Skip to main content
Log in

Structural Biological Characteristics of CK1-Like Protein Kinase Isotypes Associated with Regulation of Plant Microtubules

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Eighteen isotypes of CK1-like protein kinases were identified in A. thaliana. Comparison of catalytic domains in rat CK1 (α, β, γ1–3, δ, and ε) and 18 plant homologs from A. thaliana confirmed a high structural similarity for 13 CK1-like protein kinases: CKL1 (CK1δ), CKL2, CKL3, CKL4, CKL5, CKL6, CKL7, CKL8, CKL9, CKL10, CKL11, CKL12, and CKL13. It was found that CK1-specific inhibitor D4476 interacts with rat KС1D and 13 plant homologs in a similar ATP-competitive manner. Ligand binding was confirmed based on scoring functions of docking, results of molecular dynamics, and chemogenomic analysis. The specific interaction of CK1-kinases with substrate proteins depends on specific motifs located in their C-end region. The specific motifs of EB1 binding was identified in plant СKL1 and CKL2. The role of the C-end region in CKL6–β-tubulin interaction was also confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Cheong, J.K. and Virshup, D.M., Casein kinase 1: complexity in the family, Int. J. Biochem. Cell Biol., 2011, vol. 43, no. 4, pp. 465–469.

    Article  CAS  PubMed  Google Scholar 

  2. Elmore, Z.C., Guillen, R.X., and Gould, K.L., The kinase domain of CK1 enzymes contains the localization cue essential for compartmentalized signaling at the spindle pole, Mol. Biol. Cell, 2018, vol. 29, no. 13, pp. 1664–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qiao, Y., Chen, T., Yang, H., Chen, Y, Lin, H., Qu, W., Feng, F., Liu, W., Guo, Q., Liu, Z., and Sun, H., Small molecule modulators targeting protein kinase CK1 and CK2, Eur. J. Med. Chem., 2019, vol. 181, p. 111 581. doi.org/10.10l6/j.ejmech.2019.111581

    Article  Google Scholar 

  4. Ben-Nissan, G., Cui, W., Kim, D.J., Yang, Y., Yoo, B.C., and Lee, J.Y., Arabidopsis Casein kinase 1-Like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules, Plant Physiol., 2008, vol. 148, pp. 1897–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ben-Nissan, G., Yang, Y., and Lee, J.Y., Partitioning of casein kinase 1-like 6 to late endosome-like vesicles, Protoplasma, 2010, vol. 240, pp. 45–56.

    Article  CAS  PubMed  Google Scholar 

  6. Karpov, P.A., Sheremet, Ya.A., Blume, Ya.B., and Yemets, A.I., Studying the role of protein kinases CK1 in organization of cortical microtubules in Arabidopsis thaliana root cells, Cytol. Genet., 2019, vol. 53, no. 6, pp. 441–450.

    Article  Google Scholar 

  7. Yemets, A., Sheremet, Y, Vissenberg, K., Van Orden, J., Verbelen, J.-P., and Blume, Y.B., Effects of tyrosine kinase and phosphatase inhibitors on microtubules in Arabidopsis root cells, Cell Biol. Int., 2008, vol. 32, pp. 630–637.

    Article  CAS  PubMed  Google Scholar 

  8. Cozza, G., Gianoncelli, A., Montopoli, M., Caparrotta, L., Venerando, A., Meggio, F., Pinna, L.A., Zagotto, G., and Moro, S., Identification of novel protein kinase CK1 delta (CKldelta) inhibitors through structure-based virtual screening, Bioorg. Med. Chem. Lett., 2008, vol. 18, pp. 5672–5675.

    Article  CAS  PubMed  Google Scholar 

  9. Perez, D.I., Gil, C., and Martinez, A., Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases, Med. Res. Rev., 2011, vol. 31, vol. 924–954.

    Book  Google Scholar 

  10. Rena, G., Bain, J., Elliot, M., and Cohen, P., D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXOla, EMBO Rept., 2004, vol. 5, pp. 60–5.

    Article  CAS  Google Scholar 

  11. Aud, D.E., Peng, S.L.-Y., Methods of treating inflammatory diseases, US Patent no. US 2008/0146617 Al, 2008.

  12. Zelenak, C, Eberhard, M., Jilani, K., Qadri, S.M., Macek, B., and Lang, F., Protein kinase CKla regulates erythrocyte survival, Cell Physiol. Biochem., 2012, vol. 29, pp. 171–180.

    Article  CAS  PubMed  Google Scholar 

  13. Benson, D.A, Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W., GenBank, Nucleic Acids Res., 2011, vol. 39 (database issue), pp. D32–D37.

