Skip to main content
Log in

Peculiarities of modification by astaxanthin of radiation-induced damages in the genome of human blood lymphocytes exposed in vitro on different stages of the mitotic cycle

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The features of astaxanthin impact (20 μg/mL) in the culture of human blood lymphocytes exposed to γ-radiation (1.0 Gy) on the G0, S, and G2 phases of the cell cycle were studied using Comet assay. Decrease in the level of DNA damages (Tail Moment index) under astaxanthin influence on lymphocytes irradiated in all stages of cell division was established, while, as a result of previous cytogenetic investigations, lack of the modifying action of astaxanthin after irradiation of cells in the G2 stage and radioprotective effect in the G0 stage of the mitotic cycle had been revealed. In G0 phase, the activation of the processes of apoptosis by astaxanthin in irradiated cells with high levels of genomic damages was found. The obtained data demonstrate that astaxanthin has a powerful radioprotective potential, mainly due to its apoptogenic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azqueta, A. and Collins, A.R., Carotenoids and DNA damage, Mutat. Res., 2012, vol. 733, nos. 1–2, pp. 4–13.

    Article  PubMed  CAS  Google Scholar 

  2. Nishida, Y., Yamashita, E., and Miki, W., Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system, Carotenoid Sci., 2007, vol. 11, pp. 16–20.

    Google Scholar 

  3. Ambati, R.R., Phang, S.M., Ravi, S., and Aswathanarayana, R.G., Astaxanthin: sources, extraction, stability, biological activities and its commercial applications, Mar. Drugs, 2014, vol. 12, no. 1, pp. 128–152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lin, K.H., Lin, K.C., Lu, W.J., Thomas, P.A., Jayakumar, T., and Sheu, J.R., Astaxanthin, a carotenoid, stimulates immune responses by enhancing IFN-γ and IL-2 secretion in primary cultured lymphocytes in vitro and ex vivo, Int. J. Mol. Sci., 2015, vol. 17, no. 1. doi 10.3390/ijms17010044

    Google Scholar 

  5. Ohno, T., Shimizu, M., Shirakami, Y., Miyazaki, T., Ideta, T., Kochi, T., Kubota, M., Sakai, H., Tanaka, T., and Moriwaki, H., Preventive effects of astaxanthin on diethylnitrosamine-induced liver tumorigenesis in C57/BL/KsJ-db/db obese mice, Hepatol. Res., 2016, vol. 46, no. 3, pp. 201–209.

    Article  CAS  Google Scholar 

  6. Rao, A.R., Sindhuja, H.N., Dharmesh, S.M., Sankar, K.U., Sarada, R., and Ravishankar, G.A., Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis, J. Agric. Food Chem., 2013, vol. 61, no. 16, pp. 3842–3851.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, X., Zhao, W.E., Hu, L., Zhao, L., and Huang, J., Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARgamma) in K562 cancer cells, Arch. Biochem. Biophys., 2011, vol. 512, no. 1, pp. 96–106.

    Article  PubMed  CAS  Google Scholar 

  8. Pilinska, M.A., Eurinnyi, D.A., Rushkovsky, S.R., and Dybska, I.B., The impact of astaxanthin on radiationinduced chromosome aberrations in human peripheral blood lymphocytes in vitro, Visnyk Ukr. Tovar. Genet. Selekts., 2016, vol. 14, no. 1, pp. 52–57.

    Google Scholar 

  9. Pilinska, M.A., Eurinnyi, D.A., Rushkovsky, S.R., and Dybska, I.B., Genoprotective properties of astaxanthin revealed by ionizing radiation exposure in vitro on human peripheral blood lymphocytes, Probl. Radiat. Med. Radiobiol., 2016, vol. 21, pp. 141–148.

    CAS  Google Scholar 

  10. Kurinnyi, D.A., Rushkovsky, S.R., Dybska, O.B., Dubrovina, G.V., and Pilinska, M.A., Astaxanthin modifies clastogenic effects of ionizing radiation in vitro in peripheral blood lymphocytes of the persons recovered from acute radiation sickness, Exp. Oncol., 2016, vol. 38, no. 4, pp. 280–282.

    Google Scholar 

  11. Kurinnyi, D.A., Rushkovsky, S.R., and Pilinska, M.A., The lack of modifying effect of astaxanthin on cytogenetic effects in irradiated in vitro human peripheral blood lymphocytes on stage G2 of the cell cycle, Dop. Nac. Akad. Nauk Ukraine, 2017, no. 4, pp. 91–95.

    Article  CAS  Google Scholar 

  12. Little, J.B., Genomic instability and radiation, J. Radiol. Prot., 2002, vol. 23, no. 2, pp. 173–181.

    Article  Google Scholar 

  13. Obe, G. and Durante, M., DNA double strand breaks and chromosomal aberrations, Cytogenet. Genome Res., 2010, vol. 128, nos. 1–3, pp. 8–16.

