Skip to main content
Log in

Accumulation of Indolyl-3-Acetic and Abscisic Acids by “Hairy” Roots of Artemisia vulgaris

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

High-performance liquid chromatography–mass spectrometry has been used to study the character of the accumulation and balance of endogenous indolyl-3-acetic (IAA) and abscisic (ABA) acids in the “hairy” roots of Artemisia vulgaris obtained by transformation with Agrobacterium rhizogenes agropine strain A4. The free IAA content was significantly higher than the level of the conjugated form of the hormone. The highest amount of the active IAA form (554.4 ± 27.7 ng/g fresh weight) was detected in line no. 2. The free form of ABA predominated in the roots of control samples, where its level was significantly higher than in the transformed lines. The “hairy” roots accumulated a conjugated form of ABA, and the highest content of this compound amounted to 459.6 ± 23.0 ng/g of fresh weight (in line no. 4). The architecture of the transformed roots was marked by significant branching and lateral root formation; active accumulation of biomass was detected. The results obtained demonstrate changes in the endogenous phytohormone balance in the “hairy” A. vulgaris roots, namely, a trend to predomination of the free IAA form and a significant decrease of the ABA content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Munné-Bosch, S. and Müller, M., Hormonal cross-talk in plant development and stress responses, Front. Plant Sci., 2013, vol. 4, pp. 5–6. doi 10.3389/ fpls.2013.00529

    Article  Google Scholar 

  2. Kolupaev, Yu.Ye. and Kosakivska, I.V., The role of signal systems and phytohormones in realization of plant stress response, Ukr. Bot. J., 2008, vol. 65, no. 3, pp. 418–430.

    CAS  Google Scholar 

  3. Park, Y.G., Mun, B.G., Kang, S.M., Hussain, A., Shahzad, R., Seo, C.W., Kim, A.Y., Lee, S.U., Oh, K.Y., Lee, D.Y., Lee, I.J., and Yun, B.W., Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones, PLoS One, 2017, vol. 12, no. 3. e0173203. doi 10.1371/journal.pone.0173203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Enders, T.A. and Strader, L.C., Auxin activity: past, present, and future, Am. J. Bot., 2015, vol. 102, no. 2, pp. 180–196. doi 10.3732/ajb.1400285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Spiess, G.M., Hausman, A., Yu, P., Cohen, J.D., Rampey, R.A., and Zolman, B.K., Auxin input pathway disruptions are mitigated by changes in auxin biosynthetic gene expression in Arabidopsis, Plant Physiol., 2014, vol. 165, pp. 1092–1104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Endo, A., Okamoto, M., and Koshiba, T., ABA Biosynthetic and Catabolic Pathways, Dordrecht: Springer Science + Business Media, 2014.

  7. Rowe, J.H., Topping, J.F., Liu, J., and Lindsey, K., Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin, New Phytol., 2016, vol. 211, no. 1, pp. 225–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gonzalez, A.A., Agbevenou, K., Herrbach, V., Gough, C., and Bensmihen, S., Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula, Plant Signal. Behav., 2015, vol. 10, no. 1. e977741. doi 10.4161/15592324.2014.977741

    Article  PubMed  CAS  Google Scholar 

  9. Luo, X., Chen, Z., Gao, J., and Gong, Z., Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis, Plant J., 2014, vol. 79, pp. 44–55.

    Article  PubMed  CAS  Google Scholar 

  10. Sakata, Y., Komatsu, K., and Takezawa, D., ABA as a universal plant hormone, Progr. Bot., 2014, vol. 75, pp. 57–96.

    CAS  Google Scholar 

  11. Drobot, K.O., Ostapchuk, A.M., Duplij, V.P., and Matvieieva, N.A., Effect of Agrobacterium rhizogenes-mediated transformation on the biologically active compounds content in Artemisia vulgaris L. transgenic roots, Plant Physiol. Genet., 2016, vol. 48, no. 5, pp. 550–555.

