Skip to main content
Log in

Long term effects of Chernobyl contamination on DNA repair function and plant resistance to different biotic and abiotic stress factors

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Thirty years after the Chernobyl explosion we still lack information regarding the genetic effects of radionuclide contamination on the plant population. For example, are plants adapting to the low dose of chronic ionising irradiation and showing improved resistance to radiation damage? Are they coping with changing/increased pathogenicity of fungi and viruses in the Chernobyl exclusion (ChE) zone? Are plant populations rapidly accumulating mutational load and should we expect rapid micro-evolutionary changes in plants in the Chernobyl area? This review will try to summarise the current knowledge on these aspects of plant genetics and ecology and draw conclusions on the importance of further studies in the area around Chernobyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balonov, M., The Chernobyl accident as a source of new radiological knowledge: implications for Fukushima rehabilitation and research programmes, J. Radiol. Prot., 2013, vol. 33, no. 1, pp. 27–40.

    Article  PubMed  Google Scholar 

  2. Izrael, Y.A., De Cort, M., Jones, A.R., Nazarov, I.M., Fridman, S.D., Kvasnikova, E.V., Stukin, E.D., Kelly, G.N., Matveenko, I.I., and Pokumeiko, Y.M., The atlas of caesium-137 contamination of Europe after the Chernobyl accident, in Radiological Consequences of the Chernobyl Accident, Proceedings of the First International Conference (EUR 16544 EN), 1996, pp. 1–10.

    Google Scholar 

  3. Bubryak, I., Vilensky, E., Naumenko, V., and Grodzisky, D., Influence of combined alpha, beta and gamma radionuclide contamination on the frequency of waxy-reversions in barley pollen, Sci. Total Environ., 1992, vol. 112, no. 1, pp. 29–36.

    CAS  PubMed  Google Scholar 

  4. Hinton, T.G., Kopp, P., Ibrahim, S., Bubryak, I., Syomov, A., Tobler, L., and Bell, C., A comparison of techniques used to estimate the amount of resuspended soil on plant surfaces, Health Phys., 1995, vol. 68, no. 4, pp. 523–531.

    Article  CAS  PubMed  Google Scholar 

  5. Lepiniec, L., Babiychuk, E., Kushnir, S., Van Montagu, M., and Inze, D., Characterization of an Arabidopsis thaliana cDNA homologue to animal poly(ADP-ribose) polymerase, FEBS Lett., 1995, vol. 364, no. 2, pp. 103–108.

    Article  CAS  PubMed  Google Scholar 

  6. Hinton, T.G., Alexakhin, R., Balonov, M., Gentner, N., Hendry, J., Prister, B., Strand, P., and Woodhead, D., Radiation-induced effects on plants and animals: findings of the united nations Chernobyl forum, Health Phys., 2007, vol. 93, no. 5, pp. 427–440.

    Article  CAS  PubMed  Google Scholar 

  7. Sokolov, V.E., Rjabov, I.N., Ryabtsev, I.A., Tikhomirov, F.A., Shevchenko, V.A., and Taskaev, A.I., Ecological and genetic consequences of the Chernobyl atomic power-plant accident, Vegetation, 1993, vol. 109, no. 1, pp. 91–99.

    Article  Google Scholar 

  8. Tikhomirov, F.A. and Shcheglov, A.I., Main investigation results on the forest radioecology in the kyshtym and Chernobyl accident zones, Sci. Total Environ., 1994, vol. 157, nos. 1–3, pp. 45–57.

    Article  CAS  PubMed  Google Scholar 

  9. Tikhomirov, F.A. and Shcheglov, A.I., The consequences of radioactive contamination of forest ecosystems due to Chernobyl accident, Radiats. Biol. Radioekol., 1997, vol. 37, no. 4, pp. 664–672.

    CAS  Google Scholar 

  10. Kalchenko, V.A., Arkhipov, N.P., and Fedotov, I.S., Mutagenesis of allozyme loci in Pinus sylvestris L. megaspores induced by ionizing irradiation after Chernobyl-NNP accident, Genetika, 1993, vol. 29, no. 2, pp. 266–273.

    CAS  Google Scholar 

  11. Arkhipov, N.P., Kuchma, N.D., Askbrant, S., Pasternak, P.S., and Musica, V.V., Acute and long-term effects of irradiation on pine (Pinus sylvestris) stands post-Chernobyl, Sci. Total Environ., 1994, vol. 157, nos. 1–3, pp. 383–386.

    Article  CAS  PubMed  Google Scholar 

  12. Paton, B.E., Baryakhtar, V.G., Prister, B.S., and Faybishenko, B.A., The Chernobyl catastrophe in Ukraine: causes of the accident and lessons learned, Environ. Sci. Poll. Res., 2003, vol. 3/12/2008.

    Google Scholar 

  13. Esnault, M.-A., Legue, F., and Chenal, C., Ionizing radiation: advances in plant response, Environ. Exp. Bot., 2010, vol. 68, no. 3, pp. 231–237.

    Article  CAS  Google Scholar 

  14. Koyama, S., Kodama, S., Suzuki, K., Matsumoto, T., Miyazaki, T., and Watanabe, M., Radiationinduced long-lived radicals which cause mutation and transformation, Mutat. Res., 1998, vol. 421, no. 1, pp. 45–54.

