Skip to main content
Log in

Hemiclone Diversity in the Hybrid Form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Prypyat, Dnestr, and Southern Boug River Basins

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The hemiclonal structure of the Pelophylax esculentus-ridibundus hybrid form from the Pripyat, Dniester, and Southern Boug river basins is analyzed. The interbasin and interpopulation differences in the inherited genome variation level are demonstrated. The genetic diversity level of the P. esculentus-ridibundus inherited genome in the Pripyat basin is significantly lower than in the other two basins. Monoclonal populations of this hybrid form have been identified only in the Pripyat basin. There were no significant differences in the genetic variability level of this hybrid form between the populations of the Dniester and Southern Boug basins. The relationship between the variability level of the inherited genome of the hybrid form and the potentially possible multiple hybridization of parental species is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Gutekunst, J., Andriantsoa, R., Falckenhayn, C., Hanna, K., Stein, W., Rasamy, J., and Lyko, F., Clonal genome evolution and rapid invasive spread of the marbled crayfish, Nat. Ecol. Evol., 2018, vol. 2, pp. 567–573. https://doi.org/10.1038/s41559-018-0467-9

    Article  PubMed  Google Scholar 

  2. Haileselasie, T.H., Mergeay, J., Weider, L.J., Sommaruga, R., Davidson, T.A., Meerhoff, M., Arndt, H., Jürgens, K., Jeppesen, E., and De Meester, L., Environment not dispersal limitation drives clonal composition of Arctic Daphnia in a recently deglaciated area, Mol. Ecol., 2016, vol. 25, no. 23, pp. 5830–5842. https://doi.org/10.1111/mec.13843

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hasegawa, E., Watanabe, S., Murakami, Y., and Ito, F. Adaptive phenotypic variation among clonal ant workers, Roy. Soc. Open Sci., 2018, vol. 5, no. 2, pp. 170816–170837. https://doi.org/10.1098/rsos.170816

    Article  CAS  Google Scholar 

  4. Käch, H., Mathé-Hubert, H., Dennis, A.B., and Vorburger, C., Rapid evolution of symbiont-mediated resistance compromises biological control of aphids by parasitoids, Evol. Appl., 2018, vol. 11, no. 2, pp. 220–230. https://doi.org/10.1111/eva.12532

    Article  PubMed  Google Scholar 

  5. Elzinga, J.A., Jokela, J., and Shama, L.N.S., Large variation in mitochondrial DNA of sexual and parthenogenetic Dahlica triquetrella (Lepidoptera: Psychidae) shows multiple origins of parthenogenesis, BMC Evol. Biol., 2013, no. 13, pp. 90–98. https://doi.org/10.1186/1471-2148-13-90

  6. Bonandin, L., Scavariello, C., Mingazzini, V., Luchetti, A., and Mantovani, B., Obligatory parthenogenesis and TE load: Bacillus stick insects and the R2 non-LTR retrotransposon, Insect Sci., 2017, vol. 24, no. 3, pp. 409–417. https://doi.org/10.1111/1744-7917

    Article  CAS  PubMed  Google Scholar 

  7. Dagan, Y., Kosman, E., and Ben-Ami, F., Cost of resistance to trematodes in freshwater snail populations with low clonal diversity, BMC Ecol., 2017, no. 17, pp. 40–47. https://doi.org/10.1186/s12898-017-0152-x

  8. Gibson, A.K., Delph, L.F., and Lively, C.M., The two-fold cost of sex: Experimental evidence from a natural system, Evol. Lett., 2017, vol. 1, no. 1, pp. 6–15. https://doi.org/10.1002/evl3.1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cole, C.J., Taylor, H.L., Neaves, W.B., Baumann, D.P., Newton, A., Schnittker, R., and Baumann, P., The second known tetraploid species of parthenogenetic tetrapod (Reptilia: Squamata: Teiidae): description, reproduction, comparisons with ancestral taxa, and origins of multiple clones, Bull. Mus. Comp. Zool., 2017, vol. 161, no. 8, pp. 285–321. https://doi.org/10.3099/MCZ37.1

