Skip to main content
Log in

Genetic Background of the Resistance against Parasitic Nematodes in Wheat

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The state of the art in research on the genes responsible for the resistance of soft wheat Triticum aestivum L. against cereal cyst nematode Heterodera avenae and root lesion nematode Pratylenchus neglectus and the use of these genes in plant breeding programs are described. Most genes responsible for the resistance to these plant pathogens are listed and their chromosomal localization and resistance specificity are described. The sources of resistance genes widely used to control the cereal cyst nematode are presented. The alternative methods for transferring nematode resistance genes into wheat are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bernard, G., Egnin, M., and Bonsi, C., The impact of plant-parasitic nematodes on agriculture and methods of control, nematology, Concepts Diagn. Control, 2017, vol. 7, pp. 121–151. https://doi.org/10.5772/intechopen.68958

    Article  Google Scholar 

  2. Jones, J.T., Haegeman, A., Danchin, E.G., Gaur, H.S., Helder, J., Jones, M.G., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J.E., Wesemael, W.M., and Perry, R.N., Top 10 plant-parasitic nematodes in molecular plant pathology, Mol. Plant Pathol., 2013, vol. 14, no. 9, pp. 946–961. https://doi.org/10.1111/mpp.12057

    Article  PubMed  PubMed Central  Google Scholar 

  3. Toumi, F., Waeyenberge, L., Viaene, N., Dababat, A.A., Nicol, J.M., and Ogbonnaya, F., Cereal cyst nematodes: importance, distribution, identification, quantification, and control, Eur. J. Plant Pathol., 2018, vol. 150, no. 1. https://doi.org/10.1007/s10658-017-1263-0

  4. Caboni, P. and Ntalli, N.G., Botanical nematicides, recent findings, in Biopesticides: State of the Art and Future Opportunities, ch. 11, pp. 145–157. https://doi.org/10.1021/bk-2014-1172.ch011

  5. Mokrini, F. and Viaene, N., Lieven Waeyenberge L., Dababat A.A., Moens M. Characterization of cereal cyst nematodes (Heterodera spp.) in Morocco based on morphology, morphometrics and rDNA-ITS sequence analysis, J. Plant Protec. Res., 2017, vol. 57, no. 3, pp. 219–227. https://doi.org/10.1515/jppr-2017-0031

    Article  CAS  Google Scholar 

  6. Mustafa, ImrenM. and Elekcioglu, I.H., Effect of cereal cyst nematode Heterodera avenae (Tylenchida: Heteroderidae) on yield of some spring wheat varieties in Adana Province, Turkey, Turk. J. Agric. For., 2014, vol. 38, pp. 820–823. https://doi.org/10.3906/tar-1312-91

  7. Hewezi, T. and Baum, T., Manipulation of plant cells by cyst and root-knot nematode effectors, Mol. Plant–Microbe Interact., 2013, vol. 26, pp. 9–16. https://doi.org/10.1094/MPMI-05-12-0106-FI

    Article  CAS  PubMed  Google Scholar 

  8. Kyndt, T., Vieira, P., Gheysen, G., and de Almeida-Engler, J., Nematode feeding sites: unique organs in plant roots, Planta, 2013, vol. 238, no. 5, pp. 807–818. https://doi.org/10.1007/s00425-013-1923-z

    Article  CAS  PubMed  Google Scholar 

  9. Absmanner, B., Stadler, R., and Hammes, U.Z., Phloem development in nematode-induced feeding sites: the implications of auxin and cytokinin, Front. Plant Sci., 2013. https://doi.org/10.3389/fpls.2013.00241

  10. Okulewicz, A., The impact of global climate change on the spread of parasitic nematodes, Ann. Parasitol., 2017, vol. 63, no. 1, pp. 15–20. https://doi.org/10.17420/ap6301.79

    Article  PubMed  Google Scholar 

  11. Williams, K.J., Fisher, J.M., and Langridg, R., Identification of RFLP markers linked to the cereal cyst nematode resistance gene (Cre) in wheat, Theor. Appl. Genet., 1994, vol. 89, pp. 927–930. https://doi.org/10.1007/BF00224519

