Skip to main content
Log in

Identification of Oryza sativa’s Awn Development Regulatory Gene Orthologs in Triticinae Accessions

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Information on the genetic control of awn development in bread wheat is currently limited to the identification of three genes that suppress awnedness, Hd, B1, and B2, and no promoters have yet been identified. Another Gramineae species, Oryza sativa, has more than ten genes involved in awn morphogenesis. This article presents results of the wheat genome sequence analysis for the search of genes orthologous to the known awn development regulators in rice, TOB1, ETT2, and DL. Using bioinformatic methods, three genes, TaTOB1, TaETT2, and TaDL, are identified in the bread wheat genome; their location is defined on the chromosomes of the second, third, and fourth homoeologous groups, respectively. The polymorphisms between homoeoalleles of the genes located on subgenomes A, B, and D are described. Identified polymorphisms include variation in the length of exons and introns in all the three genes, variation in the number of exons and introns for the TaETT2 gene homoeoalleles, inversion of TaDL-B homoeoallele relative to the TaDL-A and TaDL-D, and inversion of TaETT2-B and TaETT2-D relative to TaETT2-A. With the PCR method using primers designed for the TaTOB1 gene sequence, the homoeoalleles of this gene were identified in the genomes Au, Ab, B, G, D, SSh, M, U, and T in diploid, tetraploid, and hexaploid wheat species. The marker potential of two pairs of primers for the TaTOB1 gene for the study into the genome structure of the introgressive wheat lines in relation to this gene is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Dorofeev, V.F., Filatenko, A.A., Migushova, E.P., Udachin, R.A., and Iakubtsiner, M.M., Cultural Flora of USSR, Brezhnev, D.D., Ed., Leningrad: Kolos, 1979, pp. 239–269.

    Google Scholar 

  2. Goud, J.V. and Sadananda, A.R., Two new awn promoter genes in bread wheat, Genetics, 1978, vol. 43, pp. 12–16.

    Google Scholar 

  3. Antonyuk, M.Z., Prokopyk, D.O., Martynenko, V.S., and Ternovska, T.K., Identification of the genes promoting awnedness in the Triticum aestivum/Aegilops umbellulata inrogressive line, Cytol. Genet., 2012, vol. 46, no. 3, pp. 136–143. https://doi.org/10.3103/s009545-2712030024

    Article  Google Scholar 

  4. Ternovska, T.K., Antonyuk, M.Z., and Martynenko, V.S., Genes promoters of awnedness in Triticinae genomes, Factory Eksper. Evol. Organ. Zb. Nauk. Prats., Kyiv: Logos, 2013, vol. 12, pp. 164–168.

    Google Scholar 

  5. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Appels, R., and Xia, X.C., Catalogue of Gene Symbols for Wheat, 2013.

  6. Sourdille, P., Cadalen, T., Gay, G., Gill, B.S., and Bernard, M., Molecular and physical mapping of genes affecting awning in wheat, Plant Breed., 2002, vol. 121, pp. 320–324.

    Article  CAS  Google Scholar 

  7. Yoshioka, M., Iehisa, J.C.M., Ohno, R., Kimura, T., Enoki, H., Nishimura, S., Nasuda, Sh., and Takumi, Sh., Three dominant awnless genes in common wheat: Fine mapping, interaction and contribution to diversity in awn shape 9and length, PLoS One, 2017, vol. 12, pp. 1–21. https://doi.org/10.1371/journal.pone.0176148

    Article  CAS  Google Scholar 

  8. Prokopyk, D.O. and Ternovska, T.K., Homeotic genes and their role in development of morphological traits in wheat, Cytol. Genet., 2011, vol. 45, no. 1, pp. 41–54. https://doi.org/10.3103/s0095452711010099

    Article  Google Scholar 

  9. Toriba, T. and Hirano, H.Y., The DROOPING LEAF and OsETTIN2 genes promote awn development in rice, Plant J., 2014, vol. 77, pp. 616–626. https://doi.org/10.1111/tpj.12411