    Article  CAS  PubMed  Google Scholar 

  15. Roldan-Arjona, T. and Ariza, R.R., Repair and tolerance of oxidative DNA damage in plants, Mutat. Res., 2009, vol. 681, nos. 2–3, pp. 169–179.

    Article  CAS  PubMed  Google Scholar 

  16. Gill, S.S., Anjum, N.A., Gill, R., Jha, M., and Tuteja, N., DNA damage and repair in plants under ultraviolet and ionizing radiations, Sci. World J., 2015, vol. 2015.

  17. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, no. 12, pp. 909–930.

    Article  CAS  PubMed  Google Scholar 

  18. Hefner, E., Preuss, S.B., and Britt, A.B., Arabidopsis mutants sensitive to gamma radiation include the homologue of the human repair gene ercc1, J. Exp. Bot., 2003, vol. 54, no. 383, pp. 669–680.

    Article  CAS  PubMed  Google Scholar 

  19. Preuss, S.B. and Britt, A.B., A DNA-damage-induced cell cycle checkpoint in Arabidopsis, Genetics, 2003, vol. 164, no. 1, pp. 323–334.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang, C.Z., Yee, J., Mitchell, D.L., and Britt, A.B., Photorepair mutants of Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, no. 14, pp. 7441–7445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fidantsef, A.L., Mitchell, D.L., and Britt, A.B., The Arabidopsis uvh1 gene is a homolog of the yeast repair endonuclease rad1, Plant Physiol., 2000, vol. 124, no. 2, pp. 579–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gicquel, M., Esnault, M.-A., Jorrin-Novo, J.V., and Cabello-Hurtado, F., Application of proteomics to the assessment of the response to ionising radiation in Arabidopsis thaliana, J. Proteomics, 2011, vol. 74, no. 8, pp. 1364–1377.

    Article  CAS  PubMed  Google Scholar 

  23. Roldan-Arjona, T., Garcia-Ortiz, M.V., Ruiz-Rubio, M., and Ariza, R.R., cDNA cloning, expression and functional characterization of an Arabidopsis thaliana homologue of the Escherichia coli DNA repair enzyme endonuclease II, Plant. Mol. Biol., 2000, vol. 44, no. 1, pp. 43–52.

    Article  CAS  PubMed  Google Scholar 

  24. Ramiro-Merina, A., Ariza, R.R., and Roldan-Arjona, T., Molecular characterization of a putative plant homolog of MBD4 DNA glycosylase, DNA Rep. (Amst.), 2013, vol. 12, no. 11, pp. 890–898.

    Article  CAS  Google Scholar 

  25. Garcia-Ortiz, M.V., Ariza, R.R., and Roldan-Arjona, T., An OGG1 orthologue encoding a functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana, Plant. Mol. Biol., 2001, vol. 47, no. 6, pp. 795–804.

    Article  CAS  PubMed  Google Scholar 

  26. Ohtsubo, T., Matsuda, O., Iba, K., Terashima, I., Sekiguchi, M., and Nakabeppu, Y., Molecular cloning of AtMMH, an Arabidopsis thaliana ortholog of the Escherichia coli mutM gene, and analysis of functional domains of its product, Mol. Gen. Genet., 1998, vol. 259, no. 6, pp. 577–590.

    CAS  PubMed  Google Scholar 

  27. Takeuchi, R., Kimura, S., Saotome, A., and Sakaguchi, K., Biochemical properties of a plastidial DNA polymerase of rice, Plant. Mol. Biol., 2007, vol. 64, no. 5, pp. 601–611.

    Article  CAS  PubMed  Google Scholar 

  28. Uchiyama, Y., Takeuchi, R., Kodera, H., and Sakaguchi, K., Evolution and functions of X-family DNA polymerases in eukaryotes, Seikagaku, J. Japan. Biochem. Soc., 2008, vol. 80, no. 7, pp. 646–651.

    CAS  Google Scholar 

  29. Taylor, R.M., Hame, M.J., Rosamond, J., and Bray, C.M., Molecular cloning and functional analysis of the Arabidopsis thaliana DNA ligase I homologue, Plant J., 1998, vol. 14, no. 1, pp. 75–81.

    Article  CAS  PubMed  Google Scholar 

  30. Waterworth, W.M., Kozak, J., Provost, C.M., Bray, C.M., Angelis, K.J., and West, C.E., DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks, BMC Plant Biol., 2009, vol. 9, p. 79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Slupphaug, G., Kavli, B., and Krokan, H.E., The interacting pathways for prevention and repair of oxidative DNA damage, Mutat. Res., 2003, vol. 531, nos. 1–2, pp. 231–251.

    Article  CAS  PubMed  Google Scholar 

  32. Furukawa, T., Curtis, M.J., Tominey, C.M., Duong, Y.H., Wilcox, B.W., Aggoune, D., Hays, J.B., and Britt, A.B., A shared DNA-damage-response pathway for induction of stem-cell death by UVB and by gamma irradiation, DNA Rep. (Amst.), 2010, vol. 9, no. 9, pp. 940–948.