    Article  CAS  PubMed  Google Scholar 

  12. Ogbonnaya, F.C., Subrahmanyam, N.C., Moullet, O., de Majnik, J., Eagles, H.A., Brown, J.S., Eastwood, R.F., Kollmorgen, J., Appels, R., and Lagudah, E.S., Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat, Aust. J. Agric. Res., 2001, vol. 52, pp. 1367–1374. https://doi.org/10.1071/AR01031

    Article  CAS  Google Scholar 

  13. de Majnik, J., Ogbonnaya, F.C., Moullet, O., and Lagudah, E.S., The Cre1 and Cre3 nematode resistance genes are located at homeologous loci in the wheat genome, Mol. Plant–Microbe Interact., 2003, vol. 16, no. 12, pp. 1129–1134. https://doi.org/10.1094/MPMI.2003.16.12.1129

    Article  CAS  PubMed  Google Scholar 

  14. Çalişkan, M., Uranbey, S., Nicol, J., Akar, T., Elekcioğlu, H., and Kaya, G., Indirect selection of Cre1 gene in winter wheat populations, Arch. Biol. Sci., 2011, vol. 63, pp. 49–53. https://doi.org/10.2298/ABS1101049C

    Article  Google Scholar 

  15. Delibes, A., Romero, D., Aguaded, S., Duce, A., Mena, M., López- Braña, I., Andrés, M.-F., Martin-Sanchez, J.-A., and García-Olmedo, F., Resistance to the cereal cyst nematode (Heterodera avenae Woll.) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a “stepping-stone” procedure, Theor. Appl. Genet., 1993, vol. 87, pp. 402–408. https://doi.org/10.1007/BF01184930

    Article  CAS  PubMed  Google Scholar 

  16. Ogbonnaya, F.C., Seah, S., Delibes, A., Jahier, J., López- Braña, I., Eastwood, R.F., and Lagudah, E.S., Molecular-genetic characterisation of a new nematode resistance gene in wheat, Theor. Appl. Genet., 2001, vol. 102, pp. 623–629. https://doi.org/10.1007/s001220051689

    Article  CAS  Google Scholar 

  17. Eastwood, R.F., Lagudah, E.S., and Appels, R., A directed search for DNA sequences tightly linked to cereal cyst nematode resistance genes in Triticum tauschii, Genome, 1994, vol. 37, pp. 311–319. https://doi.org/10.1139/g94-043

    Article  CAS  PubMed  Google Scholar 

  18. Jahier, J., Tanguy, A.M., Abelard, P., Dedryver, F., Rivoal, R., Khatkar, S., Bariana, H.S., and Koebner, R., The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar ‘VPM1’ carries the cereal cyst nematode resistance gene Cre5, Plant Breed., 2001, vol. 120, pp. 125–128. https://doi.org/10.1046/j.1439-0523.2001.00585.x

    Article  CAS  Google Scholar 

  19. Jahier, J., Tanguy, A.M., Abelard, P., and Rioal, R., Utilization of deletions to localize a gene for resistance to the cereal cyst nematode, Heterodera avenae, on an Aegilops ventricosa chromosome, Plant Breed., 1996, vol. 115, pp. 282–284. https://doi.org/10.1111/j.1439-0523.1996.tb00919.x

    Article  Google Scholar 

  20. Montes, M.J., Andres, M.F., Sin, E., López-Braña, I., Martín-Sánchez, J.A., Romero, M.D., and Delibes, A., Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars, Genome, 2008, vol. 51, pp. 315–319. https://doi.org/10.1139/G08-015

    Article  CAS  PubMed  Google Scholar 

  21. Paull, J.G., Chalmers, K.J., Karakousis, A., Kretschmer, J.M., Manning, S., and Langridge, P., Genetic diversity in Australian wheat varieties and breeding material based on RFLP data, Theor. Appl. Genet., 2001, vol. 102, pp. 623–629. https://doi.org/10.1007/s001220050760