    Article  Google Scholar 

  10. Manríquez-Morán, N.L., Cruz, F.R., and Murphy, R.W., Genetic variation and origin of parthenogenesis in the Aspidoscelis cozumela complex: evidence from mitochondrial genes, Zool. Sci., 2014, vol. 31, no. 1, pp. 14–19. https://doi.org/10.2108/zsj.31.14

    Article  CAS  PubMed  Google Scholar 

  11. Vergun, A.A., Martirosyan, I.A., Semyenova, S.K., Omelchenko, A.V., Petrosyan, V.G., Lazebny, O.E., Tokarskaya, O.N., Korchagin, V.I., and Ryskov, A.P., Clonal diversity and clone formation in the parthenogenetic Caucasian rock lizard Darevskia dahli, PLoS One, 2014, vol. 9, no. 3, e91674. https://doi.org/10.1371/journal.pone.0091674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryskov, A.P., Osipov, F.A., Omelchenko, A.V., Semyenova, S.K., Girnyk, A.E., Korchagin, V.I., Vergun, A.A., and Murphy, R.W., The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi, PLoS One, 2017, vol. 12, no. 9, e0185161. https://doi.org/10.1371/journal.pone.0185161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morgado-Santos, M., Carona, S., Vicente, L., and Collares-Pereira, M.J., First empirical evidence of naturally occurring androgenesis in vertebrates, R. Soc. Open Sci., 2017, no. 4, pp. 170200–170207. https://doi.org/10.1098/rsos.170200

  14. Zhang, J., Sun, M., Zhou, L., Li, Z., Liu, Z., Li, X.Y., Liu, X.L., Liu, W., and Gui, J.F., Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio, Sci. Rep., 2015, no. 5, pp. 10898. https://doi.org/10.1038/srep10898

  15. Warren, W.C., García-Pérez, R., Xu, S., Lampert, K.P., Chalopin, D., Stöck, M., Loewe, L., Lu, Y., Kuderna, L., Minx, P., Montague, M.J., Tomlinson, C., Hillier, L.W., Murphy, D.N., Wang, J., Wang, Z., Garcia, C.M., Thomas, G.C.W., Volff, J.N., Farias, F., Aken, B., Walter, R.B., Pruitt, K.D., Marques-Bonet, T., Hahn, M.W., Kneitz, S., Lynch, M., and Schartl, M., Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly, Nat. Ecol. Evol., 2018, vol. 2, no. 4, pp. 669–679. https://doi.org/10.1038/s41559-018-0473-y

    Article  PubMed  PubMed Central  Google Scholar 

  16. Egan, A.N., Vatanparast, M., and Cagle, W., Parsing polyphyletic Pueraria: Delimiting distinct evolutionary lineages through phylogeny, Mol. Phylogenet. Evol., 2016, no. 104, pp. 44–59. https://doi.org/10.1016/j.ympev.2016.08.001

  17. Pagano, A., Lesbarreres, D., Crivelli, A., Veith, M., Lode, T., and Schmeller, D.S., Geographical and ecological distributions of frog hemiclones suggest occurrence of both “General Purpose Genotype” and “Frozen Niche Variation” clones, Zool. Syst. Evol. Res., 2008, vol. 46, no. 2, pp. 162–168. https://doi.org/10.1111/j.1439-0469.2007.00439.x

    Article  Google Scholar 

  18. Hotz, H., Guex, G.-D., Beerli, P., Semlitsch, R.D., and Pruvost, N.B.M., Hemiclone diversity in the hybridogenetic frog Rana esculenta outside the area of clone formation: the view from protein electrophoresis, J. Zool. Syst. Evol. Res., 2008, vol. 46, no. 1, pp. 56–62. https://doi.org/10.1111/j.1439-0469.2007.00430.x

    Article  Google Scholar 

  19. Vorburger, Ch. Non-hybrid offspring from matings between hemiclonal hybrid waterfrogs suggest occasional recombination between clonal genomes, Ecol. Lett., 2001, no. 4, pp. 628–636. https://doi.org/10.1046/j.1461-0248.2001.00272.x

