Skip to main content
Log in

Introgression of Aegilops mutica genes into common wheat genome

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Introgression of genetic material from wheat wild relatives into the common wheat genome remains important. This is a natural and inexhaustible source of enrichment of the wheat gene pool with genes that improve wheat’s adaptive potential. Hexaploid lines F4–F5 of wheat type were developed via hybridization of common wheat Aurora (AABBDD) and genome-substituted amphidiploid Aurotica (AABBTT). The hexaploid genome of the latter includes the diploid genome TT from wheat relative Aegilops mutica instead of subgenome DD of common wheat. F1–F3 hybrids had limited self-fertility, which had substantially increased for some derivatives in F4–F5. For all generations, development of the lines was accompanied by cytogenetic control of the chromosome numbers. The chromosome numbers varied in general from 33 to 46 depending upon generation. In most descendants, that number was 42 chromosomes in F4 when plants with chromosome numbers 40–44 were selected in each generation. F5 lines originate from nine selffertile F2 plants, differ from Aurora according to some morphological characters, and have alien DNA in their genome as was demonstrated by DNA dot-blot hybridization with genomic DNA of Aegilops mutica as a probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedö, Z. and Láng, L., Wheat breeding: current status and bottlenecks, Alien Introgression in Wheat, in Cytogenetics, Molecular Biology, and Genomics, Molnár-Láng, M., Ceoloni, C., and Doležel, J., Eds., Springer, 2015, chap. 3, pp. 77–101.

    Google Scholar 

  2. Mujeeb-Kazi, A., Kazi, A.G., Dundas, I., Rasheed, A., Ogbonnaya, F., Kishii, M., Bonnett, D., Wang, R.R.C., Xu, S., Chen, P., Mahmood, T., Bux, H., and Farrakh, S., Genetic diversity for wheat improvement as a conduit to food security, in Advances in Agronomy, Sparks, D.L., Ed., Elsevier, 2013, vol. 122, pp. 179–258.

    Article  CAS  Google Scholar 

  3. Ceoloni, C., Kuzmanovic, L., Forte, P., Virili, M.E., and Bitti, A., Wheat-perennial triticeae introgressions: major achievements and prospects, in alien introgression in wheat. cytogenetics, Molecular Biology, and Genomics, Molnár-Láng, M., Ceoloni, C., and Doležel, J., Eds., Springer, 2015, chap. 11, pp. 179–257.

    Google Scholar 

  4. Gill, B.S., Friebe, B., Raupp, W.J., et al., Wheat genetic resource center: the first 25 years, Adv. Agron., 2006, vol. 89, pp. 73–133.

    Article  Google Scholar 

  5. Ogbonnaya, F.C., Abdalla, O.S., Mujeeb-Kazi, A., Kazi, A.G., Xu, S.S., Gosman, N., Lagudah, E.S., Bonnett, D.G., Sorrells, M.E., and Tsujimoto, H., Synthetic hexaploids: harnessing species of primary gene pool for wheat improvement, Plant Breed. Rev., 2013, vol. 37, pp. 35–122.

    Google Scholar 

  6. Liu, W.X., Jin, Y., Rouse, M., Friebe, B., Gill, B.S., and Pumphrey, M.O., Development and characterization of wheat–Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust, Theor. Appl. Genet., 2011, vol. 122, no. 8, pp. 1537–1545.

    Article  PubMed  Google Scholar 

  7. Liu, W., Rouse, M., Friebe, B., Jin, Y., Gill, B.S., and Pumphrey, M.O., Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin, Chromosome Res., 2011, vol. 19, no. 5, pp. 669–682.

    PubMed  CAS  Google Scholar 

  8. Kuraparthy, V., Chhuneja, P., Dhaliwal, H.S., Kaur, S., Bowden, R.L., and Gill, B.S., Characterization and mapping of cryptic alien introgressions from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat, Theor. Appl. Genet., 2007, vol. 114, no. 8, pp. 1379–1389.

    Article  PubMed  CAS  Google Scholar 

  9. Mago, R., Verlin, D., Zhang, P., Bansal, U., Bariana, H., Jin, Y., Ellis, J., Hoxha, S., and Dundas, I., Development of wheat–Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and new stem rust resistance genes on the 2S#1 chromosome, Theor. Appl. Genet., 2013, vol. 126, no. 12, pp. 2943–2955.

    Article  PubMed  CAS  Google Scholar 

  10. Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., and Gill, B.S., Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status, Euphytica, 1996, vol. 91, pp. 59–87.

    Article  Google Scholar 

  11. Tang, S., Li, Z., Jia, X., and Larkin, P.J., Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease- resistant derivatives in wheat, Theor. Appl. Genet., 2000, vol. 100, nos. 3–4, pp. 344–352.

    Article  CAS  Google Scholar 

  12. Han, F., Liu, B., Fedak, F., and Liu, Z., Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis, Theor. Appl. Genet., 2004, vol. 109, pp. 1070–1076.