    Article  Google Scholar 

  22. Jayatilake, D.V., Tucker, E.J., Brueggemann, J., Lewis, J., Garcia, M., Dreisigacker, S., Hayden, M.J., Chalmers, K., and Mather, D.E., Genetic mapping of the Cre8 locus for resistance against cereal cyst nematode (Heterodera avenae Woll.) in wheat, Mol. Breed., 2015, vol. 35, no. 66. https://doi.org/10.1007/s11032-015-0235-3

  23. Safari, E., Gororo, N.N., Eastwood, R.F., Lewis, J., Eagles, H.A., and Ogbonnaya, F.C., Impact of Cre1, Cre8 and Cre3 genes on cereal cyst nematode resistance in wheat, Theor. Appl. Genet., 2005, vol. 110, pp. 567–572. https://doi.org/10.1007/s00122-004-1873-8

    Article  CAS  PubMed  Google Scholar 

  24. Taylor, C., Shepherd, K.W., and Langridge, P., A molecular genetic map of the long arm of chromosome 6R of rye incorporating the cereal cyst nematode resistance gene, CreR, Theor. Appl. Genet., 1998, vol. 97, pp. 1000–1012. https://doi.org/10.1007/s001220050984

    Article  CAS  Google Scholar 

  25. Dababat, A.A., Ergnbas-Orakci, G., Toktay, H., Imren, M., Akin, B., Braun, H.-J., Dreisigacker, S., Elekcioglu, I.H., and Morgounov, A., Resistance of winter wheat to Heterodera filipjevi in Turkey, Turk. J. Agric. Forest., 2014, vol. 38, pp. 180–186. https://doi.org/10.3906/tar-1305-47

    Article  Google Scholar 

  26. Zhang, R., Feng, Y., Li, H., Yuan, H., Dai, J., Cao, A., Xing, L., and Li, H., Cereal cyst nematode resistance gene CreV effective against Heterodera filipjevi transferred from chromosome 6VL of Dasypyrum villosum to bread wheat, Mol. Breed., 2016, vol. 36, p. 122. https://doi.org/10.1007/s11032-016-0549-9

    Article  CAS  Google Scholar 

  27. Zhai, X.G., Zhao, T., Liu, Y.H., Long, H., Deng, G.B., Pan, Z.F., and Yu, M.Q., Characterization and expression profiling of a novel cereal cyst nematode resistance gene analog in wheat, Mol. Biol., 2008, vol. 42, no. 6, pp. 960–965. https://doi.org/10.1134/S002689330-8060186

    Article  CAS  Google Scholar 

  28. Kong, L.A., Wu, D.Q., Huang, W.K., Peng, H., Wang, G.-F., Cui, J.-K., Liu, S.-M., Li, Z.-G., Yang, J., and Peng, De-L., Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera avenae using comparative transcriptomic analysis, BMC Genomics, 2015, vol. 801. https://doi.org/10.1186/s12864-015-2037-8

  29. Simonetti, E., Alba, E., Montes, M.J., Delibes, A., and Lopez-Brana, I., Analysis of ascorbate peroxidase genes expressed in resistant and susceptible wheat lines infected by the cereal cyst nematode, Heterodera avenae, Plant Cell Rep., 2010, vol. 29, pp. 1169–1178. https://doi.org/10.1007/s00299-010-0903-z

    Article  CAS  PubMed  Google Scholar 

  30. Moatamedi, M., Bazgir, E., Esfahani, M.N., and Darvishnia, M., Genetic variation of bread wheat accessions in response to the cereal cyst nematode, Heterodera filipjevi, Nematology, 2018, vol. 20, no. 9. doi 10.1163/15685411-00003181

  31. Yu, Y., Liu, H., Zhu, A., Zhang, G., Zeng, L., and Xue, S., A Review of root lesion nematode: identification and plant resistance, Adv. Microbiol., 2012, vol. 2, no. 4, pp. 411–416. https://doi.org/10.4236/aim.2012.24052

