals related to Aegilops tauschii and Triticum monococcum

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Using bioinformatics analysis, the homologs of genes Sr33 and Sr35 were identified in the genomes of Triticum aestivum, Hordeum vulgare, and Triticum urartu. It is known that these genes confer resistance to highly virulent wheat stem rust races (Ug99). To identify amino acid sites important for this resistance, the found homologs were compared with the Sr33 and Sr35 protein sequences. It was found that sequences S5DMA6 and E9P785 are the closest homologs of protein RGAle, a Sr33 gene product, and sequences M7YFA9 (CNL-C) and F2E9R2 are homologs of protein CNL9, a Sr35 gene product. It is assumed that the homologs of genes Sr33 and Sr35, which were obtained from the wild relatives of wheat and barley, can confer resistance to various forms of stem rust and can be used in the future breeding programs aimed at improvement of national wheat varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan, M.H., Bukhari, A., Dar, Z.A., and Rezvi, S.M., Status and strategies in breeding for rust resistance in wheat, Agricult. Sci., 2013, vol. 4, no. 6, pp. 292–301.

    Google Scholar 

  2. McIntosh, R.A., Wellings, C.R., and Park, R.F., Wheat Rusts: An Atlas of Resistance Genes, Melbourne, CSIRO, 1995.

  3. Periyannan, S., Moore, J., Ayliffe, M., Bansal, U., Wang, X., Huang, L., Deal, K., Luo, M., Kong, X., Bariana, H., Mago, R., McIntosh, R., Dodds, P., Dvorak, J., and Lagudah, E., The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99, Science, 2013, vol. 341, no. 6147, pp. 786–788.

    CAS  PubMed  Google Scholar 

  4. Saintenac, C., Zhang, W., Salcedo, A., Rouse, M.N., Trick, H.N., Akhunov, E., and Dubcovsky, J., Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group, Science, 2013, vol. 341, no. 6147, pp. 783–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ivaschuk, B.V., Samofalova, D.O., Pirko, Ya.V., Fedak, G., and Blume, Ya.B., The homologous identification of the stem rust resistance genes Rpg5, Adf3 and Rga1 in the relatives of barley, Cytol. Genet., 2016, vol. 50, no. 2, pp. 96–105.

    Article  Google Scholar 

  6. Narusaka, M., Kubo, Y., Hatakeyama, K., Imamura, J., Ezura, H., Nanasato, Y., Tabei, Y., Takano, Y., Shirasu, K., and Narusaka, Y., Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens, PLoS One, 2013, vol. 8, no. 2, p. e55954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cesari, S., Kanzaki, H., Fujiwara, T., Bernoux, M., Chalvon, V., Kawano, Y., Shimamoto, K., Dodds, P., Terauchi, R., and Kroj, T., The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance, EMBO J., 2014, vol. 33, no. 17, pp. 1941–1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bai, S., Liu, J., Chang, C., Zhang, L., Maekawa, T., Wang, Q., Xiao, W., Liu, Y., Chai, J., Takken, F.L., Schulze-Lefert, P., and Shen, Q.H., Structure–function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance, PLoS Pathog., 2012, vol. 8, no. 6, p. e1002752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Loutre, C., Wicker, T., Travella, S., Galli, P., Scofield, S., Fahima, T., Feuillet, C., and Keller, B., Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat, Plant J., 2009, vol. 60, no. 6, pp. 1043–1054.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, S.K., Song, M.Y., Seo, Y.S., Kim, H.K., Ko, S., Cao, P.J., Suh, J.P., Yi, G., Roh, J.H., Lee, S., An, G., Hahn, T.R., Wang, G.L., Ronald, P., and Jeon, J.S., Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled coil-nucleotidebinding-leucine-rich repeat genes, Genetics, 2009, vol. 181, no. 4, pp. 1627–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gutierrez, J.R., Balmuth, A.L., Ntoukakis, V., Mucyn, T.S., Gimenez-Ibanez, S., Jones, A.M., and Rathjen, J.P., Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition, Plant J., 2010, vol. 61, no. 3, pp. 507–518.

    Article  CAS  PubMed  Google Scholar 

  12. Eitas, T.K. and Dangl, J.L., NB-LRR proteins: pairs, pieces, perception, partners and pathways, Curr. Opin. Plant Biol., 2010, vol. 13, no. 4, pp. 472–477.

    CAS  PubMed  Google Scholar 

  13. UniProt Consortium, The universal protein resource (UniProt), Nucl. Acids Res., 2008, vol. 36, suppl. 1, pp. D190–D195.

  14. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L., BLAST+: architecture and applications, BMC Bioinform., 2009, vol. 10.

  15. Letunic, I., Doerks, T., and Bork, P., Smart 7: recent updates to the protein domain annotation resource, Nucleic Acids Res., 2012, vol. 40, pp. D302–D305.