  14. Manning, G, Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S., The protein kinase complement of the human genome, Science, 2002, vol. 298, pp. 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  15. Wittau, M., Wolff, S., Xiao, Z., Henne-Bruns, D., and Knippschild, U., Die stressinduzierte Casein Kinase 1 delta kann die Spindeldynamik durch direkte Interaktion mit dem Mikrotubuli assoziierten Protein MAP1A beeinflussen, in Chirurgisches Forum 2005, Rothmund, M. Jauch, KW., and Bauer, H., Eds., Deutsche Gesellschaft fer Chirurgie, Berlin: Springer, 2005, vol. 34, ch. 13, pp. 37–39.

  16. Albornoz, A., Yacez, J.M., Foerster, C, Aguirre, C, Pereiro, L., Burzio, V., Moraga, M., Reyes, A.E., and Antonelli, M., The CK1 gene family: expression patterning in zebrafish development, Biol. Res., 2007, vol. 40, pp. 251–266.

    Article  CAS  PubMed  Google Scholar 

  17. Löhler, J., Hirner, H., Schmidt, B., Kramer, K., Fischer, D., Thai, D.R., Leithäuser, F., and Knippschild, U., Immunohistochemical characterisation of cell-type specific expression of CK15 in various tissues of young adult BALB/c mice, PLoS One, 2009, vol. 4, no. 1, e4174.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ikeda, K., Zhapparova, O., Brodsky, I., Semenova, I., Tirnauer, J.S., Zaliapin, I., and Rodionov, V., CK1 activates minus-end-directed transport of membrane organelles along microtubules, Mol. Biol. Cell, 2011, vol. 22, pp. 1321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. The UniProt Consortium, UniProt: the universal protein knowledgebase, Nucleic Acids Res., 2017, vol. 45, pp. D158–D169.

  20. Claverie, J-M. and Notredame, C., Bioinformatics for Dummies, 2nd ed., New York: Wiley, 2007.

    Google Scholar 

  21. Korf, I., Yandell, M., and Bedell, J., BLAST, Sebastopol: O’Reilly and Associates, 2003.

    Google Scholar 

  22. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna. R., McGettigan P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G., Clustal W and Clustal X version 2.0, Bioinformatics, 2007, vol. 23, no. 21, pp. 2947–8. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  23. Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E., WebLogo: a sequence logo generator, Genome Res., 2004; vol. 14, pp. 1188–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Atteson, K., The performance of neighbor-joining algorithms of phylogeny reconstruction, in Lecture Notes in Computer Science, Jiang, T. and Lee D., Eds., Berlin: Springer-Verlag, 1997, vol. 1276, pp. 101–110.

  25. Hall, B.G., Phylogenetic Trees Made Easy, 3rd ed., Sinauer Ass. Inc., 2008.

    Google Scholar 

  26. Letunic, I., Doerks, T., and Bork, P., SMART 7: recent updates to the protein domain annotation resource, Nucleic Acids Res., 2012, vol. 40 (D1), pp. D302–D305.

    Article  CAS  PubMed  Google Scholar 

  27. Page, R.D., TREEVIEW: an application to display phylogenetic trees on personal computers, Comput. Appl. Biosci., 1996, vol. 12, pp. 357–358.

    CAS  PubMed  Google Scholar 

  28. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, no. 10, pp. 2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jacoby, E., Chemogenomics, Methods and Applications, Methods Mol. Biol., Springer, Humana Press, 2009, vol. 575, p. 315.

  30. Huang, D., Zhou, T., Lafleur, K., Nevado, C., and Caflisch, A., Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis, Bioinformatics, 2010, vol. 26, no. 2, pp. 198–204.

    Article  PubMed  Google Scholar 

  31. Baron, R., Computational Drug Discovery and Design, Methods Mol. Biol., Springer, 2012, vol. 819.

  32. Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper U., and Sali, A., Comparative protein structure modeling with Modeller, Curr. Prot. Bioinform., 2006. https://doi.org/10.1002/0471250953.bi0506s15

  33. Xu, R.M., Carmel, G., Sweet, R.M., Kuret, J., and Cheng, X., Crystal structure of casein kinase-1, a phosphate-directed protein kinase, EMBO J., 1995, vol. 14, no. 5, pp. 1015–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mashhoon, N., DeMaggio, A.J., Tereshko, V., Bergmeier, S.C., Egli, M., Hoekstra, M.F., and Kuret, J., Crystal structure of a conformation-selective casein kinase-1 inhibitor, J. Biol. Chem., 2000, vol. 275, no. 26, pp. 20 052–20 060. https://doi.org/10.1074/jbc.M001713200

    Article  Google Scholar 

  35. Gu, J. and Bourne, P.E., Structural Bioinformatics, 2nd ed., New Jersey: Wiley, 2009.

    Google Scholar 

  36. Melo, F. and Feytmans, E., Assessing protein structures with a non-local atomic interaction energy, J. Mol. Biol., 1998, vol. 277, pp. 1141–1152.