    Article  CAS  PubMed  Google Scholar 

  10. Luo, J., Liu, H., Zhou, T., Gu, B., Huang, X., Shangguan, Y., Zhu, J., Li, Y., Zhao, Y., Wang, Y., Zhao, Q., Wang, A., Wang, Z., Sang, T., Wang, Z., and Han, B., An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice, Plant Cell, 2013, vol. 25, pp. 3360–3376. https://doi.org/10.1105/tpc.113.113589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanaka, W., Toriba, T., Ohmori, Y., Yoshida, A., Kawai, A., Mayama-Tsuchida, T., Ichikawa, H., Mitsuda, N., Ohme-Takagi, M., and Hirano, H-Y., The YABBY Gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet, Plant Cell, 2012, vol. 24, pp. 80–95. https://doi.org/10.1105/tpc.111.094797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Satoh, N., Itoh, J.I., and Nagato, Y., The SHOOTLESS2 and SHOOTLESS1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells, Genetics, 2003, vol. 164, no. 1, pp. 335–346. PMCID: PMC1462562.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Itoh, J.I., Kitano, H., Matsuoka, M., and Nagato, Y., Shoot organization genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice, Plant Cell, 2000, vol. 12, pp. 2161–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abe, M., Yoshikawa, T., Nosaka, M., Sakakibara, H., Sato, Y., Nagato, Y., and Itoh, J., WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining microRNA and transacting small interfering RNA accumulation in rice, Plant Physiol., 2010, vol. 154, pp. 1335–1346. https://doi.org/10.1104/pp.110.160234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song, X., Wang, D., Ma, L., Chen, Z., Li, P., Cui, X., Liu, C., Cao, S., Chu, C., Tao, Y., and Cao, X., Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development, Plant J., 2012, vol. 71, pp. 378–389. https://doi.org/10.1111/j.1365-313X.2012.05001.x

    Article  CAS  PubMed  Google Scholar 

  16. Goncharov, N.P., Comparative-genetic analysis—a base for wheat taxonomy revision, Czech. J. Genet. Plant Breed., 2005, vol. 41 (special issue), pp. 52–55.

    Article  Google Scholar 

  17. Prokopyk, D.O. and Ternovska, T.K., SSR-marking of genes taking part in control of awnedness in durum wheat (Triticum durum Desf.), Visn. Ukr. Tovar. Genet. Selec., 2010, vol. 8, no. 1, pp. 31–40.

    Google Scholar 

  18. Du, F., Guan, C., and Jiao, Y., Molecular mechanisms of leaf morphogenesis, Mol. Plant, 2018, vol. 11, pp. 1117–1134.

    Article  CAS  PubMed  Google Scholar 

  19. Prunet, N. and Meyerowitz, E.M., Genetics and plant development, Comptes Rendus Biologies, 2016, vol. 339, pp. 240–246. doi.org/https://doi.org/10.1016/j.crvi.2016.05.003

    Article  PubMed  Google Scholar 

  20. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410.

    Article  CAS  PubMed  Google Scholar 

  21. Jin, J., Tian, F., Yang, D.-C., Meng, Y.Q., Kong, L., Luo, J., and Gao, G., PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants, Nucleic Acids Res., 2017, vol. 45, pp. D1040–D1045. https://doi.org/10.1093/nar/gkw982

    Article  CAS  PubMed  Google Scholar 

  22. Dvorak, J., Luo, M.-C., Gu, Y.Q., et al., Sequencing the Aegilops tauschii genome. http://aegilops.wheat. ucdavis.edu.

  23. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T.L., Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinform., 2012, vol. 13, no. 134. https://doi.org/10.1186/1471-2105-13-134

  24. Zhirov, E.G., Synthesis of a new hexaploid wheat, Tr. Prikl. Bot. Genet. Sel., 1980, vol. 68, pp. 14–16.

    Google Scholar 

  25. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  26. Korbie, D.J. and Mattick, J.S., Touchdown PCR for increased specificity and sensitivity in PCR amplification, Nat. Protoc., 2008, vol. 3, pp. 1452–1456. https://doi.org/10.1038/nprot.2008.133

    Article  CAS  PubMed  Google Scholar 

  27. Kidwell, M.G. and Lisch, D., Transposable elements as sources of variation in animals and plants, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, pp. 7704–7711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petersen, G., Seberg, O., Yde, M., and Berthelsen, K., Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum), Mol. Phylogenet. Evol., 2006, vol. 39, pp. 70–82. https://doi.org/10.1016/j.ympev.2006.01.023

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partly supported by a grant from the International Charitable Fund of the Renaissance of the Kyiv-Mohyla Academy: Molecular Mechanisms of Development of Morphological Traits of Spike in Wheat.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Navalikhina, M. Antonyuk, T. Pasichnyk or T. Ternovska.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navalikhina, A., Antonyuk, M., Pasichnyk, T. et al. Identification of Oryza sativa’s Awn Development Regulatory Gene Orthologs in Triticinae Accessions. Cytol. Genet. 53, 267–275 (2019). https://doi.org/10.3103/S0095452719040091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719040091

Keywords:

Navigation