Skip to main content
Log in

Colocalization of USP1 and РН domain of Bcr-Abl oncoprotein in terms of chronic myeloid leukemia cell rearrangements

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The development of chronic myeloid leukemia (CML) is the result of a reciprocal translocation between chromosomes 9 and 22 due to the emergence of Philadelphia chromosome. The product of this mutation is a hybrid oncoprotein Bcr-Abl. According to the results of mass spectrometric analysis, USP1 protein was identified as a potential candidate for interaction with the PH domain Bcr-Abl oncoprotein. Due to the deubiquitination properties, USP1 protein can prevent proteasomal degradation of Bcr-Abl oncoprotein in a cell and, consequently, contribute to its accumulation, and the progression of the disease. In this work, creating the genetic constructs, we detected the USP1 protein localization in the cell. Also, a nuclear colocalization of USP1 protein with PH domain of Bcr-Abl oncoprotein in HEK293T cells was shown. The results are important for understanding the implications of the Philadelphia chromosome emergence, and the development of new methods for CML treatment, since the recent techniques are not always effective due to the emergence of numerous mutations that cause drug resistance and relapse of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fausel, C., Targeted chronic myeloid leukemia therapy: seeking a cure, Manag. Care Pharm., 2007, vol. 13, no. 8, pp. 8–12.

    Article  Google Scholar 

  2. Telegeev, G.D., Dybkov, M.V., Dubrovska, A.N., Miroshnichenko, D.A., Tyutyunnykova, A.P., and Maliuta, S.S., Development of molecular oncohematology in Ukraine, Biopolym. Cell, 2013, vol. 29, no. 4, pp. 277–282.

    Article  CAS  Google Scholar 

  3. Zhao, X., Ghaffari, S., Lodish, H., Malashkevich, V.N., and Kim, P.S., Structure of the Bcr-Abl oncoprotein oligomerization domain, Nat. Struct. Biol., 2002, vol. 9, no. 2, pp. 117–120.

    PubMed  CAS  Google Scholar 

  4. Järas, M., Johnels, P., Agerstam, H., Lassen, C., Rissler, M., Edén, P., Cammenga, J., Olofsson, T., Bjerrum, O.W., Richter, J., Fan, X., and Fioretos, T., Expression of P190 and P210 BCR/ABL1 in normal human CD34(+) cells induces similar gene expression profiles and results in a STAT5-dependent expansion of the erythroid lineage, Exp. Hematol., 2009, vol. 37, no. 3, pp. 367–375.

    Article  PubMed  CAS  Google Scholar 

  5. Colicelli, J., ABL tyrosine kinases: evolution of function, regulation, and specificity, Sci. Signal., 2010, vol. 3, no. 139, re6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Telegeev, G.D., Dubrovska, A.N., Dybkov, M.V., and Maliuta, S.S., Influence of BCR-ABL fusion proteins on the course of Ph leukemias, Acta Biochim. Pol., 2004, vol. 51, no. 3, pp. 845–849.

    PubMed  CAS  Google Scholar 

  7. Telegeev, G.D., Dubrovska, A.N., Nadgorna, V.A., Dybkov M.V., Zavelevich, M.P., Maliuta, S.S., and Gluzman, D.F., Immunocytochemical study of Bcr and Bcr-Abl localization in K562 cells, Exp. Oncol., 2010, vol. 32, no. 2, pp. 81–83.

    PubMed  CAS  Google Scholar 

  8. Miroshnychenko, D., Dubrovska, A., Maliuta, S., Telegeev, G., and Aspenström, P., Novel role of pleckstrin homology domain of the Bcr-Abl protein: analysis of protein–protein and protein–lipid interactions, Exp. Cell Res., 2010, vol. 316, no. 4, pp. 530–542.

    Article  PubMed  CAS  Google Scholar 

  9. Cotto-Rios, X.M., Jones, M.J., and Huang, T.T., Insights into phosphorylation-dependent mechanisms regulating USP1 protein stability during the cell cycle, Cell Cycle, 2011, vol. 10, no. 23, pp. 4009–4016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wilkinson, K.D., Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome, Semin. Cell Dev. Biol., 2000, vol. 11, no. 3, pp. 141–148.

    Article  PubMed  CAS  Google Scholar 

  11. Reyes-Turcu, F.E., Ventii, K.H., and Wilkinson, K.D., Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes, Annu. Rev. Biochem., 2009, no. 78, pp. 363–397.

    Article  PubMed  CAS  Google Scholar 

  12. Jadhav, T. and Wooten, M., Defining an embedded code for protein ubiquitination, J. Proteom. Bioinform., 2009, vol. 2, pp. 316–333.

