Skip to main content
Log in

Expression of Ptgs2 and Tgfb1 Genes in Rat Cartilage Cells of the Knee under Conditions of Osteoarthritis

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The biochemical and molecular analysis of rat cartilage tissue with monosodium iodoacetateinduced osteoarthritis established the increase in the expression levels of Ptgs2 and Tgfb1 genes and the increase in ROS production compared to the corresponding control group of animals. This indicates the activation of inflammatory and destructive processes, impairment of the cellular redox balance, and the development of oxidative stress in the tissues. When using a chondroitin sulfate preparation under the same conditions, the expression levels of these genes, as well as the content of the superoxide anion radical and organic hydroperoxides, were closer to control values compared with experimental osteoarthritis, indicating the antiinflammatory and antioxidant properties of the drug used and its efficiency in osteoarthritis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dranitsina, A.S., Dvorshchenko, K.O., Grebinyk, D.M., and Ostapchenko, L.I., The impact of oxidative stress on Par2, Ptgs2 genes expression in rat duodenal epithelial cells under conditions of prolonged gastric hypochlorhydria and with administration of multiprobiotic, J. Appl. Pharm. Sci., 2016, vol. 6, no. 12, pp. 162–169.

    CAS  Google Scholar 

  2. Dranitsina, A.S., Taburets, O.V., Dvorshchenko, K.O., Grebinyk, D.M., Beregova, T.V., and Ostapchenko, L.I., Tgfb1, Ptgs2 genes expression during dynamics of wound healing and with the treatment of melanin, Res. J. Pharm. Biol. Chem. Sci., 2017, vol. 8, no. 1, pp. 2014–2023.

    CAS  Google Scholar 

  3. Sandell, L.J., Xing, X., Franz, C., Davies, S., Chang, L.W., and Patra, D., Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1β, Osteoarthritis Cartilage, 2008, vol. 16, no. 12, pp. 1560–1571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Au, R.Y., Al-Talib, T.K., Au, A.Y., Phan, P.V., and Frondoza, C.G., Avocado soybean unsaponifiables (ASU) suppress TNF-α, IL-1β, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular chondrocytes and monocyte/macrophages, Osteoarthritis Cartilage, 2007, vol. 15, no. 11, pp. 1249–1255.

    PubMed  CAS  Google Scholar 

  5. Felson, D.T., Lawrence, R.C., Dieppe, P.A., Hirsch, R., Helmick, C.G., Jordan, J.M., Kington, R.S., Lane, N.E., Nevitt, M.C., Zhang, Y., Sowers, M., McAlindon, T., Spector, T.D., Poole, A.R., Yanovski, S.Z., Ateshian, G., Sharma, L., Buckwalter, J.A., Brandt, K.D., and Fries, J.F., Osteoarthritis: new insights. Part 1. The disease and its risk factors, Ann. Intern. Med., 2000, vol. 133, no. 8, pp. 635–646.

    Article  PubMed  CAS  Google Scholar 

  6. Goldring, S.R. and Goldring, M.B., The role of cytokines in cartilage matrix degeneration in osteoarthritis, Clin. Orthop. Relat. Res., 2004, no. 427, pp. S27–S36.

    Article  Google Scholar 

  7. Wu, K.K., Cyclooxygenase 2 induction: molecular mechanism and pathophysiologic roles, J. Lab. Clin. Med., 1996, vol. 128, no. 3, pp. 242–245.

    Article  PubMed  CAS  Google Scholar 

  8. Benito, M.J., Veale, D.J., Fitzgerald, O., van den Berg, W.B., and Bresnihan, B., Synovial tissue inflammation in early and late osteoarthritis, Ann. Rheum. Dis., 2005, vol. 64, no. 9, pp. 1263–1267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pohlers, D., Beyer, A., Koczan, D., Wilhelm, T., Thiesen, H.J., and Kinne, R.W., Constitutive upregulation of the transforming growth factor-β pathway in rheumatoid arthritis synovial fibroblasts, Arthritis Res. Ther., 2007, vol. 9, p. R59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ota, K., Quint, P., Weivoda, M.M., Ruan, M., Pederson, L., Westendorf, J.J., Khosla, S., and Oursler, M.J., Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors, Bone, 2013, vol. 57, no. 1, pp. 68–75.

    Article  PubMed  CAS  Google Scholar 

  11. Shi-Wen, X., Leask, A., and Abraham, D., Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis, Cytokine Growth Factor Rev., 2008, vol. 19, no. 2, pp. 133–144.

    Article  PubMed  CAS  Google Scholar 

  12. Barnes, E.V. and Edwards, N.L., Treatment of osteoarthritis, South Med. J., 2005, vol. 98, no. 2, pp. 205–209.

    Article  PubMed  Google Scholar 

  13. Volpi, N., Quality of different chondroitin sulfate preparations in relation to their therapeutic activity, J. Pharm. Pharmacol., 2009, vol. 61, no. 10, pp. 1271–1280.

    Article  PubMed  CAS  Google Scholar 

  14. Lauder, R.M., Chondroitin sulfate: a complex molecule with potential impacts on a wide range of biological systems, Complemen. Ther. Med., 2009, vol. 17, no. 1, pp. 56–62.

    Article  Google Scholar 

  15. Largo, R., Roman-Blas, J.A., Moreno-Rubio, J., Sánchez-Pernaute, O., Martínez-Calatrava, M.J., Castaneda, S., and Herrero-Beaumont, G., Chondroitin sulfate improves synovitis in rabbits with chronic antigeninduced arthritis, Osteoarthritis Cartilage, 2010, vol. 18, no. 1, pp. S17–S23.