    Article  CAS  Google Scholar 

  33. Jenkins, M.E., Harlow, G.R., Liu, Z., Shotwell, M.A., Ma, J., and Mount, D.W., Radiation-sensitive mutants of Arabidopsis thaliana, Genetics, 1995, vol. 140, no. 2, pp. 725–732.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, Z., Hall, J.D., and Mount, D.W., Arabidopsis uvh3 gene is a homolog of the Saccharomyces cerevisiae rad2 and human xpg DNA repair genes, Plant J., 2001, vol. 26, no. 3, pp. 329–338.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Z., Hossain, G.H., Islas-Osuna, M.A., Mitchell, D.L., and Mount, D.W., Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1, Plant J., 2000, vol. 21, no. 6, pp. 519–528.

    Article  CAS  PubMed  Google Scholar 

  36. Babiychuk, E., Cottrill, P.B., Storozhenko, S., Fuangthong, M., Chen, Y., O’Farrell, M.K., Van Montagu, M., Inze, D., and Kushnir, S., Higher plants possess two structurally different poly(ADP-ribose) polymerases, Plant J., 1998, vol. 15, no. 5, pp. 635–645.

    Article  CAS  PubMed  Google Scholar 

  37. Doucet-Chabeaud, G., Godon, C., Brutesco, C., de Murcia, G., and Kazmaier, M., Ionising radiation induces the expression of PARP-1 and PARP-2 genes in Arabidopsis, Mol. Genet. Genom., 2001, vol. 265, no. 6, pp. 954–963.

    Article  CAS  Google Scholar 

  38. Amor, Y., Babiychuk, E., Inze, D., and Levine, A., The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants, FEBS Lett., 1998, vol. 440, nos. 1–2, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  39. Petrucco, S., Volpi, G., Bolchi, A., Rivetti, C., and Ottonello, S., A nick-sensing DNA 3‘-repair enzyme from Arabidopsis, J. Biol. Chem., 2002, vol. 277, no. 26, pp. 23675–23683.

    Article  CAS  PubMed  Google Scholar 

  40. Petrucco, S. and Percudani, R., Structural recognition of DNA by poly(ADP-ribose)polymerase-like zinc finger families, FEBS J., 2008, vol. 275, no. 5, pp. 883–893.

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Ortiz, M.V., Ariza, R.R., Hoffman, P.D., Hays, J.B., and Roldan-Arjona, T., Arabidopsis thaliana AtPOLK encodes a DinB-like DNA polymerase that extends mispaired primer termini and is highly expressed in a variety of tissues, Plant J., 2004, vol. 39, no. 1, pp. 84–97.

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Ortiz, M.V., Roldan-Arjona, T., and Ariza, R.R., The noncatalytic C-terminus of AtPOLK Y-family DNA polymerase affects synthesis fidelity, mismatch extension and trans-lesion replication, FEBS J., 2007, vol. 274, no. 13, pp. 3340–3350.

    CAS  Google Scholar 

  43. Culligan, K.M. and Hays, J.B., DNA mismatch repair in plants—an Arabidopsis thaliana gene that predicts a protein belonging to the MSH2 subfamily of eukaryotic MutS homologs, Plant Physiol., 1997, vol. 115, no. 2, pp. 833–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, S.Y., Culligan, K., Lamer, M., and Hays, J., Dissimilar mispair-recognition spectra of Arabidopsis DNA-mismatch-repair proteins MSH2.MSH6 (MutS alpha) and MSH2.MSH7 (MutS gamma), Nucleic Acids Res., 2003, vol. 31, no. 20, pp. 6027–6034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Puchta, H., Breaking DNA in plants: how i almost missed my personal breakthrough, Plant Biotechnol. J., 2016, vol. 14, no. 2, pp. 437–440.

    Article  PubMed  Google Scholar 

  46. Roth, N., Klimesch, J., Dukowic-Schulze, S., Pacher, M., Mannuss, A., and Puchta, H., The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells, Plant J., 2012, vol. 72, no. 5, pp. 781–790.

    Article  CAS  PubMed  Google Scholar 

  47. White, C.I., da Ines, O., Serra, H., Degroote, F., Olivier, M., Goubely, C., Amiard, S., and Gallego, M.E., Recombination and the roles of the RAD51-like proteins in Arabidopsis, FEBS J., 2014, vol. 281, pp. 722–723.

    Google Scholar 

  48. Charbonnel, C., Allain, E., Gallego, M.E., and White, C.I., Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis, DNA Rep. (Amst.), 2011, vol. 10, no. 6, pp. 611–619.

    Article  CAS  Google Scholar 

  49. Block-Schmidt, A.S., Dukowic-Schulze, S., Wanieck, K., Reidt, W., and Puchta, H., BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in Arabidopsis thaliana, Nucleic Acids Res., 2011, vol. 39, no. 1, pp. 146–154.

    Article  CAS  PubMed  Google Scholar 

  50. Reidt, W., Wurz, R., Wanieck, K., Chu, H.H., and Puchta, H., A homologue of the breast cancer-associated gene BARD1 is involved in DNA repair in plants, EMBO J., 2006, vol. 25, no. 18, pp. 4326–4337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Waterworth, W.M., Bray, C.M., and West, C.E., The importance of safeguarding genome integrity in germination and seed longevity, J. Exp. Bot., 2015, vol. 66, no. 12, pp. 3549–3558.

    Article  CAS  PubMed  Google Scholar 

  52. Kobbe, D., Blanck, S., Demand, K., Focke, M., and Puchta, H., AtRECQ2, a RecQ helicase homologue from Arabidopsis thaliana, is able to disrupt various recombinogenic DNA structures in vitro, Plant J., 2008, vol. 55, no. 3, pp. 397–405.