    Article  CAS  Google Scholar 

  13. Nijman, S.M., Luna-Vargas, M.P., Velds, A., Brummelkamp, T.R., Dirac, A.M., Sixma, T.K., and Bernards, R., A genomic and functional inventory of deubiquitinating enzymes, Cell, 2005, vol. 123, no. 5, pp. 773–786.

    Article  PubMed  CAS  Google Scholar 

  14. Nijman, S.M.B., Huang, T.T., Diras, A.M., Brummelkamp, T.R., Kerkhoven, R.M., D’Andrea, A.D., and Bernards, R., The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway, Mol. Cell, 2005, vol. 17, no. 3, pp. 331–339.

    Article  PubMed  CAS  Google Scholar 

  15. Cotto-Rios, X.M., Jones, M.J., Busino, L., Pagano, M., and Huang, T.T., APC/CCdh1-dependent proteolysis of USP1 regulates the response to UV-mediated DNA damage, J. Cell Biol., 2011, vol. 194, no. 2, pp. 177–186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liang, Q., Dexheimer, T.S., Zhang, P., Rosenthal, A.S., Villamil, M.A., You, C., Zhang, Q., Chen, J., Ott, C.A., Sun, H., Luci, D.K., Yuan, B., Simeonov, A., Jadhav, A., Xiao, H., Wang, Y., Maloney, D.J., and Zhuang, Z., A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses, Nat. Chem. Biol., 2014, vol. 10, no. 4, pp. 298–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Williams, S.A., Maecker, H.L., French, D.M., Liu, J., Gregg, A., Silverstein, L.B., Cao, T.C., Carano, R.A., and Dixit, V.M., USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteocarcoma, Cell, 2011, vol. 146, no. 6, pp. 918–930.

    Article  PubMed  CAS  Google Scholar 

  18. Kumar, A., Agarwal, S., Heyman, J.A., Matson, S., Heidtman, M., Piccirillo, S., Umansky, L., Drawid, A., Jansen, R., Liu, Y., Cheung, K.H., Miller, P., Gerstein, M., Roeder, G.S., and Shyder, M., Subcellular localization of the yeast proteome, Genes Dev., 2002, vol. 16, no. 6, pp. 707–719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fraile, J.M., Quesada, V., Rodriguez, D., Freije, J.M., and Lopez-Otin, C., Deubiquitinases in cancer: new functions and therapeutic options, Oncogene, 2012, vol. 31, no. 19, pp. 2373–2388.

    Article  PubMed  CAS  Google Scholar 

  20. Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucete-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., and Vidal, M., Towards a proteome- scale map of the human protein0protein interaction network, Nature, 2005, vol. 437, no. 7062, pp. 1173–1178.

    Article  PubMed  CAS  Google Scholar 

  21. Chin, C.J., Wong, S., Davis, M.J., and Ragan, M.A., Protein-protein interaction as a predictor of subcellular location, BMC Syst. Biol., 2009, no. 3, pp. 28–31.

    Article  CAS  Google Scholar 

  22. Jiang, J.Q. and Maoying, W., Predicting multiplex subcellular localization of proteins using protein-protein interaction network: a comparative study, BMC Bioinform., 2012, no. 13, pp. 10–20.

    Article  CAS  Google Scholar 

  23. Dunn, K.W., Kamocka, M.M., and McDonald, J.H., A practical guide to evaluating colocalization in biological microscopy, Am. J. Cell Physiol., 2011, vol. 300, no. 4, pp. 723–743.

    Article  CAS  Google Scholar 

  24. Zinchuk, V., Zinchuk, O., and Okada, T., Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: Pushing pixels to explore biological phenomena, Acta Histochem. Cytochem., 2007, vol. 49, no. 4, pp. 101–111.

    Article  CAS  Google Scholar 

  25. McDonald, J.H. and Dunn, K.W., Statistical tests for measures of colocalization in biological microscopy, J. Microsc., 2013, vo. 252, no. 3, pp. 295–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Carcia-Santisteban, I., Zorroza, K., and Rodriguez, J.A., Two nuclear localization signals in USP1 mediate nuclear import of the USP1/UAF1 complex, PloS One, 2012, vol. 7, no. 6, e3870.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Antonenko.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonenko, S.V., Gurianov, D.S. & Telegeev, G.D. Colocalization of USP1 and РН domain of Bcr-Abl oncoprotein in terms of chronic myeloid leukemia cell rearrangements. Cytol. Genet. 50, 352–356 (2016). https://doi.org/10.3103/S0095452716050029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716050029

Keywords

Navigation