    Article  PubMed  Google Scholar 

  16. Zhang, R., Brennan, M.L., Shen, Z., MacPherson, J.C., Schmitt, D., Molenda, C.E., and Hazen, S.L., Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation, J. Biol. Chem., 2002, vol. 277, no. 48, pp. 46116–46122.

    Article  PubMed  CAS  Google Scholar 

  17. Caraglia, M., Beninati, S., Giuberti, G., D’Alessandro, A.M., Lentini, A., Abbruzzese, A., Bove, G., Landolfi, F., Rossi, F., Lampa, E., and Costantino, M., Alternative therapy of earth elements increases the chondroprotective effects of chondroitin sulfate in mice, Exp. Mol. Med., 2005, vol. 37, no. 5, pp. 476–481.

    Article  PubMed  CAS  Google Scholar 

  18. Janusz, M.J., Little, C.B., King, L.E., Hookfin, E.B., Brown, K.K., Heitmeyer, S.A., Caterson, B., Poole, A.R., and Taiwo, Y.O., Detection of aggrecanase-and MMP-generated catabolic neoepitopes in the rat iodoacetate model of cartilage degeneration, Osteoarthritis Cartilage, 2004, vol. 12, no. 9, pp. 720–728.

    Article  PubMed  CAS  Google Scholar 

  19. Sutherland, M.W. and Learmonth, B.A., The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase, Free Radic. Res., 1997, vol. 27, no. 3, pp. 283–289.

    Article  PubMed  CAS  Google Scholar 

  20. Able, A.J., Guest, D.I., and Sutherland, M.W., Use of new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophtora parasitica varnicotianae, Plant Physiol., 1998, vol. 177, no. 2, pp. 491–499.

    Article  Google Scholar 

  21. Jiang, Z.Y., Woollard, A.C., and Wolff, S.P., Hydrogen peroxide production during experimental protein glycation, FEBS Lett., 1990, vol. 268, no. 1, pp. 69–71.

    Article  PubMed  CAS  Google Scholar 

  22. Nourooz-Zadeh, J., Tajaddini-Sarmadi, J., and Wolff, S.P., Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay, Anal. Biochem., 1994, vol. 220, no. 2, pp. 403–409.

    Article  PubMed  CAS  Google Scholar 

  23. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    PubMed  CAS  Google Scholar 

  24. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanatephenolchloroform extraction, Anal. Biochem., 1987, vol. 162, no. 1, pp. 156–159.

    Article  PubMed  CAS  Google Scholar 

  25. Livak, E.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402–408.

    Article  PubMed  CAS  Google Scholar 

  26. Kamata, H. and Hirata, H., Redox regulation of cellular signalling, Cell Signal., 1999, vol. 11, no. 1, pp. 1–14.

    Article  PubMed  CAS  Google Scholar 

  27. Starkman, B.G., Cravero, J.D., Delcarlo, M., and Loeser, R.F., Igf-i stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK, Biochem. J., 2005, vol. 389, pp. 723–729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Haringman, J.J., Smeets, T.J.M., Reinders-Blankert, P., and Tak, P.P., Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis, Ann. Rheum. Dis., 2006, vol. 65, no. 3, pp. 294–300.

    Article  PubMed  CAS  Google Scholar 

  29. Conte, A., Volpi, N., Palmieri, L., Bahous, I., and Ronca, G., Biochemical and pharmacokinetic aspects of oral treatment with chondroitin sulfate, Arzneimittelforschung, 1995, vol. 45, no. 8, pp. 918–925.

    PubMed  CAS  Google Scholar 

  30. Pelletier, J.P., Martel-Pelletier, J., and Abramson, S.B., Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets, Arthritis Rheum., 2001, vol. 44, no. 6, pp. 1237–1247.

    Article  PubMed  CAS  Google Scholar 

  31. Chan, P.S., Caron, J.P., Rosa, G.J., and Orth, M.W., Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants, Osteoarthritis Cartilage, 2005, vol. 13, no. 5, pp. 387–394.

    Article  PubMed  CAS  Google Scholar 

  32. Jomphe, C., Gabriac, M., Hale, T.M., Héroux, L., Trudeau, L.E., Deblois, D., Montell, E., Vergés, J., and Souich, P., Chondroitin sulfate inhibits the nuclear translocation of nuclear factor-kappa B in interleukin-1beta-stimulated chondrocytes, Basic Clin. Pharmacol. Toxicol., 2008, vol. 102, no. 1, pp. 59–65.

    PubMed  CAS  Google Scholar 

  33. Kwan Tat, S., Pelletier, J.-P., Lajeunesse, D., Fahmi, H., Lavigne, M., and Martel-Pelletier, J., The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells, Clin. Exp. Rheumatol., 2008, vol. 26, no. 2, pp. 295–304.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dranitsina.

Additional information

Original Ukrainian Text © A.S. Dranitsina, K.O. Dvorshchenko, A.G. Korotkiy, D.M. Grebinyk, L.I. Ostapchenko, 2018, published in Tsitologiya i Genetika, 2018, Vol. 52, No. 3, pp. 33–39.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dranitsina, A.S., Dvorshchenko, K.O., Korotkiy, A.G. et al. Expression of Ptgs2 and Tgfb1 Genes in Rat Cartilage Cells of the Knee under Conditions of Osteoarthritis. Cytol. Genet. 52, 192–197 (2018). https://doi.org/10.3103/S0095452718030039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452718030039

Keywords

Navigation