Skip to main content
Log in

Differential Transgeneration Methylation of Exogenous Promoters in T1 Transgenic Wheat (Triticum aestivum)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract—DNA methylation has become an essential molecular approach to regulate gene expression through the regulation of methyl group addition/removal at the 5th position of Cytosine. The T1 progeny of T0 transgenic wheat plants were used to study the transgeneration methylation of promoter proximal regions of two exogenous promoters using bisulfite sequencing. The progeny of low and high T0 IFS expressers with high and low methylation levels respectively were used. Results of this study revealed that T1 plants that have 35S promoter driving the IFS inherited the methylation status of 35S promoter and IFS expression, especially methylation at the –56 and –88 CpG islands. On the other hand, the high IFS expresser of T0 plants with OL promoter driving the IFS expression passed the same pattern of IFS expression and methylation to their T1 progeny, whereas the low IFS expresser of T0 changed the pattern of expression and methylation to the high T0 expresser in their T1 progeny. This indicates that T1 wheat plants were able to demethylates DNA of the OL promoter proximal region, especially at –106 and –151 and reconstitute the IFS expression from low to high expresser through one generation. This also could indicate that plant promoters are more suitable for driving transgene in plant biotechnology. Results will improve our understanding of regulation of gene expression by DNA methylation and their application in plant biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Lopez, C.M.R. and Wilkinson, M.J., Epi-fingerprinting and epi-interventions for improved crop production and food quality, Front. Plant Sci., 2015, vol. 6, p. 397. https://doi.org/10.3389/fpls.2015.00397

    Article  Google Scholar 

  2. Brautigam, K.,Vining, K.J., Lafon-Placette, C., Fossdal, C.G., Mirouze, M., Gutiérrez Marcos, J., Fluch, S., Fernández, M., Fraga, M., Guevara, Á., Abarca, D., Johnsen, Ø., Maury, S., Strauss, S.H., Campbell, M.M., Rohde, A., Díaz-Sala, C., and Cervera, M.-T., Epigenetic regulation of adaptive responses of forest tree species to the environment, Ecol. Evol., 2013, vol. 3, no. 2, pp. 399–415. https://doi.org/10.1002/ece3.461

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akimoto, K., Katakami, H., Kim, H., Ogawa, E., Sano, C.M., Wada, Y., and Sano, H., Epigenetic inheritance in rice plants, Ann. bot., 2007, vol. 100, pp. 205–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Law, J.A. and Jacobsen, S.E., Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet., 2010, vol. 11, pp. 204–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zilberman, D., An evolutionary case for functional gene body methylation in plants and animals, Genome Biol., 2017, vol. 18, p. 87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Han, S. and Wagner, D., Role of chromatin in water stress responses in plants, J. Exp. Bot., 2014, vol. 65, no. 10, pp. 2785–2799.

    Article  CAS  PubMed  Google Scholar 

  7. Jones, L., Ratcliff, F., and Baulcombe, D.C., RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance, Curr. Biol., 2001, vol. 11, pp. 747–757.

    Article  CAS  PubMed  Google Scholar 

  8. Chan, S.W., Henderson, I.R., and Jacobsen, S.E., Gardening the genome: DNA methylation in Arabidopsis thaliana,Nat. Rev. Genet., 2005, vol. 6, pp. 351–360.

    Article  CAS  PubMed  Google Scholar 

  9. Yong-Villalobos, L., González-Morales, S.I., Wrobel, K., Gutiérrez-Alanis, D., Cervantes-Peréz, S.A., Hayano-Kanashiro, C., Oropeza-Aburto, A., Cruz-Ramírez, A., Martínez, O., and Herrera-Estrella, L., Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation, Proc. Natl. Acad. Sci. U. S.A., 2015, vol. 112, no. 52, pp. 7293–7302.

    Article  CAS  Google Scholar 

  10. Ikeuchi, M., Iwase, A., and Sugimoto, K., Control of plant cell differentiation by histone modification and DNA methylation, Curr. Opin. Plant Biol., 2015, vol. 28, pp. 60–67.