    Article  CAS  PubMed  Google Scholar 

  53. Kobbe, D., Focke, M., and Puchta, H., Purification and characterization of RecQ helicases of plants, Methods Mol. Biol., 2010, vol. 587, pp. 195–209.

    Article  CAS  PubMed  Google Scholar 

  54. Aklilu, B.B. and Culligan, K.M., Molecular evolution and functional diversification of replication protein A1 in plant, Front. Plant Sci., 2016, vol. 7, p. 33.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bleuyard, J.Y., Gallego, M.E., Savigny, F., and White, C.I., Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair, Plant J., 2005, vol. 41, no. 4, pp. 533–545.

    Article  CAS  PubMed  Google Scholar 

  56. Da, InesO., Degroote, F., Goubely, C., Amiard, S., Gallego, M.E., and White, C.I., Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role, PLoS Genet., 2013, vol. 9, no. 9, p. e1003787.

    Article  CAS  Google Scholar 

  57. Mannuss, A., Trapp, O., and Puchta, H., Gene regulation in response to DNA damage, Biochim. Biophys. Acta, 2012, vol. 1819, no. 2, pp. 154–165.

    Article  CAS  PubMed  Google Scholar 

  58. Boyko, A., Filkowski, J., and Kovalchuk, I., Homologous recombination in plants is temperature and daylength dependent, Mutat. Res., 2005, vol. 572, nos. 1–2, pp. 73–83.

    Article  CAS  PubMed  Google Scholar 

  59. Boyko, A., Filkowski, J., Hudson, D., and Kovalchuk, I., Homologous recombination in plants is organ specific, Mutat. Res., 2006, vol. 595, nos. 1–2, pp. 145–155.

    Article  CAS  PubMed  Google Scholar 

  60. West, C.E., Waterworth, W.M., Story, G.W., Sunderland, P.A., Jiang, Q., and Bray, C.M., Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo, Plant J., 2002, vol. 31, no. 4, pp. 517–528.

    Article  CAS  PubMed  Google Scholar 

  61. Tamura, K., Adachi, Y., Chiba, K., Oguchi, K., and Takahashi, H., Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks, Plant J., 2002, vol. 29, no. 6, pp. 771–781.

    Article  CAS  PubMed  Google Scholar 

  62. West, C.E., Waterworth, W.M., Jiang, Q., and Bray, C.M., Arabidopsis DNA ligase iv is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4, Plant J., 2000, vol. 24, no. 1, pp. 67–78.

    Article  CAS  PubMed  Google Scholar 

  63. Daoudal-Cotterell, S., Gallego, M.E., and White, C.I., The plant Rad50-Mre11 protein complex, FEBS Lett., 2002, vol. 516, nos. 1–3, pp. 164–166.

    Article  CAS  PubMed  Google Scholar 

  64. Bray, C.M., Sunderland, P.A., Waterworth, W.M., and West, C.E., DNA ligase - a means to an end joining, SEB Exp. Biol. Ser., 2008, vol. 59, pp. 203–217.

    CAS  PubMed  Google Scholar 

  65. Perez, R., Cuadrado, A., Chen, I.P., Puchta, H., Jouve, N., and De Bustos, A., The Rad50 genes of diploid and polyploid wheat species. Analysis of homologue and homoeologue expression and interactions with Mre11, Theor. Appl. Genet., 2011, vol. 122, no. 2, pp. 251–262.

    Article  CAS  PubMed  Google Scholar 

  66. Culligan, K.M., Robertson, C.E., Foreman, J., Doerner, P., and Britt, A.B., ATR and ATM play both distinct and additive roles in response to ionizing radiation, Plant J., 2006, vol. 48, no. 6, pp. 947–961.

    Article  CAS  PubMed  Google Scholar 

  67. Culligan, K., Tissier, A., and Britt, A., ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana, Plant Cell, 2004, vol. 16, no. 5, pp. 1091–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yoshiyama, K., Conklin, P.A., Huefner, N.D., and Britt, A.B., Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 31, pp. 12843–12848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yoshiyama, K.O., Kimura, S., Maki, H., Britt, A.B., and Umeda, M., The role of sog1, a plant-specific transcriptional regulator, in the DNA damage response, Plant Signal. Behav., 2014, vol. 9, no. 4, p. e28889.

  70. Yoshiyama, K., Britt, A., Maki, H., and Umeda, M., DNA damage checkpoint in response to ionizing radiation in plants, Genes Genet. Syst., 2010, vol. 85, no. 6, pp. 444–444.

    Google Scholar 

  71. McCready, S., Muller, J.A., Boubriak, I., Berquist, B.R., Ng, W.L., and DasSarma, S., UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1, Saline Syst., 2005, vol. 1. doi doi 10.1186/1746-1448-1-3

  72. Serra, H., Da, InesO., Degroote, F., Gallego, M.E., and White, C.I., Roles of XRCC2, RAD51B and RAD51D in RAD51-independent SSA recombination, PLoS Genet., 2013, vol. 9, no. 11, p. e1003971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Mannuss, A., Dukowic-Schulze, S., Suer, S., Hartung, F., Pacher, M., and Puchta, H., RAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana, Plant Cell, 2010, vol. 22, no. 10, pp. 3318–3330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dona, M., Ventura, L., Macovei, A., Confalonieri, M., Savio, M., Giovannini, A., Carbonera, D., and Balestrazzi, A., Gamma irradiation with different dose rates induces different DNA damage responses in Petunia × hybrida cells, J. Plant Physiol., 2013, vol. 170, no. 8, pp. 780–787.