    Article  PubMed  CAS  Google Scholar 

  13. Sharp, P.J., Chao, S., Desai, S., and Gale, M.D., The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm, Theor. Appl. Genet., 1989, vol. 78, pp. 342–348.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, Q., Lu, Y.L., Jahier, J., and Bernard, M., Identification of wheat–Agropyron cristatum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes, Theor. Appl. Genet., 1994, vol. 89, no. 1, pp. 70–75.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, R.C., Larson, S.R., and Jensen, K.B., Analysis of Thinopyrum bessarabicum, T. elongatum, and T. junceum chromosomes using EST-SSR markers, Genome, 2010, vol. 53, no. 12, pp. 1083–1089.

    Article  PubMed  CAS  Google Scholar 

  16. Kilian, B., Mammen, K., Millet, E., Sharma, R., Graner, A., Salamini, F., Hammer, K., and Ozkan, H., Aegilops, in Wild Crop Relatives: Genomic and Breeding Resources. Cereals, Kole, Ch., Ed., Springer, 2013, pp. 1–76.

    Google Scholar 

  17. Dundas, I., Verlin, D., and Islam, R., Chromosomal locations of stem and leaf rust resistance genes from Ae. caudata, Ae. searsii and Ae. mutica, in BGRI Workshop, September 17–20, 2015, Sydney. http://www.globalrust. org/sites/default/files/posters/dundas.pdf.

  18. Zhirov, E.G., Wheat Genomes and Their Reconstitution, Doctoral (Biol.) Dissertation, Krasnodar, 1989.

    Google Scholar 

  19. Iefimenko, T.S., Fedak, Yu.G., Antonyuk, M.Z., and Ternovska, T.K., Microsatellite analysis of chromosomes from the fifth homoeologous group in the introgressive Triticum aestivum/Amblyopyrum muticum wheat lines, Cytol. Genet., 2014, vol. 48, no. 6, pp. 189–197.

    Google Scholar 

  20. Yang, Y., Sornaraj, P., Borisjuk, N., Kovalchuk, N., and Haefele, S.M., Transcriptional network involved in drought response and adaptation in cereals, in Abiotic and Biotic Stress in Plants Recent Advances and Future Perspectives, Shanker, A.K. and Shanker, Ch., Eds., Publ. ExLi4EvA, 2016, chap. 1, pp. 3–29.

    Google Scholar 

  21. Zhirov, E.G. and Ternovskaya, T.K., Genome engineering in wheat, Vestnik S.-Kh. Nauk, 1984, vol. 10, pp. 58–66.

    Google Scholar 

  22. Waninge, J., A modified method of counting chromosomes in root tip cells of wheat, Euphytica, 1965, vol. 14, no. 3, pp. 249–250.

    Article  Google Scholar 

  23. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor laboratory press, 1989.

    Google Scholar 

  24. Zhirov, E.G., Ternovskaya, T.K., and Bessarab, K.S., Investigation on wheat cytogenetics at Krasnodar Lukyanenko Research Institute of Agriculture, EWAC Newsletter, Plant Breeding Inst., Cambridge, 1986, pp. 48–52.

    Google Scholar 

  25. Kihara, H., Wheat Studies. Retrospect and Prospects, Elsevier, 1982.

    Google Scholar 

  26. Dvorak, J., Genetic variability in Aegilops speltoides affecting homoeologous pairing in wheat, Can. J. Genet. Cytol., 1972, vol. 14, no. 2, pp. 371–380.

    Article  Google Scholar 

  27. Maestra, B. and Naranjo, T., Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat, Theor. Appl. Genet., 1998, vol. 97, nos. 1–2, pp. 181–186.

    Article  Google Scholar 

  28. Jones, J.K. and Majisu, B.N., The homoeology of Aegilops mutica chromosomes, Can. J. Genet. Cytol., 1968, vol. 10, no. 3, pp. 620–626.

    Article  Google Scholar 

  29. Ohta, S., Phylogenetic relationship of aegilops mutica boiss. with the diploid species of congeneric Aegilops–Triticum complex, based on the new method of genome analysis using its B-chromosomes, Mem. Coll. Agric. Kyoto Univ., 1991, no. 137, pp. 1–116.

    Google Scholar 

  30. Shirasawa, K., Shiokai, S., Yamaguchi, M., Kishitani, S., and Nishio, T., Dot-blot-SNP analysis for practical plant breeding and cultivar identification in rice, Theor. Appl. Genet., 2006, vol. 113, no. 1, pp. 147–155.

    Article  PubMed  CAS  Google Scholar 

  31. Rey, M.-D. and Prieto, P., Detection of alien genetic introgressions in bread wheat using dot-blot genomic hybridization, Mol. Breed., 2017, vol. 37, no. 3, p. 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Besse, P., McIntyre, C.L., Burner, D.M., and Almeida, C.G., Using genomic slot dot hybridization to assess intergeneric Saccharum erianthus hybrids (Andropogoneae–Saccharinae), Genome, 1997, vol. 40, no. 4, pp. 428–432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Iefimenko.

Additional information

Original Ukrainian Text © T.S. Iefimenko, M.Z. Antonyuk, V.S. Martynenko, A.G. Navalihina, T.K. Ternovska, 2018, published in Tsitologiya i Genetika, 2018, Vol. 52, No. 1, pp. 28–40.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iefimenko, T.S., Antonyuk, M.Z., Martynenko, V.S. et al. Introgression of Aegilops mutica genes into common wheat genome. Cytol. Genet. 52, 21–30 (2018). https://doi.org/10.3103/S0095452718010048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452718010048

Keywords

Navigation