    Article  CAS  PubMed  Google Scholar 

  11. Demeulemeester, M., Van Stallen, N., and De Proft, M., Degree of DNA methylation in chicory (Cichorium intybus L.): influence of plant age and vernalization, Plant Sci., 1999, vol. 142, no. 1, pp. 101–108.

    Article  CAS  Google Scholar 

  12. Yaish, M.W., Epigenetic modifications associated with abiotic and biotic stresses in plants: an implication for understanding plant evolution, Front. Plant Sci., 2017, vol. 8, p. 1983.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yaish, M.W., Al-Lawati, A., Al-Harrasi, I., and Patankar, H.V., Genome-wide DNA Methylation analysis in response to salinity in the model plant caliph medic (Medicago truncatula), BMC Genomics, 2018, vol. 19, no. 1, p. 78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Fedoroff, N.V., Transposable elements, epigenetics, and genome evolution. Sci., 2012, vol. 338, no. 6108, pp. 758–767.

    Article  CAS  Google Scholar 

  15. Takatsuka, H. and Umeda, M., Epigenetic control of cell division and cell differentiation in the root apex, Front. Plant Sci., 2015, vol. 6, p. 1178.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Suzuki, M.M. and Bird, A., DNA methylation and scapes: provocative insights from epigenomics, Nat. Rev. Genet., 2008, vol. 9, pp. 465–476.

    Article  CAS  PubMed  Google Scholar 

  17. Takuno, S. and Gaut, B.S., Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly, Mol. Biol. Evol., 2012, vol. 29, pp. 219–227.

    Article  CAS  PubMed  Google Scholar 

  18. Bird, A., DNA methylation patterns and epigenetic memory, Gen. Dev., 2002, vol. 16, pp. 6–21.

    Article  CAS  Google Scholar 

  19. Saze, H., Tsugane, K., Kanno, T., and Nishimura, T., DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation, Plant Cell Physiol., 2012, vol. 53, pp. 766–784.

    Article  CAS  PubMed  Google Scholar 

  20. Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., and Henikoff, S., Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription, Nat. Genet., 2007, vol. 39, pp. 61–69.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I.R., Shinn, P., Ellegrini, M., Jacobsen, S.E., and Ecker, J.R., Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis,Cell, 2006, vol. 126, pp. 1189–1201.

    Article  CAS  PubMed  Google Scholar 

  22. Hauser, M., Aufsatz, W., Jonak, C., and Luschnig, C., Transgenerational epigenetic inheritance in plants, Biochim. Biophys. Acta, 2011, vol. 1809, no. 8, pp. 459–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berdasco, M., Alca’zar, R., Garcı’a-Ortiz, M.V., Ballestar, E., Ferna’ndez, A.F., et al., Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells, PLoS One, 2008, vol. 3, no. 10. e3306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Matzke, M.A., Primig, M., Trnovsky, J., and Matzke, M.A., Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants, EMBO J., 1989, vol. 8, no. 3, pp. 643–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng, S., Dai, H., Arenas, C., Wang, H., Niu, Q., and Chua, N., Transcriptional silencing of Arabidopsis endogenes by single-stranded RNAs targeting the promoter region plant, Cell Physiol., 2014, vol. 55, no. 4, pp. 823–833.

    Article  CAS  Google Scholar 

  26. Heilersig, B.H.J.B., Loonen, A.E.H.M., Janssen, E.M., Wolters, A.A., and Visser, R.G.F., Efficiency of transcriptional gene silencing of GBSSI in potato depends on the promoter region that is used in an inverted repeat, Mol. Gen. Genom., 2006, vol. 275, pp. 437–449.

    Article  CAS  Google Scholar 

  27. El-Shehawi, A.M., Fahmi, A.I., Elseehy, M.M., and Nagaty, H.H., Enhancement of nutritional quality of wheat (Triticum aestivum) by metabolic engineering of isoflavone pathway, Am. J. Biochem. Biotechnol., 2013, vol. 9, no. 4, pp. 407–417.

