Skip to main content
Log in

Obtaining Wheat (Triticum aestivum L.) Lines with Yeast Genes for Trehalose Biosynthesis

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Yeast (Saccharomyces cerevisiae) genes for trehalose biosynthesis (TPS1 and TPS2) were transferred into genomes of several common wheat cultivars using two methods of Agrobacterium-mediated transformation (in vitro and in planta) to enhance drought tolerance. For this purpose, vectors pBract214-TPS1 and pBract214-TPS2 were constructed using the Gateway-cloning technique. Both the vectors contained TPS1 and TPS2 genes under control of the constitutive maize ubiquitin promoter (PUbi) and selectable marker hygromycin-phosphotransferase (hpt) gene. Three- to five-day-old calluses obtained from immature wheat embryos were used as explants for the transformation in vitro. Selection of transgenic plants was carried out on nutrient medium supplemented with 30 mg/L hygromycin (as a selectable agent). Seeds of wheat (transgenic generation T1) were obtained by the in planta method of transformation. Integration and the presence of yeast genes in wheat genomic DNA isolated from transgenic plants were confirmed by PCR analysis using primers specific to TPS1 and TPS2 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Yatsyshyn, V.Y., Kvasko, A.Y., and Yemets, A.I., Genetic approaches in research on the role of trehalose in plants, Cytol. Genet., 2017, vol. 51, pp. 371–383.

    Article  Google Scholar 

  2. Crowe, J.H., Hoekstra, F.A., and Crowe, L.M., Anhydrobiosis, Annu. Rev. Physiol., 1992, vol. 54, pp. 579–599.

    Article  CAS  Google Scholar 

  3. Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Elster, R., Salamini, F., and Bartels, D., The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia,Physiol. Plant., 1993, vol. 87, pp. 223–226.

    Article  CAS  Google Scholar 

  4. Drennan, P.M., Smith, M.T., Goldsworthy, D., and Van Staden, J., The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw., J. Plant Physiol., 1993, vol. 142, pp. 493–496.

    Article  CAS  Google Scholar 

  5. Colaco, K., Kampinga, J., and Roser, B., Amorphous stability and trehalose, Science, 1995, vol. 268, pp. 788–789.

    Article  CAS  Google Scholar 

  6. Kim, J., Alizadeh, P., Harding, T., Hefner-Gravink, A., and Klionsky, D.J., Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications, Appl. Environ. Microbiol., 1996, vol. 62, pp. 1563–1569.

    Article  CAS  Google Scholar 

  7. An, M.-Z., Tang, Y.-Q., Mitsumasu, K., Liu, Z.-S., Shigeru, M., and Kenji, K., Enhanced thermo-tolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase, Biotechnol. Lett., 2011, vol. 33, pp. 1367–1374.

    Article  CAS  Google Scholar 

  8. Romero, C., Belles, J.M., Vaya, J.L., Serrano, R., and Culianezmacia, F.A., Expression of the yeast trehalose 6 phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance, Planta, 1997, vol. 201, pp. 293–297.

    Article  CAS  Google Scholar 

  9. Karim, S., Aronsson, H., Ericson, H., Pirhonen, M., Leyman, B., Welin, B., Mäntylä, E., Palva, E.T., Van Dijck, P., and Holmström, K.O., Improved drought tolerance without undesired side effects in transgenic plants producing trehalose, Plant Mol. Biol., 2007, vol. 64, pp. 371–386.

    Article  CAS  Google Scholar 

  10. Jang, I.C., Oh, S.J., Seo, J.S., Choi, W.B., Song, S.I., Kim, C.H., Kim, Y.S., Seo, H.S., Choi, Y.D., Nahm, B.H., and Kim, J.K., Expression of a bifunctional fusion of the Escherichia coli genes for trehalose6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth, Plant Physiol., 2003, vol. 131, no. 2, pp. 516–524.

    Article  CAS  Google Scholar 

  11. Wu, R. and Garg, A., Engineering Rice Plants with Trehalose-Producing Genes Improves Tolerance to Drought, Salt, and Low Temperature, ISB News Report, 2003. https://www.seedquest.com/News/relea-ses/ 2003/march/5456.htm.

  12. Miranda, J.A., Avonce, N., Suárez, R, Thevelein, J.M., Dijck, P.V., and Iturriaga, G., A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis,Planta, 2007, vol. 226, no. 6, pp. 1411–1421.

    Article  CAS  Google Scholar 

  13. Hensel, G., Kastner, C, Oleszczuk, S., Riechen, J., and Kumlehn, J., Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize, Int. J. Plant Genomics, 2009, vol. 1, pp. 1–9.

    Article  Google Scholar 

  14. Manfroi, E., Yamazaki-Lau, E., Grando, M.F., and Roesler, E.A., Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens,Genet. Mol. Biol., 2015, vol. 38, no. 4, pp. 470–476.

    Article  CAS  Google Scholar 

  15. Karimi, M., Inze, D., and Depicher, A., GATE-AWAY vectors for Agrobacterium-mediated plant transformation, Trends Plant. Sci., 2002, vol. 7, pp. 193–195.

    Article  CAS  Google Scholar 

  16. Fleuler, F., Stettler, T., Meyerhofer, M., Leder, L., and Mayr, I.M., Development of a novel Gateaway-based vector system for officient, multiparallel protein expression in Escherichia coli,Protein Expr. Purif., 2008, vol. 59, pp. 232–241.