    Article  CAS  PubMed  Google Scholar 

  75. Kovalchuk, I., Molinier, J., Yao, Y., Arkhipov, A., and Kovalchuk, O., Transcriptome analysis reveals fundamental differences in plant response to acute and chronic exposure to ionizing radiation, Mutat. Res., 2007, vol. 624, nos. 1–2, pp. 101–113.

    Article  CAS  PubMed  Google Scholar 

  76. Willey, N.J., Heinekamp, Y.J., and Burridge, A., Genomic and proteomic analyses of plant response to radiation in the environment—an abiotic stress context, Radioprotection, 2009, vol. 44, no. 5, pp. 887–890.

    Article  Google Scholar 

  77. Marples, B., Is low-dose hyper-radiosensitivity a measure of G2-phase cell radiosensitivity?, Cancer Metastasis Rev., 2004, vol. 23, nos. 3–4, pp. 197–207.

    Article  CAS  PubMed  Google Scholar 

  78. Martin, L.M., Marples, B., Lynch, T.H., Hollywood, D., and Marignol., L., Exposure to low dose ionizing radiation: molecular and clinical consequences, Cancer Lett., 2013, vol. 348, no. 2, pp. 209–218.

    Article  CAS  Google Scholar 

  79. Macovei, A. and Tuteja, N., Different expression of miRNAs targeting helicases in rice in response to low and high dose rate gamma-ray treatment, Plant Signal. Behav., 2013, vol. 8, no. 8, p. e25128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kathiria, P. and Kovalchuk, I., Reporter gene-based recombination lines for studies of genome stability, Plant Epigenetics: Methods and Protocols, Kovalchuk, I.I. and Zemp, F.J., Eds., 2010, vol. 631, pp. 243–252.

    Article  CAS  Google Scholar 

  81. Kovalchuk, O., Kovalchuk, I., Arkhipov, A., Telyuk, P., Hohn, B., and Kovalchuk, L., The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine contaminated by the Chernobyl accident, Mutat. Res., 1998, vol. 415, nos. 1–2, pp. 47–57.

    Article  CAS  PubMed  Google Scholar 

  82. Kovalchuk, O., Kovalchuk, I., Arkhipov, A., Hohn, B., and Dubrova, Y.E., Extremely complex pattern of microsatellite mutation in the germline of wheat exposed to the post-Chernobyl radioactive contamination, Mutat. Res., 2003, vol. 525, nos. 1–2, pp. 93–101.

    Article  CAS  PubMed  Google Scholar 

  83. Geraskin, S.A., Dikarev, V.G., Zyablitskaya, Y.Y., Oudalova, A.A., Spirin, Y.V., and Alexakhin, R.M., Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops, J. Environ. Radioact., 2003, vol. 66, nos. 1-2, pp. 155–169.

    Article  CAS  PubMed  Google Scholar 

  84. Kovalchuk, O., Dubrova, Y.E., Arkhipov, A., Hohn, B., and Kovalchuk, I., Germline DNA—wheat mutation rate after Chernobyl, Nature, 2000, vol. 407, no. 6804, pp. 583–584.

    Article  CAS  PubMed  Google Scholar 

  85. Abramov, V.I., Sergeyeva, S.A., Ptitsyna, S.N., Semov, A.B., and Shevchenko, V.A., Genetic-effects and repair of single-stranded-DNA breaks in populations of Arabidopsis thaliana growing in the region of the Chernobyl-nuclear-power-station, Genetika, 1992, vol. 28, no. 6, pp. 69–73.

    CAS  Google Scholar 

  86. Sparrow, A.H., Rogers, A.F., and Schwemmer, S.S., Radiosensitivity studies with woody plants, Radiat. Bot., 1968, vol. 8, no. 2, pp. 149–174.

    Article  Google Scholar 

  87. Fedotov, I.S., Kal’chenko, V.A., Igoninna, E.V., and Rubanovich, A.V., Radiation and genetic consequences of ionizing irradiation on population of Pinus sylvestris L. within the zone of the Chernobyl NPP, Radiats. Biol. Radioecol., 2006, vol. 46, no. 3, pp. 268–278.

    CAS  PubMed  Google Scholar 

  88. Kalchenko, V.A. and Rubanovich, A.V., Genetic effects in gametes of Pinus sylvestris L. induced in the Chernobyl accident, Genetika, 1993, vol. 29, no. 7, pp. 1205–1212.

    Google Scholar 

  89. Oudalova, A., Dikareva, N., Spiridonov, S., Hinton, T., Chernonog, E., and Garnier-Laplace, J., Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident, Ecotoxicology, 2011, vol. 20, no. 6, pp. 1195–1208.

    Article  PubMed  CAS  Google Scholar 

  90. Evseeva, T. and Oudalova, A., Effects of long-term chronic exposure to radionuclides in plant populations, J. Environ. Radioact., 2013, vol. 121, pp. 22–32.

    Article  PubMed  CAS  Google Scholar 

  91. Volkova, P.Y., Genetic diversity in Scots pine populations along a radiation exposure gradient, Sci. Total Environ., 2014, vol. 496, pp. 317–327.

