Skip to main content
Log in

Studying the Role of Protein Kinases CK1 in Organization of Cortical Microtubules in Arabidopsis thaliana Root Cells

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The members of the casein kinase 1 (CK1) subfamily are distinguished by interspecific conservatism and an extensive set of phosphorylation substrates. Recently, appeared strong evidence that CK1 are able to phosphorylate tubulin directly. Thus, CK1 contribute to the tubulin code and functional specialization of microtubules. In this work, we present the results of studying the response of plant tubulin cytoskeleton to the treatment with the CK1-specific inhibitor D4476. It was demonstrated that D4476 shows a strong dose-dependent effect on Arabidopsis thaliana root growth and morphology. The experiments on the plants expressing chimeric gfp-map4 gene construct proved the relation of the observed morphological reactions with the spatial organization of microtubules caused by a selective inhibition of protein kinases CK1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gross, S.D. and Anderson, R.A., Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family, Cell Signal., 1998, vol. 10, pp. 699–711.

    Article  CAS  PubMed  Google Scholar 

  2. Schittek, B. and Sinnberg, T., Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis, Mol. Cancer, 2014, vol. 13, no. 231. https://doi.org/10.1186/1476-4598-13-231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Robinson, L.C., Menold, M.M., Garrett, S., and Culbertson, M.R., Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis, Mol. Cell Biol., 1993, vol. 13, pp. 2870–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kloss, B., Price, J.L., Saez, L., Blau, J., Rothenfluh, A., Wesley, C.S., and Young, M.W., The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Ie, Cell, 1998, vol. 94, pp. 97–107.

    Article  CAS  PubMed  Google Scholar 

  5. Peters, J.M., McKay, R.M., McKay, J.P., and Graff, J.M., Casein kinase I transduces Wnt signals, Nature, 1999, vol. 401, pp. 345–350.

    Article  CAS  PubMed  Google Scholar 

  6. Dhillon, N. and Hoekstra, M.F., Characterization of two protein kinases from Schizosaccharomyces pombe involved in the regulation of DNA repair, EMBO J., 1994, vol. 13, pp. 2777–2788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Panek, H.R., Stepp, J.D., Engle, H.M., Marks, K.M., Tan, P.K., Lemmon, S.K., and Robinson, L.C., Suppressors of YCK-encoded yeast casein kinase 1 deficiency define the four subunits of a novel clathrin AP-like complex, EMBO J., 1997, vol. 16, pp. 4194–4204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murakami, A., Kimura, K., and Nakano, A., The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum, J. Biol. Chem., 1999, vol. 274, pp. 3804–3810.

    Article  CAS  PubMed  Google Scholar 

  9. Ikeda, K., Zhapparova, O., Brodsky, I., Semenova, I., Tirnauer, J.S., Zaliapin, I., and Rodionov, V., CK1 activates minus-end–directed transport of membrane organelles along microtubules, Mol. Biol. Cell, 2011, vol. 22, pp. 1321–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwab, C., DeMaggio, A.J., Ghoshal, N., Binder, L.I., Kuret, J., and McGeer, P.L., Casein kinase 1 delta is associated with pathological accumulation of tau in several neurodegenerative diseases, Neurobiol. Aging, 2000, vol. 21, pp. 503–510.

    Article  CAS  PubMed  Google Scholar 

  11. Flaherty, D.B., Soria, J.P., Tomasiewicz, H.G., and Wood, J.G., Phosphorylation of human tau protein by microtubule-associated kinases: GSK3b and cdk5 are key participants, J. Neurosci. Res., 2000, vol. 62, pp. 463–472.

    Article  CAS  PubMed  Google Scholar 

  12. Li, G., Yin, H., and Kuret, J., Casein kinase 1σ phosphorylates tau and disrupts its binding to microtubules, J. Biol. Chem., 2004, vol. 279, pp. 15938–15945.

    Article  CAS  PubMed  Google Scholar 

  13. Kannanayakal, T.J., Mendell, J.R., and Kuret, J., Casein kinase 1 alpha associates with the tau-bearing lesions of inclusion body myositis, Neurosci. Lett., 2008, vol. 431, pp. 141–145.

