Skip to main content
Log in

Influence of cold on organization of actin filaments of different types of root cells in Arabidopsis thaliana

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The effect of the low temperature (+4°C) on the organization of actin filaments (microfilaments) of cells from different growth zones has been studied in the roots of Arabidopsis thaliana (L.). It was found that cold treatment inhibited the growth of the primary root and changed its morphology, causing a formation of large number of deformed (ectopic) root hairs in differentiation zone. The temporal relationship between the disorientation and the organization of actin filaments and the detected changes of growth and morphology of roots after cold treatment was shown. It has been found that actin filaments of root hairs, meristematic cells, cells of elongation zone, and epidermal cells of all root zones of A. thaliana are the most sensitive to the cold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blancaflor, E.B., The cytoskeleton and gravitropism in higher plants, J. Plant Growth Regul., 2002, vol. 21, no. 2, pp. 120–136.

    Article  PubMed  CAS  Google Scholar 

  2. Shevchenko, G.V. and Kordyum, E.L., Organization of cytoskeleton during differentiation of gravisensitive root sites under clinorotation, Adv. Space Res., 2005, vol. 35, no. 2, pp. 289–295.

    Article  PubMed  CAS  Google Scholar 

  3. Pozhvanov, G.A., Suslov, D.V., and Medvedev, S.S., Actin cytoskeleton rearrangements during the gravitropic response of Arabidopsis roots, Cell Tissue Biol., 2013, vol. 7, no. 2, pp. 195–191.

    Article  Google Scholar 

  4. Wang, N., Butler, J.P., and Ingber, D.E., Mechanotransduction across the cell surface and through the cytoskeleton, Science, 1993, vol. 260, no. 5111, pp. 1124–1127.

    Article  PubMed  CAS  Google Scholar 

  5. Deng, L., Fairbank, N.J., Fabry, B., Smith, P.G., and Maksym, G.N., Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultures airway smooth muscle cells, Am. J. Physiol., 2004, vol. 287, no. 2, pp. 440–448.

    Article  Google Scholar 

  6. Pivovarova, A.V., Mikhailova, V.V., Chernik, I.S., Chebotareva, N.A., Levitsky, D.I., and Gusev, N.B., Effects of small heat shock proteins on the thermal denaturation and aggregation of F-actin, Biochem. Biophys. Res. Commun., 2005, vol. 331, no. 4, pp. 1548–1553.

    Article  PubMed  CAS  Google Scholar 

  7. Toivola, D.M., Strad, P., Habtezion, A., and Omary, M.B., Intermediate filament take the heat as stress proteins, Trends Cell Biol., 2010, vol. 20, no. 2, pp. 79–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Egierszdorff, S. and Kacperska, A., Low temperature effects on growth and actin cytoskeleton organization in suspension cells of winter oilseed rape, Plant Cell Tissue Organ Cult., 2001, vol. 65, pp. 149–158.

    Article  CAS  Google Scholar 

  9. Wasteneys, G.O. and Yang, Z., New views on the plant cytoskeleton, Plant Physiol., 2004, vol. 136, no. 4, pp. 3884–3891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fan, T.T., Ni, J.J., Dong, W.C., An, L.Z., Xiang, Y., and Cao, S.Q., Effect of low temperature on profiling and ADFs transcription and actin cytoskeleton reorganization in Arabidopsis, Biol. Plant., 2015, vol. 59, no. 4, pp. 793–796.

    Article  CAS  Google Scholar 

  11. Pribyl, P., Cepak, V., and Zachleder, V., Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure. The effect of cadmium, Protoplasma, 2005, vol. 226, nos. 3–4, pp. 231–240.

    Article  PubMed  CAS  Google Scholar 

  12. Fan, J.L., Wei, X.Z., Wan, L.C., Zhang, L.Y., Zhao, X.Q., Liu, W.Z., Hao, H.Q., and Zhang, H.Y., Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking, J. Plant Physiol., 2011, vol. 168, no. 11, pp. 1157–1167.

    Article  PubMed  CAS  Google Scholar 

  13. Goriunova, I.I., Krasylenko, Yu.A., Zaslavsky, V.A., and Yemets, A.I., Cadmium effects on the organization of actin filaments in Arabidopsis thaliana primary root cells, Dopov. NAN Ukraine, 2014, vol. 9, pp. 127–133.

    Article  Google Scholar 

  14. Orvar, B.L., Sangwan, V., Omann, F.M., and Dhindsa, R.S., Early steps in cold sensing by plant cells: the role of action cytoskeleton and membrane fluidity, Plant J., 2000, vol. 23, no. 6, pp. 785–794.

    Article  PubMed  CAS  Google Scholar 

  15. Mohapatra, S.S., Wolfraim, L., Poole, R.J., and Dhindsa, R.J., Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa, Plant Physiol., 1989, vol. 89, no. 1, pp. 375–380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sangwan, V., Foulds, I., Singh, J., and Dhindsa, R.S., Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx, Plant J., 2001, vol. 27, no. 1, pp. 1–12.