    Article  PubMed  CAS  Google Scholar 

  92. Garnier-Laplace, J., Della-Vedova, C., Andersson, P., Copplestone, D., Cailes, C., Beresford, N.A., Howard, B.J., Howe, P., and Whitehouse, P., A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances, J. Radiol. Prot., 2010, vol. 30, no. 2, pp. 215–233.

    Article  CAS  PubMed  Google Scholar 

  93. Alonzo, F., Hertel-Aas, T., Real, A., Lance, E., Garcia-Sanchez, L., Bradshaw, C., Vives, I., Baffle, J., Oughton, D.H., and Garnier-Laplace, J., Population modelling to compare chronic external radiotoxicity between individual and population endpoints in four taxonomic groups, J. Environ. Radioact., 2016, vol. 152, pp. 46–59.

    Article  CAS  PubMed  Google Scholar 

  94. Molinier, J., Ries, G., Zipfel, C., and Hohn, B., Transgeneration memory of stress in plants, Nature, 2006, vol. 442, no. 7106, pp. 1046–1049.

    Article  CAS  PubMed  Google Scholar 

  95. Ostapenko, E.K., Vilenskii, E.R., Naumenko, V.D., Bubryak, I.I., and Grodzinskii, D.M., Genetic disturbances in waxy barley pollen under conditions of radioactive pollution after Chernobyl’ disaster, Ontogenez, 1993, vol. 24, no. 5, pp. 11–19.

    CAS  PubMed  Google Scholar 

  96. Chankova, S.G., Kapchina, V.M., and Stoyanova, D.P., Some aspects of the plant radioresistance, Radiats. Biol. Radioecol., 2000, vol. 40, no. 5, pp. 535–543.

    CAS  PubMed  Google Scholar 

  97. Kovalchuk, I., Abramov, V., Pogribny, I., and Kovalchuk, O., Molecular aspects of plant adaptation to life in the Chernobyl zone, Plant Physiol., 2004, vol. 135, no. 1, pp. 357–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lysenko, E.A., Abramov, V.I., and Shevchenko, V.A., Effect of chronic irradiation on the genetic structure of natural populations of Arabidopsis thaliana (L.) Heynh., Genetika, 2000, vol. 36, no. 9, pp. 1241–1250.

    CAS  PubMed  Google Scholar 

  99. Abramov, V.I., Fedorenko, O.M., and Shevchenko, V.A., Genetic consequences of radioactive contamination for populations of Arabidopsis, Sci. Total Environ., 1992, vol. 112, no. 1, pp. 19–28.

    Article  CAS  PubMed  Google Scholar 

  100. Chankova, S.G., Dimova, E., Dimitrova, M., and Bryant, P.E., Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response, Radiat. Environ. Biophys., 2007, vol. 46, no. 4, pp. 409–416.

    Article  CAS  PubMed  Google Scholar 

  101. Boubriak, I., Naumenko, V., Prokhnevsky, A., Osborne, D.J., and Grodzinsky, D., Long term impairment of DNA repair functions in pollen of Betula verucossa L. from heavily radiocontaminated sites of Chernobyl, in Int. Conf. Genetic Consequences of Emergency Radiation Situation, Moscow, 2002, pp. 135–141.

    Google Scholar 

  102. Bubryak, I.I. and Grodzinsky, D.M., Functioning of DNA-repair systems in pollen of plants growing under different ecological conditions, Fiziol. Biokhim. Kult. Rast., 1985, vol. 17, no. 4, pp. 335–343.

    CAS  Google Scholar 

  103. Bubryak, I.I. and Grodzinsky, D.M., DNA repair in pollen of birch plant grown in conditions of radioactive contamination, Radiobiologiya, 1989, vol. 29, no. 5, pp. 589–594.

    CAS  Google Scholar 

  104. Bubryak, I.I., Naumenko, V.D., and Grodzinskii, D.M., Genetic damages induced in birch pollen by radionuclide contamination, Radiobiologiya, 1991, vol. 31, no. 4, pp. 564–567.

    CAS  Google Scholar 

  105. Kalchenko, V.A. and Fedotov, I.S., Genetic effects of acute and chronic ionizing radiation on Pinus sylvestris L. inhabiting the Chernobyl meltdown area, Russ. J. Genet., 2001, vol. 37, no. 4, pp. 341–350.

    Article  CAS  Google Scholar 

  106. Boubriak, I.I., Grodzinsky, D.M., Polischuk, V.P., Naumenko, V.D., Gushcha, N.P., Micheev, A.N., McCready, S.J., and Osborne, D.J., Adaptation and impairment of DNA repair function in pollen of Betula verrucosa and seeds of Oenothera biennis from differently radionuclide-contaminated sites of Chernobyl, Ann. Bot., 2008, vol. 101, no. 2, pp. 267–276.

    Article  CAS  PubMed  Google Scholar 

  107. Kovalchuk, O., Burke, P., Arkhipov, A., Kuchma, N., James, S.J., Kovalchuk, I., and Pogribny, I., Genome hypermethylation in Pinus silvestris of Chernobyl—a mechanism for radiation adaptation?, Mutat. Res., 2003, vol. 529, nos. 1-2, pp. 13–20.