    Article  CAS  PubMed  Google Scholar 

  14. Perez, D.I., Gil, C., and Martinez, A., Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases, Med. Res. Rev., 2011, vol. 31, vol. 924–954.

    Book  Google Scholar 

  15. Wittau, M., Wolff, S., Xiao, Z., Henne-Bruns, D., and Knippschild, U., Die stressinduzierte Casein Kinase 1 delta kann die Spindeldynamik durch direkte Interaktion mit dem Mikrotubuli assoziierten Protein MAP1A beeinflussen, in Chirurgisches Forum 2005. Deutsche Gesellschaft fur Chirurgie, Rothmund, M., Jauch, K.W., and Bauer, H., Eds., Berlin: Springer, 2005, vol. 34, ch. 13, pp. 37–39. https://doi.org/10.1007/3-540-26560-0_13

  16. Zyss, D., Ebrahimi, H., and Gergely, F., Casein kinase I delta controls centrosome positioning during T cell activation, J. Cell Biol., 2011, vol. 195, pp. 781–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolff, S., Xiao, Z., Wittau, M., Sussner, N., Stoter, M., and Knippschild, U., Interaction of casein kinase 1 delta (CK1 delta) with the light chain LC2 of microtubule associated protein 1A (MAP1A), Biochem. Biophys. Acta, 2005, no. 1745, pp. 196–206.

  18. Kuret, J., Johnson, G.S., Cha, D., Christenson, E.R., DeMaggio, A.J., and Hoekstra, M.F., Casein kinase 1 is tightly associated with paired-helical filaments isolated from Alzheimer’s disease brain, J. Neurochem., 1997, vol. 69, pp. 2506–2515.

    Article  CAS  PubMed  Google Scholar 

  19. Singh, T.J., Grundke-Iqbal, I., and Iqbal, K., Phosphorylation of tau protein by casein kinase-1 converts it to an abnormal Alzheimer-like state, J. Neurochem., 1995, vol. 64, pp. 1420–1423.

    Article  CAS  PubMed  Google Scholar 

  20. Behrend, L., Stöter, M., Kurth, M., Rutter, G., Heukeshoven, J., Deppert, W., and Knippschild, U., Interaction of casein kinase 1 delta (CK1d) with post-Golgi structures, microtubules and the spindle apparatus, Eur. J. Cell Biol., 2000, vol. 79, pp. 240–251.

    Article  CAS  PubMed  Google Scholar 

  21. Behrend, L., Milne, D.M., Stöter, M., Deppert, W., Campbell, L.E., Meek, D.W., and Knippschild, U., IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects, Oncogene, 2000, vol. 19, pp. 5303–5313.

    Article  CAS  PubMed  Google Scholar 

  22. Löhler, J., Hirner, H., Schmidt, B., Kramer, K., Fischer, D., Thal, D.R., Leithauser, F., and Knippschild, U., Immunohistochemical characterization of cell-type specific expression of CK1δ in various tissues of young adult BALB/c mice, PLoS One, 2009, vol. 4, no. 1, e4174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Aletta, J.M., Phosphorylation of type III beta-tubulin PC12 cell neurites during NGF-induced process outgrowth, J. Neurobiol., 1996, vol. 31, pp. 461–475.

    Article  CAS  PubMed  Google Scholar 

  24. MacRae, T.H., Tubulin post-translational modifications enzymes and their mechanisms of action, Eur. J. Biochem., 1997, vol. 244, pp. 265–278.

    Article  CAS  PubMed  Google Scholar 

  25. Knippschild, U., Gocht, A., Wolff, S., Huber, N., Löhler, J., and Stöter, M., The casein kinase 1 family: participation in multiple cellular processes in eukaryotes, Cell Signal., 2005, vol. 17, no. 6, pp. 675–689.