    Google Scholar 

  12. Sujatha, G., Zdravkovic-Korac, S., Calic, D., Flamini, G., and Ranjitha, KumariB.D., High-efficiency Agrobacterium rhizogenes-mediated genetic transformation in Artemisia vulgaris: Hairy root production and essential oil analysis, Industrial Crops Products, 2013, vol. 44, pp. 643–652. org/ doi 10.1016/j.indcrop.2012.09.007

  13. Ali, M., Kiani, B.H., Mannan, A., Ismail, T., and Mirza, B., Enhanced production of artemisinin by hairy root cultures of Artemisia dubia, J. Med. Plants Res., 2012, vol. 6, no. 9, pp. 1619–1622. doi 10.5897/JMPR11.1268

    CAS  Google Scholar 

  14. Sparks, C.A., Doherty, A., and Jones, H.D., Genetic transformation of wheat via Agrobacterium-mediated DNA delivery, Meth. Mol. Biol., 2014, vol. 1099, pp. 235–250. doi 10.1007/978-1-62703-715-0_19

    Article  CAS  Google Scholar 

  15. Kleinboelting, N., Huep, G., Appelhagen, I., Viehoever, P., Li, Y., and Weisshaar, B., The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair-based insertion mechanism, Mol. Plant, 2015, vol. 8, no. 11, pp. 1651–1664. https://doi.org/10.1016/j.molp.2015.08.011

    Article  PubMed  CAS  Google Scholar 

  16. Boiko, G.V., Identification key for the species of the genus Artemisia L. (Asteraceae) of the flora Ukraine, Ukr. Bot. J., 2013, vol. 70, no. 4, pp. 479–481.

    Article  Google Scholar 

  17. Correa-Ferreira, M.L., Verdan, M.H., and Reis Li-vero, F.A., Inulin-type fructan and infusion of Artemisia vulgaris protect the liver against carbon tetrachloride-induced liver injury, Phytomedicine, 2017, vol. 24, pp. 68–76.

    Article  PubMed  CAS  Google Scholar 

  18. Anwar, F., Ahmad, N., Alkharfy, K.M., and Gilani, A.-ul-H., Mugwort (Artemisia vulgaris) oils, in Essential Oils in Food Preservation, Flavor and Safety, Preedy, V.R., Ed., Elsevier, 2015, 1st ed., pp. 573–579.

    Google Scholar 

  19. Lian, G., Li, F., Yin, Y., Chen, L., and Yang, J., Herbal extract of Artemisia vulgaris (mugwort) induces antitumor effects in HCT-15 human colon cancer cells via autophagy induction, cell migration suppression and loss of mitochondrial membrane potential, J. Buon., 2018, vol. 23, no. 1, pp. 73–78.

    PubMed  Google Scholar 

  20. Urban, J., Kokoska, L., Langrova, I., and Matejkova, J., In vitro anthelmintic effects of medicinal plants used in Czech Republic, Pharm. Biol., 2008, vol. 46, nos. 10–11, pp. 808–813.

    Article  Google Scholar 

  21. Bamoniri, A., Mirjalili, B.B.F., Mazoochi, A., and Batooli, H., Chemical composition of Artemisia vulgaris L. from Kashan area isolated by nano scale injection, Iran. J. Org. Chem., 2010, vol. 2, no. 4, pp. 533–536.

    Google Scholar 

  22. Judzentiene, A. and Buzelyte, J., Chemical composition of essential oils of Artemisia vulgaris L. (mugwort) from North Lithuania, Chemija, 2006, vol. 17, no. 1, pp. 12–15.

    CAS  Google Scholar 

  23. Hristova, L., Damyanova, E., Doichinova, Z., and Kapchina-Toteva, V., Effect of 6-benzylaminopurine on micropropagation of Artemisia chamaemelifolia Vill. (Asteraceae), Bulg. J. Agricult. Sci., 2013, vol. 9, no 2, pp. 57–60.

