Skip to main content
Log in

Genetic Modification of Saccharum officinarum for Herbicide Tolerance

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Sugarcane is one of the most important worldwide cultivated agro-industrial crops that belong to the family Poaeceae and genus Saccharum. Prescribed study was conducted in Seed Biotechnology Lab, Center of Excellence in Molecular Biology, University of the Punjab, Lahore-Pakistan. The purpose of this study was to alter the genome of sugarcane line CPF246 with herbicide resistance gene GTGene driven by the sugar cane ubiquitin promoter and confirmation through PCR and Dot blot as well as protein expression analysis through ELISA. Results have shown the successful transformation and expression of transgenes against glyphosate resistance. This could prove a mile stone towards putting research efforts in the improvement of Saccharum officinarum for certain traits. Outcomes of this research will be beneficial in minimizing the management cost which people do bear for weed management practices. Success of this study opens new horizons to further improve other characteristics of sugarcane using genetic modification as was done in current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Bakker, H., Sugar Cane Cultivation and Management, Springer Science and Business Media, 2012.

    Google Scholar 

  2. D’Hont, A., Ison, D., Alix, K., Roux, C., and Glaszmann, J.C., Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes, Genome, 1998, vol. 41, no. 2, pp. 221–225.

    Article  Google Scholar 

  3. Joyce, P., Kuwahata, M., Turner, N., and Lakshmanan, P., Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane, Plant Cell Rep., 2010, vol. 29, no. 2, pp. 173–183.

    Article  CAS  PubMed  Google Scholar 

  4. Enríquez-Obregó, G.A., Vázquez-Padrón, R.I., Prieto-Samsonov, D.L., Gustavo, A., and Selman-Housein, G., Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation, Planta, 1998, vol. 206, no. 1, pp. 20–27.

    Article  Google Scholar 

  5. Nasir, I.A., Tabassum, B., Qamar, Z., Javed, M.A., Tariq, M., Farooq, A.M., Butt, S.J., Qayyum, A., and Husnain, T., Herbicide-tolerant sugarcane (Saccharum officinarum L.) plants: an unconventional method of weed removal, Turkish J. Biol., 2014, vol. 38, no. 4, pp. 439–449.

    Article  CAS  Google Scholar 

  6. Qureshi, M.A. and Afghan, S., Sugarcane Cultivation in Pakistan, Sugar Book Pub Pakistan Society of Sugar Technologist, 2005.

    Google Scholar 

  7. Srikanth, J., Subramonian, N., and Premachandran, M., Advances in transgenic research for insect resistance in sugarcane, Trop. Plant Biol., 2011, vol. 4, no. 1, pp. 52–61.

    Article  CAS  Google Scholar 

  8. Gul, F., Naeem, M., and Shah, R.A., Role of gurdaspur borer (Bissetia steniellus Hampson) in sugarcane ratoon crop failure and its integrated control at Mardan, Sarhad J. Agricult., 2010, vol. 26, no. 3, pp. 387–391.

    Google Scholar 

  9. Khaliq, A., Ashfaq, M., Akram, W., Choi, J.K., and Lee, J.J., Effect of plant factors, sugar contents, and control methods on the top borer (Scirpophaga nivella F.) infestation in selected varieties of sugarcane, Entomol. Res., 2005, vol. 35, no. 3, pp. 153–160.

    Article  Google Scholar 

  10. Nazir, A., Jariko, G.A., and Junejo, M.A., Factors affecting sugarcane production in Pakistan, Pakistan J. Com. Soc. Sci., 2013, vol. 7, no. 1, pp. 128–140.

    Google Scholar 

  11. Zafar, M., Tanveer, A., Cheema, Z.A., and Ashraf, M., Weed-crop competition effects on growth and yield of sugarcane planted using two methods, Pakistan J. Bot., 2010, vol. 42, no. 2, pp. 815–823.

    Google Scholar 

  12. McMahon, G., Lawrence, P., and O’Grady, T., Weed control in sugarcane, in Manual of Cane Growing Bureau of Sugar Experiment Stations, Indooroopilly, 2000, pp. 241–261.