    Article  CAS  PubMed  Google Scholar 

  26. Albornoz, A., Yánez, J.M., Foerster, C., Aguirre, C., Pereiro, L., Burzio, V., Moraga, M., Reyes, A.E., and Antonelli, M., The CK1 gene family: expression patterning in zebrafish development, Biol. Res., 2007, vol. 40, pp. 251–266.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, J.-Y., Versatile casein kinase, Plant Signal. Behav., 2009, vol. 4, pp. 652–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Graves, P.R., Haas, D.W., Hagerdon, C.H., De Paoli-Roach, A.A., and Roach, P.J., Molecular cloning, expression and characterization of a 49 kDa casein kinase I isoform from rat testis, J. Biol. Chem., 1993, vol. 268, pp. 6394–6401.

    CAS  PubMed  Google Scholar 

  29. Graves, P.R. and Roach, P.J., Role of COOH-terminal phosphorylation in the regulation of casein kinase Id, J. Biol. Chem., 1995, vol. 270, pp. 21689–21694.

    Article  CAS  PubMed  Google Scholar 

  30. Cegielska, A., Gietzen, K.F., Rivers, A., and Virshup, D.M., Autoinhibition of casein kinase I epsilon (CKI epsilon) is relieved by protein phosphatases and limited proteolysis, J. Biol. Chem., 1998, vol. 273, pp. 1357–1364.

    Article  CAS  PubMed  Google Scholar 

  31. Park, H.H., Casein kinase I-like protein linked to lipase in plant, Plant Signal. Behav., 2012, vol. 7, no. 7, pp. 719–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karpov, P.A., Nadezhdina, E.S., Yemets, A.I., and Blume, Ya.B., Results of the clusterization of human microtubule and cell-cycle related serine/threonine protein kinases and their plant homologues, Moscow Univ. Biol. Sci. Bull., 2010, vol. 65, no. 4, pp. 213–216.

    Article  Google Scholar 

  33. Wang, M., Yu, D., Guo, X., Cui, Y., Li, X., Zhang, J., Zhao, L., Chang, H., Hu, S., Zhang, C., Shi, J., and Liu, X., Casein kinase 1-like 3 is required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis,Afr. J. Biotech., 2011, vol. 10, no. 61, pp. 13219–13229.

    CAS  Google Scholar 

  34. Liu, W., Xu, Z.H., Luo, D., and Xue, H.W., Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity, Plant J., 2003, vol. 36, pp. 189–202.

    Article  CAS  PubMed  Google Scholar 

  35. Dai, C. and Xue, H.-W., Rice EARLY FLOWERING1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signaling, EMBO J., 2010, vol. 29, pp. 1916–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, J.Y., Taoka, K., Yoo, B.C., Ben-Nissan, G., Kim, D.J., and Lucas, W.J., Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins, Plant Cell, 2005, vol. 17, pp. 2817–2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ben-Nissan, G., Yang, Y., and Lee, J.Y., Partitioning of casein kinase 1-like 6 to late endosome-like vesicles, Protoplasma. 2010, vol. 240, pp. 45–56.

    Article  CAS  PubMed  Google Scholar 

  38. Ben-Nissan, G., Cui, W., Kim, D.J., Yang, Y., Yoo, B.C., and Lee, J.Y., Arabidopsis casein kinase 1-Like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules, Plant Physiol., 2008, vol. 148, pp. 1897–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, H., Zeng, X., Liu, Z.Q., Meng, Q.T., Yuan, M., and Mao, T.L., Arabidopsis microtubule-associated protein AtMAP65-2 acts as a microtubule stabilizer, Plant Mol. Biol., 2009, vol. 69, no. 3, pp. 313–324.

    Article  CAS  PubMed  Google Scholar 

  40. Cozza, G., Gianoncelli, A., Montopoli, M., Caparrotta, L., Venerando, A., Meggio, F., Pinna, L.A., Zagotto, G., and Moro, S., Identification of novel protein kinase CK1 delta (CK1delta) inhibitors through structure-based virtual screening, Bioorg. Med. Chem. Lett., 2008, vol. 18, pp. 5672–5675.