    Article  CAS  PubMed  Google Scholar 

  16. Notredame, C., Higgins, D.G., and Heringa, J., TCoffee: a novel method for fast and accurate multiple sequence alignment, J. Mol. Biol., 2000, vol. 302, no. 1, pp. 205–217.

    Article  CAS  PubMed  Google Scholar 

  17. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., and Barton, G.J., Jalview version 2—a multiple sequence alignment editor and analysis workbench, Bioinformatics, 2009, vol. 25, no. 9, pp. 1189–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tamura, K., Stecher, G., Peterson, D., Flipski, A., and Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, no. 4, pp. 406–425.

    CAS  PubMed  Google Scholar 

  20. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, no. 4, pp. 783–791.

    Article  Google Scholar 

  21. Jones, D.T., Taylor, W.R., and Thornton, J.M., The rapid generation of mutation data matrices from protein sequences, Bioinformatics, 1992, vol. 8, no. 3, pp. 275–282.

    Article  CAS  Google Scholar 

  22. Kelley, L.A. and Stenberg, M.J., Protein structure prediction on the web: a case study using the Phyre server, Nat. Protoc., 2009, vol. 4, no. 3, pp. 363–371.

    Article  CAS  PubMed  Google Scholar 

  23. Wu, S. and Zhang, Y., LOMETS: a local metathreading- server for protein structure prediction, Nucleic Acids Res., 2007, vol. 35, no. 10, pp. 3375–3382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, J., Roy, A., and Zhang, A., Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment, Bioinformatics, 2013, vol. 29, no. 20, pp. 2588–2595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kar, B., Nanda, S., Nayak, P.K., Nayak, S., and Joshi, R.K., Molecular characterization and functional analysis of CzR1, a coiled-coil-nucleotide-binding-siteleucine- rich repeat R-gene from Curcuma zedoaria Loeb. that confers resistance to Pythium aphanidermatum, Physiol. Mol. Plant Pathol., 2013, vol. 83, pp. 59–68.

    CAS  Google Scholar 

  26. Pan, Q., Liu, Y.S., Budai-Hadrian, O., Sela, M., Carmel-Goren, L., Zamir, D., and Fluhr, R., Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis, Genetics, 2000, vol. 155, no. 1, pp. 309–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rairdan, G.J. and Moffett, P., Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation, Plant Cell, 2006, vol. 18, no. 8, pp. 2082–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ribas, A.F., Cenci, A., Combes, M.-C., Etienne, H., and Lashermes, P., Organization and molecular evolution of disease-resistance gene cluster in coffee trees, BMC Genom., 2011, vol. 12, p. e240.

    Article  Google Scholar 

  29. Qi, D., de Young, B.J., and Innes, R.W., Structurefunction analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein, Plant Physiol., 2012, vol. 158, no. 4, pp. 1819–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McHale, L., Tan, X., Koehl, P., and Michelmore, R.W., Plant NBS-LRR proteins: adaptable guards, Genome Biol., 2006, vol. 7, no. 4, p. e212.

    Article  Google Scholar 

  31. Gong, C., Cao, S., Fan, R., Wei, B., Chen, G., Wang, X., Li, Y., and Zhang, X., Identification and phylogenetic analysis of a CC-NBS-LRR encoding gene assigned on chromosome 7B of wheat, Int. J. Mol. Sci., 2013, vol. 14, no. 8, pp. 15330–15347.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dickman, M.B. and Fluhr, R., Centrality of host cell death in plant–microbe interactions, Annu. Rev. Phytopathol., 2013, vol. 51, pp. 543–570.

    Article  CAS  PubMed  Google Scholar 

  33. Niu, Z., Klindworth, D.L., Yu, G., Friesen, T.L., Chao, S., Jin, Y., Cai, X., Ohm, J.B., Rasmussen, J.B., and Xu, S.S., Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum, Theor. Appl. Genet., 2014, vol. 127, no. 4, pp. 969–980.

    Article  CAS  PubMed  Google Scholar 

  34. Briggs, J., Chen, S., Zhang, W., Nelson, S., Dubcovsky, J., and Rouse, M.N., Mapping of SrTm4, a recessive stem rust resistance gene from diploid wheat effective to Ug99, Phytopathology, 2015, vol. 105, no. 10, pp. 1347–1354.

    CAS  PubMed  Google Scholar 

  35. Mago, R., Zhang, P., and Vautrin, S., The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus, Nature Plants, 2015, vol. 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Ivaschuk.

Additional information

Original Ukrainian Text © B.V. Ivaschuk, Ya.V. Pirko, A.P. Galkin, Ya.B. Blume, 2016, published in Tsitologiya i Genetika, 2016, Vol. 50, No. 4, pp. 26–37.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivaschuk, B.V., Pirko, Y.V., Galkin, A.P. et al. Sr33 and Sr35 gene homolog identification in genomes of cereals related to Aegilops tauschii and Triticum monococcum . Cytol. Genet. 50, 221–230 (2016). https://doi.org/10.3103/S0095452716040058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716040058

Keywords

Navigation