  13. Green, J.M., The benefits of herbicide-resistant crops, Pest Manage. Sci., 2012, vol. 68, no. 10, pp. 1323–1331.

    Article  CAS  Google Scholar 

  14. Dill, G.M., Glyphosate-resistant crops: history, status and future, Pest Manage. Sci., 2005, vol. 61, no. 3, pp. 219–224.

    Article  CAS  Google Scholar 

  15. Deng, L., Weng, L., and Xiao, G., Optimization of Epsps gene and development of double herbicide tolerant transgenic PGMS rice, J. Agricul. Sci. Technol., 2014, vol. 16, no. 1, pp. 217–228.

    CAS  Google Scholar 

  16. Keller, G., Spatola, L., Mccabe, D., Martinell, B., Swain, W., and John, M.E., Transgenic cotton resistant to herbicide bialaphos, Transgenic Res., 1997, vol. 6, no. 6, pp. 385–392.

    Article  CAS  Google Scholar 

  17. Rashid, B., Saleem, Z., Husnain, T., and Riazuddin, S., Transformation and inheritance of Bt genes in Gossypium hirsutum, J. Plant Biol., 2008, vol. 51, no. 4, pp. 248–254.

    Article  CAS  Google Scholar 

  18. Schmid, J. and Amrhein, N., Molecular organization of the shikimate pathway in higher plants, Phytochemistry, 1995, vol. 39, no. 4, pp. 737–749.

    Article  CAS  Google Scholar 

  19. Kumar, S., Sharma, P., and Pental, D., A genetic approach to in vitro regeneration of non-regenerating cotton (Gossypium hirsutum L.) cultivars, Plant Cell Rep., 1998, vol. 18, nos. 1–2, pp. 59–63.

    Article  CAS  Google Scholar 

  20. Arencibia, A.D., Carmona, E.R., Tellez, P., Chan, M.-T., Yu, S.-M., Trujillo, L.E., and Oramas, P., An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens, Transgenic Res., 1998, vol. 7, no. 3, pp. 213–222.

    Article  CAS  Google Scholar 

  21. Birch, R., Transgenic Sugarcane: Opportunities and Limitations, 1997.

  22. Taylor, P.W. and Dukic, S., Development of an in vitro culture technique for conservation of Saccharum spp. hybrid germplasm, Plant Cell, Tiss. Organ Culture, 1993, vol. 34, no. 2, pp. 217–222.

    Article  CAS  Google Scholar 

  23. Gallo-Meaghe, M. and Irvine, J.E., Effects of tissue type and promoter strength on transient GUS expression in sugarcane following particle bombardment, Plant Cell Rep., 1993, vol. 12, no. 12, pp. 666–70.

    Google Scholar 

  24. Falco, M., Neto, A.T., and Ulian, E., Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane, Plant Cell Rep., 2000, vol. 19, no. 12, pp. 1188–1194.

    Article  CAS  PubMed  Google Scholar 

  25. Franks, T. and Birch, R., Gene transfer into intact sugarcane cells using microprojectile bombardment, Func. Plant Biol., 1991, vol. 18, no. 5, pp. 471–480.

    Article  CAS  Google Scholar 

  26. Bower, R. and Birch, R.G., Transgenic sugarcane plants via microprojectile bombardment, Plant J., 1992, vol. 2, no. 3, pp. 409–416.

    Article  CAS  Google Scholar 

  27. Arencibia, A., Vazquez, R.I., Prieto, D., Tellez, P., Carmona, E.R., Coego, A., Hernandez, L., De la Riva, G.A., and Selman-Housein, G., Transgenic sugarcane plants resistant to stem borer attack, Mol. Breed, 1997, vol. 3, no. 4, pp. 247–255.

    Article  Google Scholar 

  28. Weng, L.X., Deng, H.H., Xu, J.L., Li, Q., Zhang, Y.Q., Jiang, Z.D., Li, Q.W., Chen, J.W., and Zhang, L.H., Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials, Trans. Res., 2011, vol. 20, no. 4, pp. 759–772.