    Article  Google Scholar 

  32. Smiley, R.W., Root-lesion nematodes: biology and management in pacific northwest wheat cropping systems, PNW Ext. Bull., 2010, vol. 617, p. 9. https://doi.org/10.1146/annurev-phyto-080615-100257

    Article  CAS  Google Scholar 

  33. Fosu-Nyarko, J. and Jones, M.G.K., Advances in understanding the molecular mechanisms of root lesion nematode host interactions, Annu. Rev. Phytopathol., 2016, vol. 54, pp. 253–278. https://doi.org/10.1146/annurevphyto-080615-100257

    Article  CAS  PubMed  Google Scholar 

  34. Yan, G.P., Plaisance, A., Huang, D., Chowdhury, I.A., and Handoo, Z.A., First report of the new root-lesion nematode Pratylenchus sp. on soybean in North Dakota, Plant Dis., 2017, vol. 101, no. 8, p. 1554. https://doi.org/10.1094/PDIS-04-17-0594-PDN

    Article  Google Scholar 

  35. Zwart, R.S., Thompson, J.P., Sheedy, J.G., and Nelson, J.C., Mapping quantitative trait loci for resistance to Pratylenchus thornei from synthetic hexaploid wheat in the international Triticeae mapping initiative (ITMI) population, Austral. J. Agricult. Res., 2006, vol. 57, pp. 525–530. https://doi.org/10.1071/AR05177

    Article  Google Scholar 

  36. Zwart, R.S., Thompson, P.J., Milgate, A.W., Bansal, U.K., Williamson, P.M., Raman, H., and Bariana, H.S., QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat, Mol. Breed, 2010, vol. 26, pp. 107–124. https://doi.org/10.1007/s11032-009-9381-9

    Article  Google Scholar 

  37. Williams, K., Taylor, S., Bogacki, P., Pallotta, M., Ba-riana, S., and Wallwork, H., Mapping of the root lesion nematode (Pratylenchus neglectus) resistance gene Rlnn1 in wheat, Theor. Appl. Genet., 2002, vol. 104, pp. 874–879. https://doi.org/10.1007/s00122-001-0839-3

    Article  CAS  PubMed  Google Scholar 

  38. Jayatilake, D.V., Tucker, E.J., Bariana, H., Kuchel, H., Edwards, J., McKay, A.C., Chalmers, K., and Mather, D.E., Genetic mapping and marker development for resistance of wheat against the root lesion nematode Pratylenchus neglectus, BMC Plant Biol., 2013, vol. 13, p. 230. https://doi.org/10.1186/1471-2229-13-230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ali, M.A., Azeem, F., Abbas, A., Joyia, F.A., Li, H., and Dababat, A.A., Transgenic strategies for enhancement of nematode resistance in plants, Front. Plant Sci., 2017, vol. 750, no. 2. https://doi.org/10.3389/fpls.2017.00750

  40. Karelov, A.V., Kozub, N.A., Sozinov, I.A., Pyly-penko, L.A., and Blume, Ya.B., Allelic state of the Cre8 gene conferring resistance to the nematode Heterodera avenae Woll. in common wheat cultivars of Ukrainian breeding, Factors Exp. Evol. Org. 2016, vol. 18, pp. 89–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Karelov or L. A. Pylypenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by S. Semenova

Abbreviations: ISSR—inter simple sequence repeat (flanked by microsatellites), RFLP—restriction fragment length polymorphism, SCAR—a sequence characterized amplified region, SSR—short sequence repeat (microsatellite), STS—sequence-tagged site (a site with a unique sequence).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karelov, A.V., Pylypenko, L.A., Kozub, N.A. et al. Genetic Background of the Resistance against Parasitic Nematodes in Wheat. Cytol. Genet. 53, 315–320 (2019). https://doi.org/10.3103/S0095452719040066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719040066

Keywords:

Navigation