    Article  PubMed  CAS  Google Scholar 

  14. Iliakis, G., Wang, H., Perrault, A.R., Boecker, W., Rosidi, B., Windhofer, F., Wu, W., Guan, J., Terzoudi, G., and Pantelias, G., Mechanisms of DNA double strand break repair and chromosome aberration formation, Cytogenet. Genome Res., 2004, vol. 104, nos. 1–4, pp. 14–20.

    Article  PubMed  CAS  Google Scholar 

  15. Olive, P.L. and Banath, J.P., The comet assay: a method to measure DNA damage in individual cells, Nat. Protoc., 2006, vol. 1, no. 1, pp. 23–29.

    Article  PubMed  CAS  Google Scholar 

  16. Liao, W., McNut, M.A., and Zhu, W.G., The comet assay: a sensitive method for detecting DNA damage in individual cells, Methods, 2009, vol. 48, no. 1, pp. 46–53.

    Article  PubMed  CAS  Google Scholar 

  17. Pedan, L.R. and Pilinska, M.A., Assessment of the stability of chromosomes of peripheral blood lymphocytes of people affected by the factors of the Chernobyl accident, through testing mutagenic burden in vitro, Dop. Nat. Akad. Nauk Ukraine, 2004, vol. 5, pp. 175–179.

    Google Scholar 

  18. Afanasieva, K., Chopei, M., Zazhytska, M., Vikhreva, M., and Sivolob, A., DNA loop domain organization as revealed by single-cell gel electrophoresis, Biochim. Biophys. Acta, 2013, vol. 1833, no. 12, pp. 3237–3244.

    Article  PubMed  CAS  Google Scholar 

  19. Afanasieva, K., Zazhytska, M., and Sivolob, A., Kinetics of comet formation in single-cell gel electrophoresis: loops and fragments, Electrophoresis, 2010, vol. 31, pp. 512–519.

    Article  PubMed  CAS  Google Scholar 

  20. Gyori, B.M., Venkatachalam, G., Thiagarajan, P.S., Hsu, D., and Clement, M., OpenComet: an automated tool for comet assay image analysis, Redox Biol., 2014, vol. 9, no. 2, pp. 457–465.

    Article  CAS  Google Scholar 

  21. Afanasieva, K., Chopei, M., Lozovik, A., Semenova, A., Lukash, L., and Sivolob, A., DNA loop domain organization in nucleoids from cells of different types, Biochem. Biophys. Res. Commun., 2017, vol. 483, no. 1, pp. 142–146.

    Article  PubMed  CAS  Google Scholar 

  22. Atramentova, L.A., Dizain i statistika (Design and Statistics), Kharkov: NTMT, 2014.

    Google Scholar 

  23. Liu, X., Song, M., Gao, Z., Cai, X., Dixon, W., Chen, X., Cao, Y., and Xiao, H., Stereoisomers of astaxanthin inhibit human colon cancer cell growth by inducing G2/M cell cycle arrest and apoptosis, J. Agric. Food Chem., 2016, vol. 64, no. 41, pp. 7750–7759.

    Article  CAS  Google Scholar 

  24. Song, X.D., Zhang, J.J., Wang, M.R., Liu, W.B., Gu, X.B., and Lv, C.J., Astaxanthin induces mitochondria- mediated apoptosis in rat hepatocellular carcinoma CBRH-7919 cells, Biol. Pharm. Bull., 2011, vol. 34, no. 6, pp. 839–844.

    Article  PubMed  CAS  Google Scholar 

  25. Roser, S., Pool-Zobel, B.L., and Rechkemmer, G., Contribution of apoptosis to responses in the comet assay, Mutat. Res., 2001, vol. 497, nos. 1–2, pp. 169–175.

    Article  PubMed  CAS  Google Scholar 

  26. Von Sonntag, C., Free-Radical-Induced DNA Damage and Its Repair. A Chemical Perspective, Springer, 2006.

    Book  Google Scholar 

  27. Kim, J.H., Park, J.J., Lee, B.J., Joo, M.K., Chun, H.J., Lee, S.W., and Bak, Y.T., Astaxanthin inhibits proliferation of human gastric cancer cell lines by interrupting cell cycle progression, Gut Liver, 2016, vol. 10, no. 3, pp. 369–374.

    PubMed  CAS  Google Scholar 

  28. Belloni, P., Meschini, R., Czene, S., Harms-Ringdahl, M., and Palitti, F., Studies on radiation-induced apoptosis in G0 human lymphocytes, Int. J. Radiat. Biol., 2005, vol. 81, no. 8, pp. 587–599.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kurinnyi.

Additional information

Original Ukrainian Text © D.A. Kurinnyi, S.R. Rushkovsky, O.M. Demchenko, M.A. Pilinska, 2018, published in Tsitologiya i Genetika, 2018, Vol. 52, No. 1, pp. 52–58.

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurinnyi, D.A., Rushkovsky, S.R., Demchenko, O.M. et al. Peculiarities of modification by astaxanthin of radiation-induced damages in the genome of human blood lymphocytes exposed in vitro on different stages of the mitotic cycle. Cytol. Genet. 52, 40–45 (2018). https://doi.org/10.3103/S0095452718010073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452718010073

Keywords

Navigation