    Article  CAS  PubMed  Google Scholar 

  41. Rena, G., Bain, J., Elliot, M., and Cohen, P., D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a, EMBO Rep., 2004, vol. 5, pp. 60–65.

    Article  CAS  PubMed  Google Scholar 

  42. Aud, D.E. and Peng, S.L.-Y., Methods of treating inflammatory diseases, US Patent no. 2008/0146617 A1, 2008.

  43. Zelenak, C., Eberhard, M., Jilani, K., Qadri, S.M., Macek, B., and Lang, F., Protein kinase CK1α regulates erythrocyte survival, Cell Physiol. Biochem., 2012, vol. 29, pp. 171–180.

    Article  CAS  PubMed  Google Scholar 

  44. Karpov, P.A., Nadezhdina, E.S., Yemets, A.I., Matusov, V.G., Nyporko, A.Y., Shashina, N.Y., and Blume, Y.B., Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases, BMC Genomics, 2010b vol. 11, pp. S1–S14. https://doi.org/10.1186/1471-2164-11-S1-S14

    Article  CAS  Google Scholar 

  45. Mathur, M. and Chua, N.-H., Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes, Plant Cell, 2000, vol. 12, pp. 465–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yemets, A., Sheremet, Y., Vissenberg, K., Van Orden, J., Verbelen, J.-P., and Blume, Y.B., Effects of tyrosine kinase and phosphatase inhibitors on microtubules in Arabidopsis root cells, Cell Biol. Int., 2008, vol. 32, pp. 630–637.

    Article  CAS  PubMed  Google Scholar 

  47. Collins, T.J., ImageJ for microscopy, Biotechniques, 2007, vol. 43, suppl. 1, pp. 25–30.

    Article  PubMed  Google Scholar 

  48. Barrada, A., Montane, M.H., Robaglia, C., and Menand, B., Spatial regulation of root growth: placing the plant TOR pathway in a developmental perspective, Int. J. Mol. Sci., 2015, vol. 16, no. 8, pp. 19671–19697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Knippschild, U., Krüger, M., Richter, J., Xu, P., García-Reyes, B., Peifer, C., Halekotte, J., Bakulev, V., and Bischof, J., The CK1 family: contribution to cellular stress response and its role in carcinogenesis, Front. Oncol., 2014, vol. 4, no. 96. https://doi.org/10.3389/fonc.2014.00096

  50. Krüger, M., Kalbacher, H., Kastritis, P.L., Bischof, J., Barth, H., Henne-Bruns, D., Vorgias, C., Sarno, S., Pinna, L.A., and Knippschild, U., New potential peptide therapeutics perturbing CK1δ/α-tubulin interaction, Cancer Lett., 2016, vol. 375, no. 2, pp. 375–383.

    Article  PubMed  CAS  Google Scholar 

  51. Carrino, M., Quotti, TubiL., Fregnani, A., Canovas, NunesS., Barila, G., Trentin, L., Zambello, R., Semenzato, G., Manni, S., and Piazza, F., Prosurvival autophagy is regulated by protein kinase CK1 alpha in multiple myeloma, Cell Death Discov., 2019, vol. 5, no. 98. https://doi.org/10.1038/s41420-019-0179-1

  52. Manni, S., Carrino, M., Manzoni, M., Gianesin, K., Nunes, S.C., Costacurta, M., Tubi, L.Q., Macaccaro, P., Taiana, E., Cabrelle, A., Barila, G., Martines, A., Zambello, R., Bonaldi, L., Trentin, L., Neri, A., Semenzato, G., and Piazza, F., Inactivation of CK1α in multiple myeloma empowers drug cytotoxicity by affecting AKT and β-catenin survival signaling pathways, Oncotarget, 2017, vol. 8, no. 9, pp. 14604–14619.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rachidi, N., Taly, J.F., Durieu, E., Leclercq, O., Aulner, N., Prina, E., Pescher, P., Notredame, C., Meijer, L., and Spath, G.F., Pharmacological assessment defines Leishmania donovani casein kinase 1 as a drug target and reveals important functions in parasite viability and intracellular infection, Antimicrob. Agents Chemother., 2014, vol. 58, no. 3, pp. 1501–1515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Berger, F., Hung, C.-Y., Dolan, L., and Schiefelbein, J., Control of cell division in the root epidermis of Arabidopsis thaliana,Dev. Biol., 1998, vol. 194, no. 2, pp. 235–245.