    Article  CAS  Google Scholar 

  28. Elseehy, M.M. and El-Shehawi, A.M., Methylation of exogenous promoters regulates soybean isoflavone synthase (GmIFS) transgene in T0 transgenic wheat (Triticum aestivum), Cytol. Genet., 2020, vol. 54, no. 3, p. 271.

    Article  Google Scholar 

  29. Kim, J.H., Park, F.J., Lee, T.K., and Lee, W.S., Genomic sequences of the soybean 24 kDa oleosin genes and initial analysis of their promoter sequences, Mol. Cell., 1996, vol. 6, no. 4, pp. 393–399.

    CAS  Google Scholar 

  30. Dai, Y., Ni1, Z., Dai, J., Zhao, T., and Sun, Q., Isolation and expression analysis of genes encoding DNA methyltransferase in wheat (Triticum aestivum L.), Biochim. Biophys. Acta, 2005, vol. 1729, pp. 118–125.

    Article  CAS  PubMed  Google Scholar 

  31. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., and Allard, R.W., Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics, Proc. Natl. Acad. Sci. U. S. A., 1984, vol. 81, no. 24, pp. 8014–8018.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ahmed, M.M., El-Shazly, A.S., El-Shehawi, A.M., and Alkafafy, M.E., Antiobesity effects of Taif and Egyptian pomegranates: molecular study, Biosci. Biotechnol. Biochem., 2015, vol. 79, no. 4, pp. 598–609.

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y. and Tollefsbol, T.O., DNA methylation detection: bisulfite genomic sequencing analysis, Method. Mol. Biol., 2011, vol. 791, pp. 11–21.

    Article  CAS  Google Scholar 

  34. Carr, I.M., Valleley, E.M.A., Cordery, S.F., Markham, A.F., and Bonthron, D.T., Sequence analysis and editing for bisulphite genomic sequencing projects, Nucleic Acids Res., 2007, vol. 35, p. 79.

    Article  CAS  Google Scholar 

  35. Goll M.G., Kirpekar F., Maggert K.A., Yoder J.A., Hsieh C.L., Zhang X., Golic K.G., Jacobsen S.E., and Bestor T.H. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Sci., 2006, vol. 311, pp. 395–8.

    Article  CAS  Google Scholar 

  36. Jeltscha, A., Ehrenhofer-Murray, A., Jurkowski, T.P., Lykoc, F., Reuterd, G., Ankri, S., Nellenf, W., Schaeferg, M., and Helmh, M., Mechanism and biological role of Dnmt2 in nucleic acid methylation, RNA Biol., 2017, vol. 14, no. 9, pp. 1108–1123.

    Article  Google Scholar 

  37. Jorgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N. Zagrobelny, M., Birger, S.B., and Møller, L., Metabolon formation and metabolic channeling in the biosynthesis of plant natural products, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 280–291.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, R., Hu, Y., Li, J., and Lin, Z., Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway, Metabolic. Eng., 2007, vol. 9, pp. 1–7.

    Article  CAS  Google Scholar 

  39. Bucherna, N., Szabo, E., Heszky, L.S., and Nagy, I., DNA methylation and gene expression differences during alternative in vitro morphogenic processes in eggplant (Solanum melongena L.),In Vitro Cell. Dev. Biol.—Plant, 2001, vol. 37, pp. 672–677.

    Article  CAS  Google Scholar 

  40. Tolley, B.J., Woodfield, H., Wanchana, S., Bruskiewich, R., and Hibberd, J.M., Light-regulated and cell-specific methylation of the maize PEPC promoter, J. Exp. Bot., 2012, vol. 63, no. 3, pp. 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  41. Colaneri, A.C. and Jones, A.M., Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential, PLoS One, 2013, vol. 8, p. 59878.

