Skip to main content
Log in

Gene Expression Profiling during Life Cycle of Potato (Solanum tuberosum) Tubers by Microarray

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Microarray was used to investigate the gene expression profile of potato tubers during its complete life cycle. The potato life cycle was divided into 8 different stages and total RNA was isolated and used as probe after labeling of cDNA generated from RNA samples. cDNAs were used to hybridize with potato microarray. Results of this study revealed that there is upregulation of many genes during developing stages (3b, 3c, 3d, 4a, 4b) compared to mature stages (6, 7). Many of those genes regulate growth, storage of protein and sugar, defense, inhibition of various proteinases, and oxidation. Some genes showed upregulation during certain growth stage (4a) compared to other growth stages, whereas, other genes showed upregulation in mature stages (stage 8). Profiling of gene expression during potato life cycle is essential step for enhancing potato for some highly economic traits like tuber nutrition quality, resistance to diseases, or using tubers as source for proteinase inhibitors. Also, this allows for isolation of some genes for biotechnology applications like proteinase inhibitors and improving nutrition and industrial value of tubers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Tsao, R., Phytochemical profile of potato and their roles in human health and wellness, Food. Special Issue, 2009, vol. 3, pp. 125–135.

    Google Scholar 

  2. Raben, A., Tagliabue, A., Christensen, N.J., Madsen, J., Holst, J.J., and Astrup, A., Resistant starch: the effect on postprandial glycemia, hormonal response, and satiety. Am. J. Clin. Nutr., 1994, vol. 60, no. 4, pp. 544–551.

    Article  CAS  PubMed  Google Scholar 

  3. Cummings, J.H., Beatty, E.R., Kingman, S.M., Bingham, S.A., and Englyst, H.N., Digestion and physiological properties of resistant starch in the human large bowel, Br. J. Nutr., 1996, vol. 75, no. 5, pp. 733–47.

    Article  CAS  PubMed  Google Scholar 

  4. Hylla, S., Gostner, A., Dusel, G., Anger, H., Bartram, H.P., Christl, S.U., Kasper, H., and Scheppach, W., Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention, Am. J. Clin. Nutr., 1998, vol. 67, no. 1, pp. 136–42.

    Article  CAS  PubMed  Google Scholar 

  5. Muller-Rober, B., Sonnewald, U., and Willmitzer, L., Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes, EMBO J., 1992, vol. 11, pp. 1229–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Riesmeier, J.W., Hirner, B., and Frommer, W.B., Potato sucrose transporter expression in minor veins indicates a role in phloem loading, Plant Cell, 1993, vol. 5, pp. 1591–1598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banfalvi, Z., Molnar, A., Molnar, G., Lakatos, L., and Szabo, L., Starch synthesis and tuber storage protein genes are differently expressed in Solanum tuberosum and in Solanum brevidens, FEBS Lett., 1996, vol. 383, pp. 159–164.

    Article  CAS  PubMed  Google Scholar 

  8. Rosahl, S., Eckes, P., Schell, J., and Willmitzer, L., Organ specific gene expression in potato: isolation and characterization of tuber-specific cDNA sequences, Mol. Gen. Genet., 1986, vol. 203, pp. 214–220.

    Article  CAS  Google Scholar 

  9. Prat, S., Frommer, R., Hofgen, M., Keil, J., Kossmann, J., Koster-Topfer, M., Liu, X.J., Mfiller, B., Pena-Cortes, H., Rocha-Sosa, M., Sainchez-Serrano, U., Sonnewald, U., and Willmitzer, L., Gene expression during tuber development in potato plants, FEBS Lett., 1990, vol. 268, pp. 334–338.

    Article  CAS  PubMed  Google Scholar 

  10. Wiesel, L., Davis, J.L., Milne, L., Fernandez, V.R., Herold, M.B., Williams, J.M., Morris, J., Hedley, P.E., Harrower, B., Newton, A.C., Birch, P.R.J., Gilroy, E.M., and Hein, I., A transcriptional reference map of defense hormone responses in potato, Sci. Rep., 2015, vol. 5, p. 15229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Erayman, M., Turktas, M., Akdogan, G., Gurkok, T., Inal, B., Ishakoglu, E., Ilhan, E., and Unver, T., Transcriptome analysis of wheat inoculated with Fusarium graminearum. Front. Plant Sci, 2015, vol. 6, p. 867.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Van Duk, J.P., Cankar, K., Scheffer, S., Beenen, H.G., Shepherd, L.V.T., Stewart, D., Davies, H.V., Wilkockson, S.J.W., Leirer, C., Gruden, K., and Kok, E.J., Trascriptome analysis of Potato tubers-effects of different agricultural practices. J. Agric. Food Chem, 2009, vol. 57, pp. 1612–1623.

    Article  CAS  Google Scholar 

  13. Casati, P. and Walbot, V., Crosslinking of ribosomal proteins to RNA in vivo after UV-B irradiation of maize leaves, Plant Physiol., 2004, vol. 136, pp. 3319–3332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, R., Guegler, K., LaBrie, S.T., and Crawforda, N.M., Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate, Plant Cell, 2000, vol. 12, pp. 1491–1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lehesranta, S.J., Koistinen, K.M., Massat, N., Davies, H.V., Shepherd, L.V., McNicol, J.W., Cakmak, I., Cooper, J., Luck, L., Karenlampi, S.O., and Leifert, C., Effects of agricultural production systems and their components on protein profiles of potato tubers, Proteomics, 2007, vol. 7, no. 4, pp. 597–604.