    Article  PubMed  CAS  Google Scholar 

  17. Monroy, A.F., Sarhan, F., and Dhindsa, R.S., Coldinduced changes in freezing tolerance, protein phosphorylation, and gene expression (evidence for a role of calcium), Plant Physiol., 1993, vol. 102, no. 4, pp. 1227–1235.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Tahtiharju, S., Sangwan, V., Monroy, A.F., Dhindsa, R.S., and Borg, M., The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium, Planta, 1997, vol. 203, no. 4, pp. 442–447.

    Article  PubMed  CAS  Google Scholar 

  19. Chinnusamy, V., Zhu, J., and Zhu, J.K., Cold stress regulation of gene expression in plants, Trends Plant Sci., 2007, vol. 12, no. 10, pp. 444–452.

    Article  PubMed  CAS  Google Scholar 

  20. Hashimoto, M. and Komatsi, S., Proteomic analysis of rice seedlings during cold stress, Proteomics, 2007, vol. 7, no. 8, pp. 1293–1302.

    Article  PubMed  CAS  Google Scholar 

  21. Lee, D.G., Ahsan, N., Lee, S.H., Lee, J.J., Bahk, J.D., Kang, K.Y., and Lee, B.H., Chilling stress-induced proteomic changes in rice roots, J. Plant Physiol., 2009, vol. 166, no. 1, pp. 1–11.

    Article  PubMed  CAS  Google Scholar 

  22. Janmohammadi, M., Mock, H.P., and Matros, A., Proteomic analysis of cold acclimation in winter wheat under field conditions, Icel. Agric. Sci., 2014, vol. 27, pp. 3–15.

    Google Scholar 

  23. Wang, X., Yang, P., Zhang, X., Xu, Y., Kuang, T., Shen, S., and He, Y., Proteomic analysis of the cold stress response in the moss, Physcomitrella patens, Proteomics, 2009, vol. 9, no. 19, pp. 4529–4538.

    Article  PubMed  CAS  Google Scholar 

  24. Aström, H., Virtanen, I., and Raudaskoski, M., Coldstability in the pollen tube cytoskeleton, Protoplasma, 1991, vol. 160, pp. 99–107.

    Article  Google Scholar 

  25. Pokorná, J., Schwarzerová, K., Zelenková, S., Petrášek, J., Janotová, I., Capková, V., and Opatrny, Z., Sites of actin filament initiation and reorganization in cold-treated tobacco cells, Plant Cell Environ., 2004, vol. 27, no. 5, pp. 641–653.

    Article  Google Scholar 

  26. Ouellet, F., Carpentier, E., Cope, M.J., Monroy, A.F., and Sarhan, F., Regulation of a wheat actin-depolymerizing factor during cold acclimation, Plant Physiol., 2001, vol. 125, no. 1, pp. 360–368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang, Y.S., Yoo, C.M., and Blancaflor, E.B., Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C- and N-termini of the fibrin actin-binding domain 2, New Phytol., 2008, vol. 177, no. 2, pp. 525–536.

    PubMed  CAS  Google Scholar 

  28. Plohovska, S.G., Zaslavsky, V.A., Yemets, A.I., and Blume, Ya.B., Participation of actin filaments of Arabidopsis thaliana root cells on low temperature action, Dopov. NAN Ukraine, 2015, vol. 7, pp. 136–142.

    Article  Google Scholar 

  29. Abdrakhamanova, A., Wang, Q.Y., Khokhlova, L., and Nick, P., Is microtubue disassembly a trigger for cold acclimation?, Cell Physiol., 2003, vol. 44, no. 7, pp. 676–686.

    Article  CAS  Google Scholar 

  30. Shibasaki, K., Uemura, M., Tsurumi, S., and Rahman, A., Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms, Plant Cell, 2009, vol. 21, no. 12, pp. 3823–3838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sisoeva, M.I., Slobodyanik, I.I., Sherudilo, E.G., and Vasilevskaya, N.V., Effect of short-term daily temperature drops in the processes of formation of organs in Cucumis sativus L. under different photoperiods, Izvest. RAN, 2007, vol. 6, pp. 765–767.

    Google Scholar 

  32. Voigt, B., Timmers, A.C., Samaj, J., Muller, J., Baluska, F., and Menzel, D., GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings, Eur. J. Cell Biol., 2005, vol. 4, no. 6, pp. 595–608.

    Article  CAS  Google Scholar 

  33. Wu, J.Y., Jin, C., Qu, H.Y., Tao, S.T., Xu, G.H., Wu, J., Wu, H.Q., and Zhang, S.L., Low temperature inhibits pollen viability by alteration of actin cytoskeleton and regulation of pollen plasma membrane ion channels in Pyrus pyrifolia, Environ. Exp. Bot., 2012, vol. 78, pp. 70–75.

    Article  CAS  Google Scholar 

  34. Quader, H., Cytoskeleton: microtubules, in Progress in Botany, Heidelberg: Springer-Verlag, 1998, vol. 59, pp. 374–395.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. B. Blume.

Additional information

Original Russian Text © S.G. Plohovska, A.I. Yemets, Ya.B. Blume, 2016, published in Tsitologiya i Genetika, 2016, Vol. 50, No. 5, pp. 65–71.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plohovska, S.G., Yemets, A.I. & Blume, Y.B. Influence of cold on organization of actin filaments of different types of root cells in Arabidopsis thaliana . Cytol. Genet. 50, 318–323 (2016). https://doi.org/10.3103/S0095452716050108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716050108

Keywords

Navigation