    Article  CAS  PubMed  Google Scholar 

  108. Kordium, E.L. and Sidorenko, P.G., The results of the cytogenetic monitoring of the species of angiosperm plants growing in the area of radionuclide contamination after the accident at the Chernobyl atomic electric power station, Cytol. Genet., 1997, vol. 31, no. 3, pp. 39–46.

    CAS  Google Scholar 

  109. Kovalchuk, O., Titov, V., Kovalchuk, I., Pogribny, I., and Arkhipov, A., Molecular aspects of plant adaptation to chronic radiation exposure, Plant Biol. (Rockville), 2004, vol. 2004, p. 47.

    Google Scholar 

  110. Sidler, C., Li, D., Kovalchuk, O., and Kovalchuk, I., Development-dependent expression of DNA repair genes and epigenetic regulators in Arabidopsis plants exposed to ionizing radiation, Radiat. Res., 2015, vol. 183, no. 2, pp. 219–232.

    Article  CAS  PubMed  Google Scholar 

  111. Boyko, A. and Kovalchuk, I., Genetic and epigenetic regulation of genome stability in plants, 2010.

    Google Scholar 

  112. Boubriak, I., Naumenko, V., Lyne, L., and Osborne, D.J., Loss of viability in rye embryos at different levels of hydration: senescence with apoptotic nucleosome cleavage or death with random DNA fragmentation, in Seed Biology: Advances and Applications. Proc. 6th Int. Workshop on Seeds, Merida, Mexico, 2000, pp. 205–214.

    Google Scholar 

  113. Klubicova, K., Danchenko, M., Skultety, L., Miernyk, J.A., Rashydov, N.M., and Berezhna, V.V., Pret’ova a., hajduch m. proteomics analysis of flax grown in Chernobyl area suggests limited effect of contaminated environment on seed proteome, Environ. Sci. Technol., 2010, vol. 44, no. 18, pp. 6940–6946.

    CAS  PubMed  Google Scholar 

  114. Klubicova, K., Danchenko, M., Skultety, L., Berezhna, V.V., Uvackova, L., Rashydov, N.M., and Hajduch, M., Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism, PLoS One, 2012, vol. 7, no. 10, p. e48169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Syomov, A.B., Ptitsyna, S.N., and Sergeeva, S.A., Analysis of DNA strand break induction and repair in plants from the vicinity of Chernobyl, Sci. Total Environ., 1992, vol. 112, no. 1, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  116. Klubicova, K., Danchenko, M., Skultety, L., Berezhna, V.V., Rashydov, N.M., and Hajduch, M., Radioactive Chernobyl environment has produced high-oil flax seeds that show proteome alterations related to carbon metabolism during seed development, J. Proteome Res., 2013, vol. 12, no. 11, pp. 4799–4806.

    Article  CAS  PubMed  Google Scholar 

  117. Grodzinsky, D.M., Severe game of hide and seek, in Chernobyl: After Effects of Disaster for Man and Nature, St. Petersburg: Nauka, 2007.

    Google Scholar 

  118. Dmitriev, A.P., Grodzinsky, D.M., Guscha, N.I., and Kryzhanovskaya, M.A., Effect of chronic irradiation on plant resistance to biotic stress in 30-km Chernobyl nuclear plant exclusion zone, Russ. J. Plant Physiol., 2011, vol. 58, no. 6, pp. 1062–1068.

    Article  CAS  Google Scholar 

  119. Dmitriev, A.P., Polishuk, V.P., and Guscha, N.I., Effects of low dose chronic radiation and heavy metals on pant-pathogen interactions, in The Lessons of the Chernobyl 25 Years Later, Burlakova, E.B., Eds., New York: Nova Sci. Publ. Inc., 2012, pp. 229–244.

    Google Scholar 

  120. Dyakov, Y.T., Population Biology of Plant Pathogen Fungi, Moscow: Muravei, 1998.

    Google Scholar 

  121. Dmitriev, A.P., Guscha, M.I., Dyachenko, A.I., and Grodzinsky, D.M., Effect of low dose chronic irradiation on plant immunity potential and virulence of plant pathogenic fungi, in Science-Practical Conf. within the Framework of International Forum “Radioecology-2013 Chornobyl–Fukusima Consequences,” Kyiv, 2013, pp. 128–130.

    Google Scholar 

  122. Dmitriev, A.P., Grodzinsky, D.M., Guscha, N.I., and Dyachenko, A.I., Effect of low dose chronic radiation on plant-pathogen interactions in 30-km Chernobyl exclusion zone, in Science-Practical Int. Conf. “Radiobiology-2014,” Kyiv, 2014, pp. 13–17.

    Google Scholar 

  123. Garnaga, M.I., 30-km alienation zone of Chernobyl atomic station is the reservation of harmful objects of agricultural production, Visnik Agricult. Sci., 2001, vol. 4, pp. 51–53.

    Google Scholar 

  124. Shevchenko, A.V., Budzanivska, I.G., Shevchenko, T.P., Polischuk, V.P., and Spaar, D., Plant virus infection development as affected by heavy metal stress, Arch. Phytopath. Plant Prot., 2004, vol. 37, no. 4, pp. 139–146.

    Article  CAS  Google Scholar 

  125. Dmitriev, A.P., Guscha, N.I., Dyachenko, A.I., and Grodzinsky, D.M., Microevolution processes in the 30-km Chernobyl exclusion zone, in IV International Conference “Modern Problems of Genetics, Radiobiology, Radioecology, and Evolution”, St. Petersburg, 2015, p. 107.