    Article  CAS  PubMed  Google Scholar 

  16. Chang, S., Puryear, J., and Cairney, J., A simple and efficient method for isolating RNA from pine trees, Plant Mol. Biol. Rep., 1993, vol. 11, pp. 113–116.

    Article  CAS  Google Scholar 

  17. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science, 1995, vol. 270, no. 5235, pp. 467–470.

    Article  CAS  PubMed  Google Scholar 

  18. Boeuf, S., Klingenspor, M., Van Hal, N.L., Schneider, T., Keijer, J., and Klaus, S., Differential gene expression in white and brown preadipocytes, Physiol. Genomics, 2001, vol. 7, no. 1, pp. 15–25.

    Article  CAS  PubMed  Google Scholar 

  19. Franssen-van, HalN.L., Vorst, O., Kramer, E., Hall, R.D., and Keijer, J., Factors influencing cDNA microarray hybridization on silylated glass slides, Anal. Biochem., 2002, vol. 308, pp. 5–17.

  20. R-Development-Core-Team, R: A Language and Environment for Statistical Computing (Manual), R Foundation for Statistical Computing, Vienna, Austria, 2005. ISBN 3-900051-07-0.

  21. Yeung, K.Y. and Ruzzo, W.L., Principal component analysis for clustering gene expression data, Bioinformatics, 2001, vol. 17, pp. 763–774.

    Article  CAS  PubMed  Google Scholar 

  22. Mohamed, M.A., El-Shazly, A.S., El-Shehawi, A.M., and Alkafafy, M.E., Antiobesity effects of Taif and Egyptian pomegranates: molecular study, Biosci. Biotechnol. Biochem., 2015, vol. 79, no. 4, pp. 598–609.

    Article  CAS  Google Scholar 

  23. Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J., and Willmitzer, L., Both developmental and metabolic signals activate the promoter of a class I patatin gene, EMBO J., 1989, vol. 8, pp. 23–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wenzler, H., Mignery, G., Fisher, L., and Park, W., Analysis of a chimeric class-I patatin–GUS gene in transgenic potato plants: high-level expression in tubers and sucrose-inducible expression in cultured leaf and stem explants, Plant Mol. Biol., 1989, vol. 13, pp. 347–354.

    Article  CAS  PubMed  Google Scholar 

  25. Pena-Cortes, H., Liu, X., Serrano, J.S., Schmid, R., and Willmitzer, L., Factors affecting gene expression of patatin and proteinase-inhibitor-II gene families in detached potato leaves, Planta, 1992, vol. 186, pp. 495–502.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, S.Y., May, G.D., and Park, W.D., Nuclear protein factors binding to a class I patatin promoter region are tuber-specific and sucrose-inducible, Plant Mol. Biol., 1994, vol. 26, pp. 603–615.

    Article  CAS  PubMed  Google Scholar 

  27. Grierson, C., Du, J.S., de Torres, ZabalaM., Beggs, K., Smith, C., Holdsworth, M., and Bevan, M., Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene, Plant J., 1994, vol. 5, pp. 815–826.

    Article  CAS  PubMed  Google Scholar 

  28. Muller-Rober, B.T., Kossmann, J., Hannah, L.C., Willmitzer, L., and Sonnewald, U., One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose, Mol Gen. Genet., 1990, vol. 224, pp. 136–146.

    Article  CAS  PubMed  Google Scholar 

  29. Van der Steege, D., Nieboer, M., Swaving, J., and Tempelaar, M.J., Potato granule-bound starch synthase promoter-controlled GUS expression: regulation of expression after transient and stable transformation, Plant Mol. Biol., 1992, vol. 20, pp. 19–30.

    Article  CAS  PubMed  Google Scholar 

  30. Salanoubat, M. and Beillard, G., The steady-state level of potato sucrose synthase mRNA is dependent on wounding, anaerobiosis and sucrose concentration, Gene, 1989, vol. 84, pp. 181–185.

    Article  CAS  PubMed  Google Scholar 

  31. Mariot, R.F., De Oliveira, L.A., Voorhuijzen, M.M., Staats, M., Hutten, R.C., Van Duk, J.P., Kok, E.J., and Frazzon, J., Characterization and transcriptional profile of genes involved in glycoalkaloid biosynthesis in new varieties of Solanum tuberosum L., J. Agric. Food Chem., 2016, vol. 64, no. 4, pp. 998–996.

    Article  CAS  Google Scholar 

  32. Gao, J., Cao, X., Shi, S., Ma, Y., Wang, K., Liu, S., Chen, D., Chen, Q., and Ma, H., Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): identification, expression analysis, and evaluation of their roles in tuber development, Biochem. Biophys. Res. Commun., 2016, vol. 471, no. 2, pp. 320–327.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Most of the experimental work of this study was carried out at RIKILT Wageningen University and Research, Wageningen, Netherland.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. El-Shehawi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shehawi, A.M., Elseehy, M.M. Gene Expression Profiling during Life Cycle of Potato (Solanum tuberosum) Tubers by Microarray. Cytol. Genet. 53, 76–85 (2019). https://doi.org/10.3103/S009545271901002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271901002X

Keywords:

Navigation