    Article  CAS  PubMed  Google Scholar 

  37. Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M., PROCHECK: a program to check the stereochemical quality of protein structures, J. Appl. Cryst., 1993, vol. 26, pp. 283–291.

    Article  CAS  Google Scholar 

  38. Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D. Biol. Crystallogr., 2010, vol. 66, no. 1, pp. 12–21. https://doi.org/10.1107/S09074449-09042073

    Article  CAS  PubMed  Google Scholar 

  39. Eisenberg, D., Lüthy, R., and Bowie, J.U., VERIFY3D: assessment of protein models with three-dimensional profiles, Methods Enzymol., 1997, vol. 277, pp. 396–404.

    Article  CAS  PubMed  Google Scholar 

  40. Zoete, V., Cuendet, M.A., Grosdidier, A., and Michielin, O., SwissParam: a fast force field generation tool for small organic molecules, J. Comput. Chem., 2011, vol. 32, no. 11, pp. 2359–2368.

    Article  CAS  PubMed  Google Scholar 

  41. Hartshorn, M.J., Verdonk, M.L., Chessari, G., Brewerton, S.C., Mooij, W.T., Mortenson, P.N., and Murray C.W., Diverse, high-quality test set for the validation of protein-ligand docking performance, J. Med. Chem., 2007, vol. 50, no. 4, pp. 726–741. https://doi.org/10.1021/jm061277y

    Article  CAS  PubMed  Google Scholar 

  42. Stacklies, W., Seifert, C., and Graeter, F., Implementation of force distribution analysis for molecular dynamics simulations, BMC Bioinformatics, 2011, vol. 12, no. 101, pp. 1–5.

    Article  Google Scholar 

  43. MacKerell, Jr.A.D., Banavali, N., and Foloppe, N., Development and current status of the CHARMM force field for nucleic acids, Biopolymers, 2001, vol. 56, no. 4, pp. 257–65.

    Article  Google Scholar 

  44. Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., and Mackerell, A.D., Jr., CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J. Comp. Chem., 2010, vol. 31, no. 4, pp. 671–690. https://doi.org/10.1002/jcc.21367

    Article  CAS  Google Scholar 

  45. Biro, J.C., Amino acid size, charge, hydropathy indices and matrices for protein structure analysis, Theor. Biol. Med. Model., 2006, vol. 3, no. 15. https://doi.org/10.1186/1742-4682-3-15

  46. Zyss, D., Ebrahimi, H., and Gergely, F., Casein kinase I delta controls centrosome positioning during T cell activation, J. Cell Biol., 2011, vol. 195, pp. 781–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolff, S., Xiao, Z., Wittau, M., Sossner, N., Stuter, M., and Knippschild, U., Interaction of casein kinase 1 delta (CK1 delta) with the light chain LC2 of microtubule associated protein 1A (MAP1A), Biochem. Biophys. Acta, 2005, no. 1745, pp. 196– 206.

  48. Lӧhler, J., Hirner, H., Schmidt, B., Kramer, K., Fischer, D., Thal, D.R., Leithдuser, F., and Knippschild, U., Immunohistochemical characterisation of cell-type specific expression of CK1delta in various tissues of young adult BALB/c mice, PLoS One, 2009, vol. 4, e4174. https://doi.org/. 0004174https://doi.org/10.1371/journal.pone

  49. Hamada, T., Microtubule-associated proteins in higher plants, J. Plant Res., 2007, vol. 120, pp. 79–98.

    Article  CAS  PubMed  Google Scholar 

  50. Karpov, P.A., and Blume, Y.B., Baird, W.V., Yemets, A.I., Breviario, D., Bioinformatic search for plant homologues of animal structural MAPs in the Arabidopsis thaliana genome, in The Plant Cytoskeleton: A Key Tool for Agro-Biotechnology, Netherlands: Springer, 2008, pp. 373–394. https://doi.org/10.1007/978-1-4020-8843-8_18

    Book  Google Scholar 

  51. Honnappa, S., Gouveia, S.M., Weisbrich, A., Dam-berger, F.F., Bhavesh, N.S., et al. An EB1-binding motif acts as a microtubule tip localization signal, Cell, 2009, vol. 138, pp. 366–376.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study did not receive funding from institutions in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Karpov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, P.A., Rayevsky, A.V., Sheremet, Y.A. et al. Structural Biological Characteristics of CK1-Like Protein Kinase Isotypes Associated with Regulation of Plant Microtubules. Cytol. Genet. 54, 293–304 (2020). https://doi.org/10.3103/S0095452720040052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720040052

Keywords:

Navigation