    Google Scholar 

  126. Polischuk, V.P., Shevchenko, T.P., Budzanivska, I.G., Shevchenko, A.V., Demyanenko, F.P., and Boyko, A.L., Effects of radioactive and chemical pollution on plant virus frequency distribution, NATO Security Through Science Series—Environmental Security, 2005, vol. 2, pp. 87–92.

    Article  Google Scholar 

  127. Polischuk, V.P., Shevchenko, O.V., Budzanivska, I.G., and Shevchenko, T.P., Abiotic environmental factors: effects on epidemiology of plant virus infections, in Virus Diseases and Crop Biosecurity, Cooper, I., Eds., Springer, 2006, pp. 121–132.

    Chapter  Google Scholar 

  128. Dmitriev, A., Shevchenko, O., Polischuk, V., and Guscha, N., Effects of low dose chronic radiation and heavy metals on plants and their fungal and virus infections, Data Sci. J., 2009, vol. 8, no. 24, pp. 49–66.

    Google Scholar 

  129. Polischuk, V.P., Budzanivska, I.G., Ryzhuk, S.M., Patyka, V.P., and Boyko, A.L., Monitoring of Viral Diseases of Plants in Bioecosystems of Ukraine, Kiev: Phytosociocenter, 2001.

    Google Scholar 

  130. Polischuk, V., Boyko, A., Spaar, D., Budzanivska, I., Boubriak, O., and Tyvonchuk, T., Monitoring of some phytoviral infections in Ukraine, Arch. Phytopath. Plant Prot., 1998, vol. 31, no. 5, pp. 459–464.

    Article  Google Scholar 

  131. Tyvonchuk, T.P., Polischuk, V.P., and Boyko, A.L., Study of strain diversity of tobacco mosaic virus in Ukraine, Agroecol. Biotechnol., 1998, vol. 2, pp. 209–213.

    Google Scholar 

  132. Tyvonchuk, T.P., Polischuk, V.P., Boyko, A.L., and Shevchenko, A.V., A comparative study of molecular and biological properties of two isolates TMV and its common strain U1, in 5th Congr of EFPP, Italy, 2000, pp. 228–231.

    Google Scholar 

  133. Shevchenko, T.P., Tyvonchuk, T.Y., Viter, S.S., Radavsky, Y.L., Boyko, A.L., and Polischuk, V.P., Comparison of capsid proteins of Ukrainian isolates and common strain of tobacco mosaic virus after trypsin fragmentation, Biopolym. Cell, 2002, vol. 18, no. 5, pp. 429–435.

    Article  CAS  Google Scholar 

  134. Polischuk, V.P., Budzanivska, I.G., and Shevchenko, O.V., Spread of some virus diseases among representatives of wild flora in Chernobyl region, in 12th International Plant Virus Epidemiology Symposium, 2013, Arusha, Tanzania, 2013, p. 34.

    Google Scholar 

  135. Kripka, A.V., Report Departm. Biophysics and Radiobiology, Institute of Cell biology and Genetic Engineering, Natl. Acad. Sci. Ukraine, Kiev: Reports/Institute of Cell Biology and Genetic Engineering, 2010.

    Google Scholar 

  136. Skok, A.V., Variability of reproductive and growth processes of Scots pine in various areas of chronic radioactive contamination by Chernobyl NPP in southern non-Chernozem Russian Federation, Doctoral Sci. Dissertation, Bryansk, 2005.

    Google Scholar 

  137. Zainullin, V.G., Genetic Effects of Chronic Irradiation by Low Dose Ionizing Radiation, St-Petersburg, Nauka, 1998.

    Google Scholar 

  138. Grodzinskii, D.M., Response of the plant world on chronic irradiation in the zone of the Chernobyl nuclear power station, in The Lessons of Chernobyl 25 Years Later, Burlakova, E.B., Eds., New York: Nova Sci. Publ. Inc., 2012, pp. 209–228.

    Google Scholar 

  139. Lorimore, S.A., Coates, P.J., and Wright, E.G., Radiation- induced genomic instability and bystander effects: interrelated nontargeted effects of exposure to ionizing radiation, Oncogene, 2003, vol. 22, no. 45, pp. 7058–7069.

    Article  CAS  PubMed  Google Scholar 

  140. Møller, A.P., Barnier, F., and Mousseau, T.A., Ecosystems effects 25 years after Chernobyl: pollinators, fruit set and recruitment, Oecologia, 2012, vol. 170, no. 4, pp. 1155–1165.

    Article  PubMed  Google Scholar 

  141. Møller, A.P. and Mousseau, T.A., Determinants of interspecific variation population declines of birds after exposure to radiation at Chernobyl, J. Appl. Ecol., 2007, vol. 44, no. 5, pp. 909–919.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Boubriak.

Additional information

Original Russian Text © I. Boubriak, T. Akimkina, V. Polischuk, A. Dmitriev, S. McCready, D. Grodzinsky, 2016, published in Tsitologiya i Genetika, 2016, Vol. 50, No. 6, pp. 34–59.

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubriak, I., Akimkina, T., Polischuk, V. et al. Long term effects of Chernobyl contamination on DNA repair function and plant resistance to different biotic and abiotic stress factors. Cytol. Genet. 50, 381–399 (2016). https://doi.org/10.3103/S0095452716060049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716060049

Keywords

Navigation