    Article  CAS  Google Scholar 

  42. Lira-Medeiros, C.F., Parisod, C., Fernandes, R.A., Mata, C.S., Cardoso, M.A., and Ferreira, P.C., Epigenetic variation in mangrove plants occurring in contrasting natural environment, PLoS One, 2010, vol. 5, p. 10326.

    Article  CAS  Google Scholar 

  43. Wang, W.S., Pan, Y.J., Zhao, X.Q., Dwivedi, D., Zhu, L.H., Ali, J., Fu, B.Y., and Li, Z.K., Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.), J. Exp. Bot., 2011, vol. 62, pp. 1951–1960.

    Article  CAS  PubMed  Google Scholar 

  44. Moritoh, S., Eun, C., Ono, E., Asao, H., Okano, Y., Yamaguchi, K., Shimatani, Z., Koizumi, A., and Terada, R., Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation, Plant J., 2012, vol. 71, pp. 85–98.

    Article  CAS  PubMed  Google Scholar 

  45. Cao, X. and Jacobsen, S.E., Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 16491–16498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kurihara, Y., Matsui, A., Kawashima, M. Kaminuma, E., Ishida, J., Morosawa, T., Mochizuki, Y., Kobayashi, N., Toyoda, T., Shinozaki, K., and Seki, M., Identification of the candidate genes regulated by RNA-directed DNA methylation, Biochem. Biophys. Res. Commun., 2008, vol. 376, no. 3, pp. 553–557. https://doi.org/10.1016/j.bbrc.2008.09.046

    Article  CAS  PubMed  Google Scholar 

  47. Song, Q., Zhang, T., Stelly, D.M., and Chen, Z.J., Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons, Genome Biol., 2017, vol. 18, no. 1, p. 99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wei, X., Song, X., Wei, L., Tang, S., Sun, J., Hu, P., and Cao, X., An epiallele of rice AK1 affects photosynthetic capacity, J. Integr. Plant Biol., 2017, vol. 59, no. 3, pp. 158–163.

    Article  CAS  PubMed  Google Scholar 

  49. Conrath, U., Molecular aspects of defence priming, Trends Plant Sci., 2011, vol. 16, pp. 524–531.

    Article  CAS  PubMed  Google Scholar 

  50. Kathiria, P., Sidler, C., Golubov, A., Kalischuk, M., Kawchuk, L.M., and Kovalchuk, I., Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants, Plant Physiol., 2010, vol. 153, pp. 1859–1870. https://doi.org/10.1104/pp.110.157263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hauben, M., Haesendonckx, B., Standaert, E., Van DerKelen, K., Azmi, A., Akpo, H., Van Breusegem, F., Guisez, Y., Bots, M., Lambert, B., Laga, B., and De Block, M., Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 47, pp. 20109–20114. https://doi.org/10.1073/pnas.0908755106

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tricker, P.J., Lopez, C.M., Gibbings, G., Hadley, P., and Wilkinson, M.J., Transgenerational, dynamic methylation of stomata genes in response to low relative humidity, Int. J. Mol. Sci., 2013, vol. 14, pp. 6674–6689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miura, K., Agetsuma, M., Kitano, H., Yoshimura, A., Matsuoka, M., Jacobsen, S.E., and Ashikari, M., A metastable DWARF1 epigenetic mutant affecting plant stature in rice, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 11218–11223. https://doi.org/10.1073/pnas.0901942106

    Article  PubMed  PubMed Central  Google Scholar 

  54. Becker, C. and Weigel, D., Epigenetic variation: origin and transgenerational inheritance, Curr. Opin. Plant Biol., 2012, vol. 15, pp. 562–567.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

I would like to thank Dr. A.M. El-Shehawi for reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Mohamed Elseehy.

Ethics declarations

The author declares no conflict of interest. This article does not contain any studies involving animals or human participants performed by the author.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mona Mohamed Elseehy Differential Transgeneration Methylation of Exogenous Promoters in T1 Transgenic Wheat (Triticum aestivum). Cytol. Genet. 54, 493–504 (2020). https://doi.org/10.3103/S0095452720050151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720050151

Navigation