    Google Scholar 

  24. Sujatha, G. and Ranjitha, KumariB.D., Effect of phytohormones on micropropagation of Artemisia vulgaris L., Acta Physiol. Plant., 2007, vol. 29, no. 3, pp. 189–195. doi 10.1007/s11738-006-0023-0

    Article  CAS  Google Scholar 

  25. Sujatha, G. and Ranjitha, KumariB.D., Micropropagation, encapsulation and growth of Artemisia vulgaris node explants for germplasm preservation, South African J. Bot., 2008, vol. 74, no. 1, pp. 93–100.

    Article  CAS  Google Scholar 

  26. Liu, C.Z., Murch, S.J., El-Demerdash, M., and Saxena, P.K., Regeneration of the Egyptian medicinal plant Artemisia judaica L., Plant Cell Rep., vol. 21, no. 6, pp. 525–530. doi 10.1007/s00299-002-0561-x

  27. Rasool, R., Bashir, A.G., Kamili, A.N., Akbar, S., and Masood, A., Synergistic effect of auxins and cytokinins on propagation of Artemisia amygdalina (Asteraceae), a critically endangered plant of Kashmir, Pak. J. Bot., 2013, vol. 45, no. 2, pp. 629–634.

    Google Scholar 

  28. Zia, M., Riaz-ur-Rehman Chaudhary M.F., Hormonal regulation for callogenesis and organogenesis of Artemisia absinthium L., Afr. J. Biotech., 2007, vol. 6, no. 16, pp. 1874–1878.

    Article  CAS  Google Scholar 

  29. Nilsson, O., Moritz, T., Imbault, N., Sandberg, G., and Olsson, O., Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA, Plant Physiol., 1993, vol. 102, no. 2, pp. 363–371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pavlova, O.A., Matveyeva, T.V., and Lutova, L.A., Rol-genes of Agrobacterium rhizogenes, Ekol. Genet., 2013, vol. 11, no. 1, pp. 59–68.

    Google Scholar 

  31. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assay with tobacco tissue culture, Phys. Plant., 1962, vol. 15, pp. 473–497. org// doi 10.1111/j.1399-3054.1962.tb08052.x

  32. Kosakivska, I.V., Voytenko, L.V., Likhnyovskiy, R.V., and Ustinova, A.Y., Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aesticum L. seedling, Genet. Plant Physiol., 2014, vol. 4, nos. 3–4, pp. 201–208.

    Google Scholar 

  33. Leyser, O., Regulation of shoot branching by auxin, Trends Plant Sci., 2003, vol. 8, pp. 541–545. doi 10.1016/j.tplants.2003.09.008

    Article  PubMed  CAS  Google Scholar 

  34. Ludwig-Muller, J., Auxin conjugates: their role for plant development and in the evolution of land plants, J. Exp. Bot., 2011, vol. 62, no. 6, pp. 1757–1773. doi 10.1093/jxb/erq412

    Article  PubMed  CAS  Google Scholar 

  35. Piotrowska, A. and Bajguz, A., Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins and jasmonates, Phytochemistry, 2011, vol. 72, no. 17, pp. 2097–2112. doi 10.1016/j.phytochem.2011.08.012

    Article  PubMed  CAS  Google Scholar 

  36. Bishopp, A., Help, H., El-Showk, S., Weijers, D., Scheres, B., Friml, J., Benkova, E., Mahonen, A.P., and Helariutta, Y., A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots, Curr. Biol., 2011, vol. 21, no. 11, pp. 917–926. doi 10.1016/j.cub.2011.04.017

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Kosakivska, L. V. Voytenko, K. O. Drobot or N. A. Matvieieva.

Additional information

Translated by S. Semenova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosakivska, I.V., Voytenko, L.V., Drobot, K.O. et al. Accumulation of Indolyl-3-Acetic and Abscisic Acids by “Hairy” Roots of Artemisia vulgaris. Cytol. Genet. 52, 395–399 (2018). https://doi.org/10.3103/S0095452718060051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452718060051

Keywords:

Navigation