    Article  CAS  PubMed  Google Scholar 

  55. Yemets, A., Krasylenko, Y., Sheremet, Y., and Blume, Y., Nitric oxide donor and scavenger influence on Arabidopsis thaliana root development via cortical microtubules reorganization, Acta Biol. Cracov., Ser. Bot., 2009, vol. 51, suppl. 2, p. 122.

    Google Scholar 

  56. Järes, M., Miller, P.G., Chu, L.P., Puram, R.V., Fink, E.C., Schneider, R.K., Al-Shahrour, F., Pena, P., Brey-fogle, L.J., Hartwell, K.A., McConkey, M.E., Cowley, G.S., Root, D.E., Kharas, M.G., Mullally, A., and Ebert, B.L., Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia, J. Exp. Med., 2014, vol. 211, no. 4, pp. 605–612.

    Article  Google Scholar 

  57. Cheong, J.K., Zhang, F., Chua, P.J., Bay, B.H., Thorburn, A., and Virshup, D.M., Casein kinase 1α-dependent feedback loop controls autophagy in RAS-driven cancers, J. Clin. Invest., 2015, vol. 125, no. 4, pp. 1401–1418.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lucas, J. and Shaw, S.L., Cortical microtubule arrays in the Arabidopsis seedling, Curr. Opin. Plant Biol., 2008, vol. 11, pp. 94–98.

    Article  CAS  PubMed  Google Scholar 

  59. Barlow, P.W. and Baluska, F., Cytoskeletal perspectives on root growth and morphogenesis, Annu Rev. Plant Physiol. Plant Mol. Biol, 2000, vol. 51, pp. 289–322.

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi, H., Hirota, K., Kawahara, A., Hayakawa, E., and Inoue, Y., Randomization of cortical microtubules in root epidermal cells induces root hair initiation in lettuce (Lactuca sativa L.) seedlings, Plant Cell Physiol., 2003, vol. 44, pp. 350–359.

    Article  CAS  PubMed  Google Scholar 

  61. Van Bruaene, N., Joss, G., and van Oostveldt, P., Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development, Plant Physiol., vol. 136, pp. 3905–3919.

  62. Vassileva, V.N., Kouchi, H., and Ridge, R.W., Microtubule dynamics in living root hairs: transient slowing by lipochitin oligosaccharide nodulation signals, Plant Cell, 2005, vol. 17, pp. 1777–1787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bao, Y., Kost, B., and Chua, N.H., Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism, Plant J., 2001, vol. 28, pp. 145–157.

    Article  CAS  PubMed  Google Scholar 

  64. Bibikova, T.N., Blancaflor, E.B., and Gilroy, S., Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana,Plant J., 1999, vol. 17, pp. 657–665.

    Article  CAS  PubMed  Google Scholar 

  65. Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W., GenBank, Nucleic Acids Res., 2013, vol. 41 (Database issue), pp. D36–D42.

    Article  CAS  PubMed  Google Scholar 

  66. The UniProt Consortium. UniProt: the universal protein knowledgebase, Nucleic Acids Res., 2017, vol. 45 (D1), pp. D158–D169.

Download references

Funding

This study was not supported by any specific grant from funding agencies in the state, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. A. Karpov, Ya. A. Sheremet, Ya. B. Blume or A. I. Yemets.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, P.A., Sheremet, Y.A., Blume, Y.B. et al. Studying the Role of Protein Kinases CK1 in Organization of Cortical Microtubules in Arabidopsis thaliana Root Cells. Cytol. Genet. 53, 441–450 (2019). https://doi.org/10.3103/S0095452719060033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719060033

Keywords:

Navigation