  20. Vorburger, Ch., Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs, Evolution, 2001, vol. 55, no. 11, pp. 2319–2332. https://doi.org/10.1111/j.0014-3820.2001.tb00745.x

    Article  CAS  PubMed  Google Scholar 

  21. Morozov-Leonov, S.Yu., Hemiclone diversity in the hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Tisa River drainage, Cytol. Genet., 2017, vol. 51, no. 6, pp. 69–77. https://doi.org/10.3103/S0095452717060093

    Article  Google Scholar 

  22. Mezhzherin, S.V. and Peskov, V.N., Biochemical variability and genetic differentiation of the marsh frog Rana ridibunda Pall. populations, Cytol. Genet., 1992, vol. 26, no. 1, pp. 43–48.

    CAS  Google Scholar 

  23. Parker, E.D., Ecological implications of clonal diversity in parthenogenetic morphospecies, Am. Zool., 1979, no. 19, pp. 753–762.

  24. Nei, M. and Roychoudhury, A.K., Sampling variances of heterozygosity and genetic distance, Genetics, 1974, vol. 76, no. 2, pp. 379–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dorken, M.E. and Eckert, C.G., Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae), J. Ecol., 2001, no. 89, pp. 339–350. https://doi.org/10.1046/j.1365-2745.2001.00558.x

  26. Quattro, J.M., Avise, J.C., and Vrijenhoek, R.C., Mode of origin and sources of genotypic diversity in triploid gynogenetic fish clones (Poeciliopsis: Poeciliidae), Genetics, 1992, no. 130, pp. 621–628.

  27. Nibouche, S., Fartek, B., Mississipi, S., Delatte, H., Reynaud, B., and Costet, L., Low genetic diversity in Melanaphis sacchari aphid populations at the worldwide scale, PLoS One, 2014, vol. 9, no. 8, e106067. https://doi.org/10.1371/journal.pone.0106067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, X.Y., Yang, X.M., Lu, B., Zhou, L.H., and Wu, K.M., Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers, Sci. Rep., 2017, no. 7, pp. 1920–1993. https://doi.org/10.1038/s41598-017-02105-4

  29. Zhao, C., Yang, X.M., Tang, S.H., Xu, P.J., Bian, W.J., Wang, X.F., Wang, X.W., and Ren, G.W., Population genetic structure of Myzus persicae nicotianae (Hemiptera: Aphididae) in China by microsatellite analysis, Genet. Mol. Res., 2015, vol. 14, no. 4, pp. 17159–17169. https://doi.org/10.4238/2015

    Article  PubMed  Google Scholar 

  30. Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Clarendon Press, 1930.

    Book  Google Scholar 

  31. Morozov-Leonov, S.Yu., Mezhzherin, S.V., Nekrasova, O.D., Kurtyak, F.F., Shabanov, D.A., and Korshunov, A.V., Inheritance of parental genomes by a hybrid form Rana “esculenta” (Amphibia, Ranidae), Russ. J. Genet., 2009, vol. 45, no. 4, pp. 488–495. https://doi.org/10.1134/S1022795409040061

    Article  CAS  Google Scholar 

  32. Eiler, A., Löfgren, A., Hjerne, O., Nordén, S., and Saetre, P., Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive, Sci. Rep., 2018, no. 8, pp. 5452–5460. https://doi.org/10.1038/s41598-018-23740-5

Download references

ACKNOWLEDGMENTS

I am sincerely grateful to my colleagues: D. Sc., Professor S.V. Mezhzherin, Candidate of Science O.D. Nekrasova, Candidate of Science L.I. Razvo-dovskoy, Candidate of Science O.V. Rostovskaya for invaluable assistance in the collection of primary material, its laboratory processing, the interpretation of the data, and the preparation of that article manuscript. compliance with ethical standards.

Conflict of interests. The authors declare that they have no conflict of interest. Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Morozov-Leonov.

Additional information

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov-Leonov, S.Y. Hemiclone Diversity in the Hybrid Form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Prypyat, Dnestr, and Southern Boug River Basins. Cytol. Genet. 53, 49–59 (2019). https://doi.org/10.3103/S0095452719010092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719010092

Keywords:

Navigation