    Article  CAS  Google Scholar 

  29. Chen, L., Marmey, P., Taylor, N.J., Brizard, J.P., Espinoza, C., D’Cruz, P., Huet, H., Zhang, S., de Kochko, A., Beachy, R.N., and Fauquet, C.M., Expression and inheritance of multiple transgenes in rice plants, Nat. Biotechnol., 1998, vol. 16, no. 11, pp. 1060–1064.

    Article  CAS  PubMed  Google Scholar 

  30. Kaur, A., Gill, M., Gill, R., and Gosal, S., Standardization of different parameters for ‘particle gun’ mediated genetic transformation of sugarcane (Saccharum officinarum L.), Indian J. Biotech., 2007, vol. 6, no. 1, pp. 31–34.

    CAS  Google Scholar 

  31. Bower, R., Elliott, A.R., Potier, B.A., and Birch, R.G., High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers, Mol. Breed., 1996, vol. 2, no. 3, pp. 239–249.

    Article  CAS  Google Scholar 

  32. Christensen, A.H. and Quail, P.H., Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants, Trans. Res., 1996, vol. 5, no. 3, pp. 213–218.

    Article  CAS  Google Scholar 

  33. McElroy, D. and Brettell, R.I., Foreign gene expression in transgenic cereals, Trends Biotechnol., 1994, vol. 12, no. 2, pp. 62–68.

    Article  CAS  Google Scholar 

  34. Joung, Y.H. and Kamo, K., Expression of a polyubiquitin promoter isolated from Gladiolus, Plant Cell Rep., 2006, vol. 25, no. 10, pp. 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  35. Zambryski, P., Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells Annu. Rev. Genet., 1988, vol. 22, no. 1, pp. 1–30.

    Article  CAS  PubMed  Google Scholar 

  36. Kohli, A., Leech, M., Vain, P., Laurie, D.A., and Christou, P., Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 12, pp. 7203–7208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo, F.-Q., Wang, R., Chen, M., and Crawford, N.M., The Arabidopsis dual-affinity nitrate transporter gene AtNRT1. 1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth, Plant Cell, 2001, vol. 13, no. 8, pp. 1761–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar, R. and Sinha, R., Colloidal gold based dipstick strip for detection of genetically modified crops and produce.

  39. Halder, S. and Venu, P., Bt Cry toxin expression profile in selected Pakistani cotton genotypes, Curr. Sci., 2012, vol. 102, no. 12, p. 1632.

    Google Scholar 

  40. Boopal, K., Hanur, V.S., Arya, V.V., and Reddy, P., Phenotypic assessment of Bt Cry2A transgenic tomato resistant to neonate larva of Helicoverpa armigera, Curr. Trends Biotechnol. Pharm., 2014, vol. 8, no. 2, pp. 124–129.

    CAS  Google Scholar 

  41. Bakhsh, A., Rao, A.Q., Shahid, A.A., and Husnain, T., Spatio temporal expression pattern of an insecticidal gene (cry2A) in transgenic cotton lines, Not. Sci. Biol., 2012, vol. 4, no. 4, p. 115.

    Article  CAS  Google Scholar 

  42. Kiani, S., Mohamed, B.B., Shehzad, K., Jamal, A., Shahid, M.N., Shahid, A.A., and Husnain, T., Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests, J. Biotechnol., 2013, vol. 166, no. 3, pp. 88–96.

    Article  CAS  PubMed  Google Scholar 

  43. Bashir, K., Husnain, T., Fatima, T., Riaz, N., Makhdoom, R., and Riazuddin, S., Novel indica basmati line (B-370) expressing two unrelated genes of Bacillus thuringiensis is highly resistant to two lepidopteran insects in the field, Crop Prot., 2005, vol. 24, no. 10, pp. 870–879.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qurban Ali.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad Fahad Khan, Ali, Q., Tariq, M. et al. Genetic Modification of Saccharum officinarum for Herbicide Tolerance. Cytol. Genet. 53, 239–249 (2019). https://doi.org/10.3103/S0095452719030101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719030101

Keywords:

Navigation