    Article  Google Scholar 

  17. Kvasko A.Yu., Isayenkov S.V., Krasnoperova E.E., Dmytruk K.V., and Yemets A.I., Obtaining of wheat plants with yeast genes of trehalose biosynthesis TPS1 and TPS2,Rep. Natl. Acad. Sci. Ukraine, 2020, no. 6, pp. 92–100.

  18. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  19. Gamborg, O.L. and Eveleigh, D., Culture methods and detection of glucanases in cultures of wheat and barley, Can. J. Biochem., 1968, vol. 46, no. 5, pp. 417– 421.

    Article  CAS  Google Scholar 

  20. Hensel, G., Marthe, C., and Kumlehn, J., Agrobacterium-mediated transformation of wheat using immature embryos, Methods Mol. Biol., 2017, vol. 1679, pp. 129–139.

    Article  CAS  Google Scholar 

  21. Ishida, Y., Tsunashima, M., Heiei, Y., and Komari, T., Wheat (Triticum aestivum L.) transformation using immature embryos, Methods Mol. Biol., 2015, vol. 1223, pp. 189–198.

    Article  CAS  Google Scholar 

  22. Zale, J.M., Agarwal, S., Loar, S., and Steber, C.M., Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens,Plant Cell Rep., 2009, vol. 28, no. 6, pp. 903–913.

    Article  CAS  Google Scholar 

  23. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., and Smith, S.A., in Current Protocols in Molecular Biology, New York: Willey, 1987, pp. 431–433.

    Google Scholar 

  24. Amoah, B.K., Wu, H., Sparks, C., and Jones, H.D., Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue, J. Exp. Bot., 2001, vol. 52, no. 358, p. 1135–1142.

    Article  CAS  Google Scholar 

  25. Fortin, C., Nester, E.W., and Dion, P., Growth inhibition and loss of virulence in cultures of Agrobacterium tumefaciens treated with acetosyringone, J. Bacteriol., 1992, vol. 174, no. 17, pp. 5676– 5685.

    Article  CAS  Google Scholar 

  26. Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W., and Wan, Y., Genetic transformation of wheat mediated by Agrobacterium tumefaciens,Plant Physiol., 1997, vol. 115, pp. 971–980.

    Article  CAS  Google Scholar 

  27. Wu, H., Sparks, C., Amoah, B., and Jones, H.D., Factors influencing successful Agrobacterium-mediated genetic transformation of wheat, Plant Cell Rep., 2003, vol. 21, pp. 659–668.

    Article  CAS  Google Scholar 

  28. Ding, L., Li, S., Gao, J., Wang, Y., Yang G., and He, G., Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat, Mol. Biol. Rep., 2009, vol. 36, pp. 29–36.

    Article  CAS  Google Scholar 

  29. Jones, H.D., Doherty, A., and Wu, H., Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat, Plant Methods, 2005, vol. 1, pp. 1–9.

    Article  Google Scholar 

  30. Han, J., Yu, X., Chang, J., Yang, G., and He, G., Overview of the wheat genetic transformation and breeding status in China, Methods Mol. Biol., 2017, vol. 1679, no. 3, pp. 37–60.

    Article  CAS  Google Scholar 

  31. Shrawat, A.K. and Lorz, H., Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers, Plant Biotechnol. J., 2006, vol. 4, pp. 575–603.

    Article  CAS  Google Scholar 

  32. Li, H.W., Zang, B.S., Deng, X.W., and Wang, X.P., Overexpression of the trehalose-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice, Planta, 2011, vol. 234, pp. 1007–1018.

    Article  CAS  Google Scholar 

  33. Kvasko, A.Yu., Isayenkov, S.V., Krasnoperova, E.E., Dmytruk, K.V., and Yemets, A.I., Genetic transformation of Nicotiana tabacum with yeast genes of trehalose biosynthesis TPS1 and TPS2,Visnyk Ukr. Tovarystva Genet. Selektsioneriv, 2019, vol. 18, no. 2, pp. 8–16.

    Google Scholar 

  34. Yei, E.T., Kwom, H.B., Han, S.E., Lee, J.T., Ryu, J.C., and Byun, M.O., Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phoshate synthase (TPS1) gene from Saccharomyces cerevisiae, Mol. Cells, 2000, vol. 10, pp. 263–268.

    Google Scholar 

  35. Lawlor, D.W. and Paul, M.J., Source/sink interaction underpin crop yield: the case for trehalose-6-posphate/SnRK1 in improvement of wheat, Front. Plant Sci., 2014, vol. 418, pp. 1–16.

    Google Scholar 

  36. IIhan, S., Ozdemir, F., and Bor, M., Contribution of trehalose biosynthetic pathway to drought stress tolerance of Capparis ovata Desf., Plant Biol., 2015, vol. 17, pp. 402–407.

  37. Liu, X., Fu, L., Qin, P., Sun, Y., Liu, J., and Wang X., Overexpression of the wheat trehalose-6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana,Gene, 2019, vol. 710, pp. 210–217.

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the project “Creation of Drought-Resistant Plant Lines through Overexpression of Yeast Genes for Trehalose Biosynthesis” (state registration no. 0115U005022) in the frames of complex interdisciplinary research program “Molecular and Cell Biotechnologies for the Needs of Medicine, Industry, and Agriculture” of the National Academy of Sciences of Ukraine (2015–2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Kvasko or A. I. Yemets.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvasko, A.Y., Isayenkov, S.V., Dmytruk, K.V. et al. Obtaining Wheat (Triticum aestivum L.) Lines with Yeast Genes for Trehalose Biosynthesis. Cytol. Genet. 54, 283–292 (2020). https://doi.org/10.3103/S0095452720040088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720040088

Keywords:

Navigation